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Abstract

It is proposed that particle interaclions can be described by means of simple group operationa
in pon-compact Lie groups. Prescriptions for the structure of these group operations are
formulated which are motivated by the study of simple models, in particular of the dynamics
of the hydrogen atom. If they are fulfilled we call the structure “group dynamics.”
Neglecting at first internal symmetries, a few simple models are investigated in which group
dynamics iz possible. The group O(31) turns out to describe the coupling of psendoscalar
mesons, 042} that of photons to baryons quite well: The pionic decay rates of baryon
resonances up to spin 18/2 and the clectromagnetic form factors of the nucleons are predicted
in good agreement with experiment.

The internal symmetry 8 U7 (3) is included in the 0(3,1) model of the pionie coupling in the
simplest way, by assuming 0(3,1) x ST (3) to be the dynamical group. This gives rise to a
minimal symmetry breaking of the amplitudes and relates it to the mass differences in 87 (3)
multipleta: The amplitude consists of a product of a 87 (#) Clebsoh Gordan coefficient and a
universal function of the velocity of the final baryon. The way the particle masses enter the
deiay rates is unigquely prescribed in this approach. The agreement with experiment is
excellent.

Finally, the connection of this purely algebraic approach with related ideas, like the use of
infinite component wave equations, is discussed
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I. Prologue

The algebra of observables of a highly symmetric quantum mechanical system
can be generated by the Lie algebra of some small, in general non-compact, group
[0]. The physical Hilbert space is then a representation space of that group.
If all the diagonalized observables, whose eigenvalues label the Hilbert space,
are generators of the group and the representation is irreducible, we call this group
“the group of quantum numbers”. External interactions or scattering processes
can cause transitions between the states of the system. If there is a group, which
not only generates the quantum numbers but also contains all transition operators
as group or Lie algebra elements for a certain set of interactions, we call this
group “dynamical group” with respect to these interactions. Transitions due to a
single type of interaction are usually described by the operators of some non compact
subgroup of the dynamical group, which we shall call the “transition group”
of this interaction. For illustration, some physical systems and their groups are
listed in Table 1. To be complete, we have added the maximal group of degeneracy
connecting levels with fixed energy. We also have given the operator in the
algebra which has to be identified with the energy in each system.
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Table 1
Some Physical Systems and their Characteristic Lie Groups

Maximal Group Group of Quan- Dynamical Transition Energy

System of Degeneracy tum Numbers  Group Group Operator
1. N-dimensional
harmonic oscillator U (N) U(N,1) U(N,1) 0(2,1) Lqy
2. Rigid Rotator 0(3) SL2,0) SL(2,0) 02,1) 12
3. Hydrogen Atom O4) 04,1) 04,2) 0(2,1) -1/(2L3g)

Given the dynamical group of a system, the representation space, and identi-
fication prescriptions of observables and transition operators with the generators
and elements of the group, Schrodinger theory can be completely substituted
by group theory. For highly symmetric systems, the dynamical group description
simplifies more complicated dynamical calculations considerably, as we shall see
in the evaluation of transition form factors of the hydrogen atom. The advantage
gained is comparable to the one in potential theory, where the choice of coordina-
tes carrying the geometrical symmetries of the system leads to the simplest
calculations.

The strength of Schrodinger theory is that the correspondence principle specified
the Hamiltonian and the observables uniquely ; for the dynamical group approach
operator identifications are at present an extra input. Symmetry properties with
respect to certain subgroups, like rotation and parity groups, impose, however,
strong restrictions upon the choice of the observables. We shall see that in small
groups these restrictions will leave in general little or no freedom for these operator
identifications. In particle physics there is no correspondence principle telling
us how to construct observable operators on the Hilbert space of asymptotic
states. One observes, on the other hand, high symmetries in the spectra of particle
quantum numbers and in scattering processes. This suggests strongly that particle
dynamics allows in fact for a simple description through a dynamical group. The
results obtained until now have been very encouraging.

The problem of finding the dynamical group of particle interactions can be
subdivided into several parts:

1. Find the group of degeneracy (or approximate degeneracy) which relates
processes only differing by internal quantum numbers. SU(3) seems to be a
good candidate. Symmetries of the interactions implied by groups of degeneracy
will be called “horizontal symmetries’.

2. Find the group of quantum numbers labeling correctly the states of all particles
at rest.

3. Find the transition group for certain interactions, for example electromagnetic
coupling. Every transition group implies certain symmetries of energy levels at
fixed internal quantum numbers. Such symmetries will be called “vertical”.

4. Find the dynamical group for all processes. This group clearly has to contain
the groups of degeneracy and all transition groups as subgroups.

Much work in particle physics has been concentrated on the first problem. The
principal difficulty there is the fact that all horizontal symmetries are broken
and one lacked for quite some time a definite prescription of how to incorporate
this effect. Current algebras define symmetry breaking in an implicit way and
have been quite successful in relating breaking effects to other observable quan-

1*
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tities. We shall show that an understanding of the vertical symmetries leads to
an alternative, direct and definite way of breaking of horizontal symmetries in
transition amplitudes, which is in excellent agreement with experiment.

Our work will first study the simplest possible transition group, O(3,1), for rela-
tivistic processes to get some feeling for what effects one can describe (Ch. II).
Assuming this group extended by SU(3) to 0(3,1) x SU(3) as a dynamical
group for the Pseudoscalar-Baryon coupling, we shall obtain extremely good
results for all observed amplitudes of this kind (Ch. ITI).

It turns out that the electromagnetic interactions cannot be described by this
group. For these one needs a larger dynamical group. In order to get some hints
of what structure the electromagnetic interaction may have in such a larger
group, we study first the exactly soluble case of the H-atom (Ch. IV) and give
complete electromagnetic form factors for all transitions. We then propose
0(4,2) as the dynamical group of electromagnetic interactions of baryons as long
as internal symmetries are neglected and calculate the form factors of the spinl/,
ground state which are in quite satisfactory agreement with experiment (Ch. V).
The prescriptions of how to obtain dynamical information from a dynamical
group are not well defined yet and far from being on the level of a theory. We
therefore shall not state them at the beginning following an axiomatic approach,
but shall rather formulate them as we go along and learn from the examples we
are treating. The soluble case of the H-atom will give the most important hints for
these prescriptions. A theory of interactions built up on the representation space
of a group, having the same mathematical structure as observed in the H-atom,
will tentatively be called “group dynamics’.

II. The Minimal Dynamical Group

1. Introduction

Suppose all states of particles at rest contained in the Hilbert space spanned by
the states |«), where « denotes collectively all quantum numbers characterizing
the particles. The Hilbert space of rest states must be invariant under rotations,
hence one can decompose it with respect to its spin contents. Therefore we can
assume, that x contains the spin labels j, j, among its quantum numbers. If we
want to describe any relativistic interactions between the particles, we have to
define a representation of the Lorentz group on this Hilbert space. The trivial,
kinematical way to do this is to increase the Hilbert space by adding the momen-
tum as an additional quantum number to the states forming |x, p) and by repre-
senting the Lorentz group elements /1 separately for every spin § by means of
the WieNER [1] rotations W/(4, p) as

U(A) |, p) = o' Ap) Wi (4, p). (2.1)

Another possibility is to leave the Hilbert space the same and to represent the
Lorentz group directly on the rest states |«). The representation is then in general
non-unitary as in the case of the Dirac spinor representation.

Each moving state can be characterized by the “rapidity” ¥(= tanh—'v/c)
of its motion, and we shall denote it by |, {). If M are the generators of the
Lorentz transformations, then

&, &) = ¢ME| o) = B(L)|«). (2.2)
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An irreducible representation of the Lorentz group couples in general a tower
of spins from j =4, until j =4, — 1 together. Its states are denoted by
|7m[J, j11)- 1 j; = iv is purely imaginary, the tower has no upper end; the
multiplet then contains infinitely many particles and the representation is unitary.
In that case we shall often use the alternative labels [j,, »] to characterize the
representation. The state |«, {) can be written in more detail as:

[7m Lo, 1118y = 2 (" (o, 3211 B (@) [jm o, §1) 15 m' o, 1.1 (2:3)
Jm

A summary of the properties of the representations of the Lorentz group is given
in App. A [1].
The states |jm[jo, j;]) can in general not yet be identified with particles of spin j,
For this they would have to be eigenstates of parity. Since parity reverses the
sign of the Casimir operator LM = —ijyj, of the Lorentz group, only [j,, 7,] =
= [0, j;] or [jy, O] possess states invariant under parity. For the other represen-
tations we have to form the linear combinations characterized by the in variant

n(= 41 or —1)

|im o 31 £ = [imljo D) = n1jmI— fo, 2D (2.4)
which have the parity:
I jm[Gy, 1ln £) = 4 (=) nlim{je j1ln +). (2.5)

As we see, 7 coincides with the parity of the ground state |j,m[jy, jo1n ).
These states can then be identified with particles. It is clear that this construction
gives the smallest possible Hilbert spaces on which one can construct a Lorentz
invariant dynamical theory containing parity (i.e. invariant under the semidirect
product O (3,1) ~ II).

If the representation contains more than one state, we can interpret the matrix
elements

G'm o, uln" £1B() [jm[fo, j1ln L) (2.6)

in some sense as transition amplitudes under an acceleration process: The boost
from the rest frame to rapidity ¢ has been achieved operationally by means of
some external interaction &.

la,f)
\\
O
la>

The usual kinematical boost can practically be done only in the passive way by
the observer going to another inertial reference frame. Any active acceleration
would need an external interaction, which would not leave the particle as it is,
but excite it or produce other particles. The boost we have written down in
(2.6) is obviously describing just this alternative. The only problem is to find
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out which, if any, physical interaction may be associated with the transition
amplitudes (2.6). Every representation of the Lorentz group clearly specifies
a different interaction of this kind. (See the note added in proof (1), p. 74.)

The characteristic property of this interaction is that any particle with spin j in
the tower of states from j, to j, — 1, being accelerated to rapidity £, will with
the amplitude (2.6) be excited to any other particle in the tower. The interactions
must therefore have the quantum numbers of a neutral non-strange meson, while
all the levels of the tower differ only by their spin (and parity). Such processes
exist indeed in great number. There are towers of baryon resonances, and photons
or pions can cause transitions up and down the levels. Neglecting their isospin,
we therefore shall identify tentatively the isospin 1/2 baryons N (940), (1525),
(1688), (2190), (2650), (3030) with parts of an O(3,1) tower (the “N-tower”)
and the isispin 3/2 resonances 4 (1236), (1920), (2420), (2850), (3230), as parts of
another tower (the “A-tower””). The N-tower can obviously by only a represen-
tation [1/2, v] because it contains the spin 1/2 nucleon. The A-tower may be [1/2, ]
or [3/2, »]. We shall see that the existence of the vertex 4(1236) — N (940) + y
requires it to be [1/2, »]. It turns out that we can by means of the Lorentz group
describe the pionic coupling very well in the region of small momentum transfer of
the pions. The electromagnetic form factors will need a mixing of many irre-
ducible representations of O (3,1) by means of the larger dynamical group O(4,2)
and will be discussed later (in Ch. VI).

2. Electromagnetic Interaction

For the particles in the representation of O (3,1) extended by parity |jm[jo, j11%)
we postulate the existence of a vector operator I'# coupling to the electromagnetic
field. This problem has been discussed in great detail by GELFAND and Yacrom [2].
Their results are given in App. B. One obtains the selection rule that I'* can
couple [jo, j;] only to [jo &= 1,9;] or [jo, j; &= 1]. From this we see that a single
irreducible representation of 0 (3,1) can contain a vector operator only if [j,7,] =
— [1/2,0] or [0, 1/2] (since the representation [f,, 7,] is equivalent to [— jo, — 71]),
which is just the case where parity can be added to the O(3,1) representation
without doubling of the Hilbert space. On our doubled Hilbert space (2.4) of
parity eigenstates it is clear that a vector I'* exists if, and only if [jo,j1] =
— [1/2, ;] with arbitrary 7,. The particles are then all fermions.

We see that the N-tower has always a vector. But so does the A-tower since it
has to be assigned to [1/2, j,]. Otherwise A (1236) — N (940) - y would be forbidden
which has been seen experimentally. As stated in App. B, the component I’

has on the basis

[im, 2) ljm o, — J1D)
the form .
Ty =o0yy, with » = (G4 1/2)y (2.8)
where y is an arbitrary real constant, or

FO — 62 . 7/?- (2.9)

o; are the Pauli matrices (¢ = 1,2,3).
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Since parity is defined on the states (217) by

as follows from (2.5), we see that only (2.8) generates a vector, while (2.9) gives
an axial vector. If ') is interpreted as the current operator, we can introduce
charge conjugation reversing the sign of the electromagnetic interaction by

0= a, (2.11)

and we see that among the states (2.4), -+ and — combinations have to be inter-
preted as particles and antiparticles for = +1 (or vice versa for # = —1)

+
4-0-9-0-0-0-97/2

Fig. 1. The states of the doubled representation of 0(3,1) extended by parity are shown, assuming the represen-
tation to be unitary with [4,,9,]=[1/2,4+]. To these states we may tentatively assign the isospin 1/2 baryons
N (940), (1525), (1688), (2190), (2650) and (3030), or the isospin 3/2 baryons A(1236), (1920), (2420), (2850),
and (3230) together with their antiparticles, if one neglects isospin,

The multiplets are shown in Fig. 1 for # = 41 and the doubled Hilbert space.
Note that the degenerate case [j,, j;] = [1/2, 0] gives a fermion representation
with no antiparticles.

From (2.10), (2.11) we see that charge conjugation anticommutes with parity,
as it should, since fermions and antifermions have opposite parities.

From I° = ¢;7/ we obtain IV through the commutation rule

[M;, ] =4¢I7 (See App. B) (2.12)
which gives on the particle-antiparticle states (2.4):
Ijm £) = £ +1/2) [jm £),
il jm ) = L[ —m)(j —m — D] Cylj —1L,m+ 1, +) F
TG —m) G+ m+ D= 25+ D40, m+ 1, F) F
Fl+m+1)G+m+ 202 Clj+ Lm+ 1, 1),
oI jm ) = FlG+m) G+m—1DICilj —1,m —1, £) F
FLG+m) G —m+ DI @2f -+ D)d;lf,m —1, F) F
LG —m+1)G—m+ 20 lj+1,m—1, L),
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i3 jm 4) = £ [2— w2 C;|j — L, m, £) F m(2) + D) A;ljm, F) &
£+ [G+ 12 —mB Oy li + 1, m, 4), (2.13)

where

C; = 21} [j2 4 2], A; = j(?_”ﬁ 0 (2.14)

and I+, I'- denote the usual combinations:
't =J1%4 41 I'm=1I1"—I?. (2.15)

We have assumed # = --1. For # = —1 one has to exchange I'* — —I'
Observe that I'# as a vector operator has the property, that under a Lorentz trans-
formation A#, it transforms as

U(A) I'»U (M) = A= I (2.16)
where U (A) is the representation of /1 on our Hilbert space (2.4). Note also that

our I'* reduces to the Dirac matrices y# in the particular case [jy5,] = [}/ %/5]
where it becomes

0 o -
I = (5“ O) = (0'/‘ = (0%, 0), 0% = (6%, — O')) (2.17)

1)

on the [ 2

] basis (2.7).

TINS5

\

/jm[joj1Jq, t,0>
Consider now the process in which a member of the multiplet is accelerated from
rest to rapidity ¢ by an external photon. We require that the electromagnetic

current for this process contains only the vector I'# given in (2.15). Other vectors
which would in principle be possible are

I't = f(g®» (p'* + p*), I's = f(g® (" — p (2.18)

'y =g(@» Lw(p' + p), I't =9 (¢ Lv(p" — p), (2.19)

or

where p’, p are the four-momenta of the initial and final particle and ¢ is the
momentum transfer ¢ = p — p’. Since such vectors may contain the arbitrary
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functions of f and ¢ of the momentum transfer and allow too much freedom of
the theory, we shall exclude them for the time being from our consideration,
focussing only on the purely algebraic vector I'*. We note in advance, however,
that the current of the hydrogen atom will in fact contain a term of the form I}
with a constant f for its complete description (see. Ch I'V). (See the note added in
proof (2), p.74)

For unitary representations, the electromagnetic current can then be written,
using the special frame in which the final particle moves in the Z-direction:

T = G'm' [fogudn’s = 1] jm[Gojaln £, ) - (2.20)
{ can be calculated in terms of the invariant momentum transfer through
t=q¢*=(p —p )P =m—m)? —2m'm(ch{ — 1) (2.21)

The global representation of O(3,1) on the |jm[j,7,]) basis has been given by
STROM [3]. For a Lorentz transformation in the Z-direction he finds

lim[§e11) = 17" m[jos]) Byl (C[Geta]) (2.22)
where for m = 4,7 > 7 (See App. A)
B (Cljoia]) = N7'i(jo jy) sh/ T Lehtert Ui 5 F (" + 1 — ji,
J bl G0, 27 2,1 —e )

g G gt G — g0t G ?)
N — 97
o) = ¥ [(1+7o) TG =gl G — !

Ci+DG+D2 =71 [ —ﬁ]J’/Z

. 2.23
& D! (2:29)

On the states with definite parity the Lorentz transformation is then
ljm[fogaln ) = 5" m[jojsln &) By (Clieil) (2.24)

where:
1

el =& (Bfn] (C[Godn]) == B (Cljo — D) ) (2.25)

In the case §; = 0, the representation becomes reducible; only B; exists due to
the fact that this representation has no pseudoscalar, the only one, L - M, being
zero since L« M = — 7,9,

Besides this fermion representation, also the boson representation [0, 1/,] is given
by the same B’s. One just takes the limit j;, — 0 before j, — 1/, and gets the
same result as for [1/,, 0]. Then this case doesn’t have to be discussed separately.
To compare the electromagnetic form factor for the spin 1/,+ ground state with
experimentally observed quantities, we have to separate I* into electric and magne-
tic parts. This can be done by using the conventional current form:

lﬂﬂ=ﬂ@7pﬂuﬂ+ii%wwluﬂu@) (2.26)
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with
o = = [y, '] (2.27)

and
% = u — 1 = anomalous magnetic moment.

In terms of the functions F, (), F,(t) the electric and magnetic form factors are
then defined as

Goll) = F10) + {17 Fal®), Ou () = Fy (0 + 2F50).  (2:28)

With them the current I* can also be written in the BARNEs [4] form:

1 ! u p ['u
10 = ) o) TP - e | | 220
Sy

where:
I"I-‘ = 8.1“‘7-3 (p, + p)v (p’ - p)ly”‘)}5’

s = pOyly2ys. ’ (2.30)

Putting p’ =0 and p in 4- Z-direction, we obtain between the indicated spin
directions (with p/M = sh{)

ID, wp(t) = ch /2 G(t),
Iy up(t) = £sh{j2 Gy(1),
I} in @) = F=shl[2 Gy (1), (2.31)
Current conservation implies (p’ — p), [ =0, hence in our particular frame:
I3[I° = +-th{/2. (2.32)

u = Gy (0) is the magﬁetie moment of the particle in units ¢/2 M c. In order to
find the magnetic moment of the ground state we need to calculate /# only for
small £. From (2.20) we find

I = My s + [ T0] Yoy +, & = Bl (Mo ) - (2.33)
B =y g+ T2y Yy +, 8 = (Mo e + [ T3] Y3y —) B () +
+ Moty 113 3a 4 B H(E) =

. i 2 - 3,1/, (5
= —235, B, " (0) + 3 [®fy — 331" Bil,= 2 (8)

I'=fy = Yo A 1T a4+, O = My — Yo+ [T Yo e —) B (0) +
+ (Mo — Yot M3 Y +) B (6). (2.34)
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For small {, we may use the first term in the Taylor series of the B’s (see App. A)

1,1 jl
_B1 fetle — 72 ,
{2 3 C

3 1 é- . 1
Bi““==¥;[ﬂ4—vf]“c (2.35)
to get:
I°=1,
B =1t
2 1\ ¢
1 (.42 )2
I-—(gyl 2)2. (2.36)

Comparing with (2.31) we see that the current is conserved to this order in .
As we shall show in Section 5, it is even conserved for all {. Sinee the charge is
one, we get for the magnetic moment

Gy (0) = (2/3?-12 — 1/2)- (2.37)

In the case §;, = 3/2, which repre-
sents the limit of the Dirac theory,
we obtain the magnetic moment
i =1 of the electron. The case
J1 =0 gives p = —1/, and was dis-
cussed as early as 1932 by Majo-
RANA [5] using an infinite component
wave equation. We shall come back
to this in Section 6. |

Since the theory doesn’t contain
1sospin, one probably should identify
w/2 with the isoscalar magnetic mo-
ment of the nucleons (u, =44). The
agreement is not too good. For »==0
1t is even worse, being < — 1/,.
Let’s now consider the electric form
factor of the 1/, ground state. We ~
have plotted it in Fig. 2. (The » =0

fermion electric form factor also s
coincides with the spin zero form
factor of the boson representation
[0, 1/,] which is defined by

(@ + p)

2M
Fig. 2. The electric form factor of the j#=1/2+ ground states

Except for v =0, all form factors is plotted as a function of the invariant momentum

- . transfer { = g*=(p — p’)%, and compared with the

oscﬂla‘_oe fOl larger momentum tI‘a:Il.S- nucleon. form factor. We see that the » = 0 form

fers. Like in the case of the magnetic factor falls off far too slowly in ¢. Higher » values im-

. . prove the slope for small ¢ but give oscillations for

moment’ v =0 gIves also here the larger?. The curve withv=0 gives also the form factor
most physmal result. of the boson representation § = 0,1,2,...

———

T TTTT]

B”]‘/'g’z (C0/2,01)

T 1T

o

Ir = G(t)
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Observe now, that this case is also the only one in which there really exists a
dynamical group of electromagnetic interactions. According to our definition
in Ch. L., transition operators like I'# have to be generators of the dynamical group
of the system. But I'# close back under commutation to form a Lie algebra in the
unitary case only if » = 0. Then we can define

Lij, Lig = My, Lig =T, Ly; = I" (2.38)
to form the Lie algebra 0(3,2). (See App. (B. 12), (B. 13)).

Hence, the minimal dynamical group of electromagnetic interaction in this sense,
constructed on an 0(3,1) representation space, is really O(3,2). And since this
case gives the most physical result, our requirements of Ch. I upon the theory
seem to be quite reasonable concerning this model.

Even in the optimal case » = 0 the agreement of the theoretical form factor
with the nucleon form factor is rather bad. We see that a model based on just
one irreducible representation of O(3,1) fails to describe the electromagnetic
properties of the nucleons. If one tries to obtain an agreement by including
terms of the form (2.18) (2.19) into the current, strongly ¢ dependent functions
f and g would be necessary, whide cannot be obtained from group theory. We
conclude, that in order to improve the results, representation mixing is obviously
needed. We may define a “‘wave function” 9] (v) such that the physical particle
consists of the mixture

[jm) = X

Jo=1§

f dy pl, (v) |im[for]n ) (2.39)

Such a mixture leads then to a nucleon current

Ir(@) =3 [ dv i (v) 9, (0) 1 (C [Gov]) (2.40)
704

which amounts at large ¢ essentially to taking Fourier transforms of ¥ (») vl (v)
(see the asymptotic forms of I#([j,, »]) in App. (A. 57)). Since in Schrodinger
theory the form factor is the Fourier transform of y* (z) y (%), we see that ! (v)
corresponds to a relativistic wave function of the particle, which is defined in an
invariant way in » space, instead of z. This suggests one method of getting better
form factors: One may try to write down a Schrodinger equation for a particle
moving in some potential well V (v) and try to determine o} (») to fit the form fac-
tors of the particles with spin j. For example, the wave function

¥, ) = e (Hfy -+ 97 (2.41)
leads for large ¢ to an electric form factor of the j = 1/, state
1 4al a
G — — o-t/2 2.42
E=5¢ ((a2 T e + T CZ) ( )

which decreases faster than the » = 0 form factor and doesn’t oscillate.

Another possibility, and this is the one we shall pursue, is to postulate a larger
dynamical group for the electromagnetic interactions. This automatically intro-
duces a larger number of particles into the theory which will be in general mix-
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tures of irreducible representations of some Lorentz subgroup of the dynamical
group. The next larger group after O(3,2) with a similar structure is 0 (4,2). It
will be discussed in great detail in Chs. IV and VI.

3. PionicInteractions

We proceed along similar lines as in the case of the electromagnetic interactions.
Instead of a vector I'* we now need a pseudoscalar interaction. Such an operator is

in the extended Hilbert space “;i

L' jprd i )

] given by P = C = og,. This operator does not

ljm Ljovin, 0>

belong yet to the group. We can, however, simply extend O(3,1) ~ II by P
as well and may then within 0(3,1) ~ /I ~ P dynamics use P as a current ope-
rator, in consistency with our philosophy. Then, between two particle multiplets
with lowest parities ', % we find for the vertex the amplitude:

AQ) = 5 il [P limiln +, 0
= % B o, 7)), (= for -y’ = F 1) (2.43)

{ is a coupling constant. The decay rates can be calculated from

"

2
r=0% 3 B, P 2.44)

where @ is the invariant phase space

1 P
® = 571 I, M,. (2.45)
p the momentum of the decay products and M,, M, are the masses of initial
and final baryon, respectively.
The amplitude, which is analytic in the external spins j’ and 4, is interpreted to
give, after fixing the coupling constant ¢ and the Casimir operators of the repre-
sentations, the complete form factors for the decay of any baryon resonance in



14 H. M. KLEINERT

the A- or N-tower (see p. 6) into any other one and a pion. In order that the decay
A — Nn is allowed, we have to assume again that [j,, v] are the same for the .1-
and N-towers. The N-tower has necessarily j, = 1/, because it contains the nu-
cleons, hence both towers have to be [1/,, »]. Notice that the existence of a vector
operator I'« on the Hilbert space follows then and does not have to be postulated.
The pionic form factors of baryon resonances have not been measured yet. Only
one point on some of them is known due to decay processes. The best measured
ones are the processes

A>N+4x (2.462)
A
a4
7 ;/
V7999 S
Z LS T
Y v YN
2% IR IS AT K
DRI HK NSNS N AT
LN //Q;//)r/} é%@@ '0" ‘, fé‘(
gl "?&w} é ,;.5¢;¢
73 A

g

N
%}S\
W
%\
auil
3
@l
B
7

Fig. 3a. The experimental amplitudes for the decay of members of the decuplet tower into nucleon and pseudo-
scalar meson oetet are plotted and compared with the theoretical funetion Bﬁ/q']'l/ 2[£(Y,, 3-5)] as a function
of spin of the decaying particles and the variable p/M; = sh™'{. Couting towards increasing p/My, the
dots stand for the decays
Spin 8/2t: X(1385) — X, 2(1530) — &=

2(1385) — Am, A(1236) > N =
Spin 5/27: X(1770) — Am, X(1770) > N K
Spin 7/2T: Z(2085) — Am, £(2035) > NEK
A(1920) —~ N =
Spin 11/2F: A(2420) - N=
Spin 15/21: 4(2850) — N =
Spin 19/2+: A(3230) -~ Nn ,
The agreement is excellent except for the X(1770) — A= which is off by a factor of 2. It may be that
this resonance doesn’t belong to a decuplet. For the points with open error lines, the experimental errors
are not known.
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and
N* = N - n. (2.46b)

In these particular cases the width is then given by

I' = @G| B "({ [jgv]) |2 (2.47)
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Fig. 8b. The figure shows the same points as on Fig. 4. The experimental amplitudes for the decay of the

Figure 3a, only that they are now plotted isospin Y/, baryons: N (1525), (1688), (2190), (2650),
on a two-dimensional graph which contains (3030) — N II are plotted and compared with theo-
more than one value of #(0,1,2,8,3.5). retical curves B;Z 2[2(1/,,9)], which have been

We see that the value » = 3.5 gives the
best fit. The curves for the highest spin
have been reflected on the right boundary
to get all points onto one graph, See the
note added in proof (3) on page 74.

taken from Figure 7. We see that » = 3.5 gives
the best fit. Again the curves for the highest spin
have been reflected on the right boundary to get
all experimental points onto one graph.

We have plotted on Figs. 3,4 the experimental amplitudes for the decays (2.46a)
and (2.46b), and compared them with our theoretical function B (L [Gev]),
respectively. The parameters which fit best are » = 3.5 and G =13.5 and
19 [6]. The agreement is excellent. There are some more points for strange
resonances on Fig. 3 which will be discussed in Ch. III.

4. Algebraic Meaning of O(3,1) Dynamical Symmetry

a) Expansion of the Current into O(3,1) Harmonics

Quite naturally the question arises now as to what kind of approximation of a
possible exact theory is given by our O(3,1) currents. This point is illuminated
best by reducing the exact currents with respect to O(3,1) symmetry, i.e. by
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performing an O(3,1) “partial wave analysis.” Qur approximation then proves,
as we expect, to be equivalent to assuming dominance of one partial wave in
this expansion.

The most general form factor of a particle with mass M and spin s can be written
as

It = (p'sg[ M, s]| I | psy [ M sT) (2.48)

where I'* is some vector operator and [ps;[M s]) are unitary representations
of the Poincare group [I]. The state |ps;[M s]) can be expanded into the complete
set of unitary O (3,1) representations as:

|psg[M, s]) = Z; [dv [imjov]) (Gmijov]Ipss[Ms]) (2.49)
7h=S

where (jm[j,v]|pss[Ms]) are the ‘‘spherical harmonics” of O(3,1). That j,

has to be smaller than s is seen by going to the rest frame. There |jm) is necessarily

|'s, 8g) from rotational invariance. Then

|0s5[Ms]y = 3/ f Avlss,[§gv]) (s83[Jov]1085[ M s]) (2.50)
Jeo
and only j, = s therms contribute.
The matrix element
Aﬁl’s (v) = {ss3[fo]10s3[ M s]) (2.51)

is independent of s;. By boosting we get

[pss[Ms]y = 3 [ dv B(Q)|ss[fo, v A} (v). (2.52)
to

The form factor (2.48) becomes then, putting again »' =0 and p in the Z-
direction

Ir =3 [dvdy AY (0) A (v) (8 s3] T | 8835071 £) - (2.53)
Julo
According to the selection rules for the vector operator, the matrix element can
only exist if [jjv'] =[j, 4= 1,»]. For a spin!/, particle then only j, =1/, and
one v-integration survive and constructing as in (2.5) particles and antiparticles,
we are left with

Ir = [dy | 4255 ()2 (Yo [oo v]m + 1T gsa[Ma vl 4+, 8. (254)

The right matrix element is, however, according to the Wigner Eckart
theorem nothing else but our current calculated in (2.20) times some reduced
matrix element v (v)

MasslM o vIn 4 [1# [Yas5[Yas v +, ) = y () I# (L, [Y2, 2]) - (2.55)

The assumption that O (3,1) (or 0(3,2)) is the dynamical group of electromagnetic
interactions obviously now amounts to the dominance of some », as we stated in
the beginning of this section, in the integral (2.54). The current then reduces to the
one calculated in (2.20). We see that we could have started the approach from
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this side and might have justified the same approximation by the existence of
A- and N-towers of baryons as O(3,1) multiplets. Otherwise we get what we
interpreted as the wave function in (2.39)

Y ) = A 0) ¥y ) (2.56)
of the system. A fixed v corresponds to the particle being concentrated on a
spherical shell of radius ». This interpretation is supported by the fact that O(3,1)
can be considered as the dynamical group of the rigid rotator (see Table 1).

b) The O(3,1) Spherical Harmonics {jm[jov]|pss[M s])
The state |ps;[Ms]) can be written as

U (p) B(£)|0s5[ M s]) D (2.57)

838"

where B () bootss by { = sh! p/M into the Z-direction and U (p) rotates from Z
into the p-direction. Then the matrix element (ps;[M s]|jm[j,»]) takes the form:

(pss M s11im[jor]) = D5, (p) (033 [M 81| B-(C) U~ (p) | jm [jor])
= D} 5, (9) 5[ M s]| B-(§) 1753 [o»]) Dl (D) (2.58)

<3 Ss

Using the spectral function 4M#(y) of (2.51) and the global representation of B
from (2.23) we obtain

(pss[Ms]jm[jov]) = Dj,(D) Dias(B) Bi* (C[i0v]) A7 (). (2.59)

AMs(y) can now be determined from the completeness relation of the states
| pss[Ms]) and the orthogonality of [jm[j,»]):

Z —(77%[?0 TIpsg[Ms]) {pss[Ms]|jm[jor]) = bj0mm0y;s,0 (" —). (2.60)

Inserting Equ. (2.59) into this we get

2 | dp D (p) Dl (p) D3y, (7) Dyl () X

3353

2 ., . : /
X f P 2P BIsCLigv') BECTion])* | AN ()2 = 875 m 05 00" —v).  (2.61)

2P,
The 3 obviously leads to d;

Sg
glve

sz and the angular integration can be performed to

4x

All that remains it then:

pdp

i+ 0 + 1) < Z BE(C[G3v']) BE* (S [ AN (0) 2 = 85, 000" — ). (2.63)

9 Zeitschrift ,,Fortsehritte der Physik®, Heft 1/2
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We evaluate this integral for the simplest case s == 0. Then j,, j; are necessarily
zero. The functions B are in this case (see App. A 31)

BY(Z10, v]) = NP (05y) 2(j -+ 1) L (F — D7HPRIS () (2.64)

where 9 = ch{ = [1 — v%/c2]')
with

NP(05,) — 2 7! [(1 (. Dz)J%- 2.65)

(27)! 25+ 1

Using §1/2)! ( + Yo)! = [(2j -+ 1)/2%1] 2'/s this becomes

) a (2 L] )] I
B0, = = AT B o — o). @60
Now
prdp f/ —1d 2.67
f2po Vv Y (2.67)
and since
Fo N =D (—iv— 1)
lfdwa_ P = ST e = e
we find from (2.63)
| AMO ()| = > (2.69)

T

The spherical harmonic of O (3,1) for spin zero is then (from (2.59) and (2.69))[6,1]

(iv + 7)1
(2» — 1)!

2 + 1}1/2

(po[M0]1jm [0, ]) = Dito (D) [ 5. [ (2 — 1) PiSix(y) (2.70)

where the phases have been chosen such that L,, = 1/i(p.¢, — p,0,) has the
same matrix elements on the functions (2.70) as L,, in Equ. (A. 2).

These functions clearly can be obtained, apart from a normalization constant,
from the O (4) spherical harmonics (where j; = integer)

jimn __1 . 27+1 (71+?+
v = g [ 0 PR B

1! ]X/QD*)( e () en
nio\Y Ji+1s R :
by analytic continuation of j; into 7.

5. Current Conservation and Mass Spectrum

In Paragraph 3 of this chapter, when discussing the electromagnetic interactions
in 0(3,1) theory, we have tacitly assumed that all currents calculated from the
vector operator I'* by means of Equ. (2.20) are conserved. It turns out that this is
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in general only true if the current is elastic, i.e. its initial and final particles are the
same. If I'* is to give the complete electromagnetic current also for inelastic
processes, then current conservation fixes the whole mass spectrum uniquely.
This can easily be shown: Current conservation implies:

(" —p)yl, =0 (2.72)
it p,p denote the momentum of initial and final particle, respectively, i.e.:
p = (M",0,0,0), p = (po, P)- (2.73)

Observe now that in terms of matrix elements (2.72) can be rewritten as:

M (M| O™\ MYy — (M| prd, M8 My = 0 (2.74)
but due to the vector transformation
GMT M [y e=iME — pu ], (2.75)
this reduces to
M (M| TOME MY — M (M M| M) = 0. (2.76)

If now the particles are eigenstates of 7' as in our O(3,1) theory

Iy M) =y | M) (2.77)
we see that
(M'y —My)=0 (2.78)

is necessary for current conservation. For elastic currents this is automatically
fulfilled. For inelastic ones, we find

u =
/4
In the 0(3,1) case, y =4 + 1/, and the mass spectrum becomes
J+

which gets smaller with increasing spin and has no correspondence in particle
spectroscopy. This mass spectrum has been found by MasoRANA in 1932 for the
special case of » = 0 by using an infinite component wave equation [5]. We shall
generalize this method and discuss the relation to our purely algebraic approach
later in Ch. V.

In order to assign the 4- and N-baryon towers (see p. 6) to an O(3,1) multiplet
and get the right mass spectrum without violating current conservation, we
obviously would have to add new terms of the form (2.18), (2.19) to the current
operator I'». In particular terms of the form I} = f(p’* + pr) with constant f
have the nice property of reversing the j-dependence of the mass spectrum (2.79)
to an increasing function of j. The consequences of such terms will need future
investigation. Hopefully, the condition on the mass Spectrum will uniquely single
out the correct current among all possible vector operators. With such terms
the postulate that 0(3,2) as a dynamical group has to contain all current opera.-
tors in the algebra is then, however, violated. To get around this difficulty, we may

2*
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either extend O(3,2) and the currents (2.19) by more operators until they close
to a much larger group or weaken our postulate. We shall not do either one but
rather take the standpoint that the need of additional current terms like (2.19)
expresses a weakness of the dynamical group we started out with and rather look
for a better group. We basically would like to avoid any explicitly momentum
dependent currents, which allow for too much freedom on the theory. The current
operator should be purely algebraic and essentially fixed by a small group, while
ad hoc terms like (2.18), (2.19) are obviously not.

Thus also from this point of view it is strongly suggested to use a larger dynamical
group for electromagnetic interactions which will be done in Ch. VI for baryons.

6. Majorana Equation for an O(3,1) Multiplet

The 4-vector operator I'# used for the electromagnetic coupling can also be used to
couple with the 4-momentum p* to a scalar, and we can write an infinite com-
ponent Poincare invariant wave equation on an arbitrary O(3,1) representation

space [jo, v] = [/a, 7]
(puT™ - 2 (M2 W) p(x) =0 (2.80)

where x is an arbitrary function of the Poincare invariants

M2 = —o~0,
and
W2 = (iew*L,,0,)2. (2.81)

By using the property of the I'* matrices of transforming under the Lorentz
transformation /A as

U-L(A) o U (A) = A, I L (2.82)

where U () is the representation of 4 in the doubled Hilbert space, we can write
(2.80) as

(pu T + % (32, W2)) U(A) p (A1) = U (4) (pT° + #(M2, W) p(4-12) = 0.

In momentum space we get from this on the state at rest (2:5)
(G - o) M+ = (M2 M2 + 1)) =0 (2.84)
which is an implicit formula for the masses
M = Mj) (2.85)
Majorana used a constant » and obtained
M= ?_J_:—l/; (2.86)

What does the Majorana equation mean algebraically? Consider again the scalar
product of Poincare and Lorentz states discussed in Sec. 4.

(pss[Ms]ljmljov]) -
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From what was said there it is clear that the Hilbert space |jm[j,»]) can be
spanned by the Poincare states at rest [0s;[ms]) if one uses all spins s = 7,.
For every spin one may choose any mass M to go with it. Precisely this choice
is fixed by the Majorana equation.

To see this we go to the momentum representation of the wave function ().
There we obtain

(Pl + % (M2, M25(s + 1)) (psy[Ms) [ jmljor]) = 0. (2.87)
In the rest frame this reduces to

(MG ) + (M2, M2+ 1) Om[Mf]|jmljpr]) =0.  (2.88)

Thus we see that only those masses M = M (s} are allowed to occur in the
scalar product which follow the mass formula. (2.84).

The Poincare group is thus coupled in a highly complicated way to the O(3,1)
group, and the Majorana equation gives the most concise way of describing this
coupling. -

In (11.5) we found that I'* gives only then a completely conserved current if the
mass spectrum is that of Majorana equation (2.86). This corresponds to the
infinite component equation

(Bul* + My)y = 0. (2.89)
Current conservation is now a consequence of this equation:

@' —p)lup) = (My — M) (p'|p) =0. (2.90)

We see again that for general » = » (M2, W?) only the diagonal current is
conserved.

Assuming I'# to give the electromagnetic interaction amounts now obviously to
postulating minimal electromagnetic coupling in Equ. (2.89) through the substi-
tution:

Pu—> Put ed,. (2.91)

Majorana’s equation has been generalized by NaMBU [7] who uses a larger group D
than the Lorentz group, to construct a vector 7' and to write an infinite compo-
nent equation like (2.80). In this case one can generally add more terms to the
equation which are scalars in the group D under the Lorentz subgroup. This has
the consequence that infinite mixtures of states can be eigenstates of I',. We shall
briefly dicsuss such an equation later in Ch. VI, after having investigated O (4,2)
as the dynamical group of electromagnetic interactions of the H-atom.

III. Minimal Breaking of Internal Symmetries

Until now we have neglected internal symmetries like isospin and strangeness
completely. We shall assume here that for every spin level in 0(3,1) there exists
some broken § U (3) symmetry. The simplest way to include 8 U (3) into a dynami-
cal O (3,1) theory is by postulating the direct product O(3,1) x SU(3) [9, 10] as
a dynamical group. In an irreducible representation space this means that at
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every spin § in the O (3,1) tower there lies a whole S U (3) multiplet which is the
same for every spin. Thus we get octet towers decuplet towers, ete., as particle
multiplets. We may then assume that the -resonances form in fact, together
with 2'(1385), (1770), (2035), (2260)? [8], £(1530), (1933)? a decuplet tower,
while the nucleon octet and X (1660), (1910}, (2260)%, A1(1520), (1820), (2100),
(2340)?, £(1815)? may be assigned to an octet tower. On these ilbert spaces we
then assume the baryons to couple to a pseudoscalar meson octet by an interaction
similar to (2.43)

G .
AQ) = —= (mljgr), i| PH e[ fm[for], k) (3.1)

where i, §, k are SU(3) indices and A’ are the eight SU(3) generators. Observe
that the amplitude possesses exact S U (3) symmetry if { = 0, which happens for
the invariant momentum transfer

{ == (M; — M) (3.2)

and is a different point of the mass shell for every external configuration of

particles. There the amplitudes are just given, up to G/ ]/E, by SU (3) Clebsch
Gordan coefficients (C.G.)

¢
A =-— x C.C. (3.3)

V2
For & different from zero this amplitude gets multiplied by the universal function
of the rapidity BXI'1({[f,, v]), since SU(3) commutes with the generators M of
0 (3,1). The decay rates become now
G2 -
=9 (CGE3 Bl (34)
il m

with @ being again the invariant phase space (2.45). If we normalize the Clebsch
Jordan coefficient for 4 — Nz (or N* — Nz) to one, then for the A(N¥)
cdecays this calculation has to go over into the old one. Hence, the parameters are
fixed to be » = 3.5, G = 13.5 (19). For those resonances, whose spin parity
assignmentisknownand fitsonourdecuplet tower(3/2+,5/2+,7/2+), we have compared
the experimental amplitudes for the decay into nucleon octet and meson with the
theoretical function B/ *=(([!/,, 3.5]) on Fig. 3 where also the 4 — Nz amplitu-
des are plotted. We see that the agreement is excellent, except for the Az mode
of the X (1770), which is off by a factor of 2. The (1770) is therefore probably not
a member of our decuplet tower. The same thing would have to be done for the
octet tower also. There the fact that 8 X 8 can couple to 8 in two ways will
introduce an additional parameter. Also there one obtains good agreement with
experiment (B. HampRECHT and H. KLEINERT, to be published).
Observe that from Equ. (3.4) the decay widths exhibit definitely broken S U (3)
symmetry since different members of one multiplet decay with different rapidities.
Only if B(¢) would be constant in { the symmetry would be exact. Fig. 3 shows,
however, that B({) has quite a strong slope in the range of the experimental
points and therefore the symmetry breaking is considerable. On the other hand,
since the inclusion of SU (3) has been algebraically the simplest one possible
through the direct product, we shall call symmetry breaking arising this way
“minimal.”” We want to remark that traditional S U (3) calculations use ad hoc
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the centrifugal barricr P{3, instead of the amplitude B({), which is just the first
term in a Taylor series expansion of B(Z). Since B(I) on Fig. 3 doesn’t deviate too
much from its first Taylor term yet, the results are similarly good. The advantage
of our approach in this respect iz that the way mass differences have to be taken
into account is wniquely prescribed.

IV, The Exactly Soluble €3{4,2) Model of the H-Atom

L. Introduction

The conclusion of Chapter IT haz been that physical baryon states must be
mixtures of irreducible representations of the Lorentz group. Such representation
mixing oceurs in a natural way if one goes to a larger dynamieal group D) to
describe electromagnetic interactions. f) will then contain in general infinitely
many (3.1} subgroups, The booster may be chosen differently for every state,
and the vector operator I' can be dependent on the states between which it
acts, How ean one find some order in this great amount of freedom of choice?
There iz one system in nature which is an ideal object to study how representation
mixing is done in a systamatic way : The dynamies of the non-relativistic Il-atom
can be completely deseribed in group theoretical langonag: without any use of
intarnal coordinatss. An expression for the current can be found which allows us
ti calenlate the transition form factors for all the radiative decays

H* 1 + 5 (4.1)
and for which enrrent conservation fixes the mass spectrum to the observed one

RS, | R (4.2)

Antk
] = 2 — =17, ! r i 1 ) 1]
where & = ua®, M =mg 4 m, p = mgmy/m, |- niy. We therefore shall diseuss this

case in some detail. Its algebraie strocture will then be generalized and applicd to
the description of particle dynamics.

2. The Group of Quantum Numbers (2{4.1) of the H-Atom and its
Extension to 04,2

Consider the representation of O(4,1) given by
Ly =Yy (otoma -+ brah) = L,
Ly = —slatem — breh) = By,
Ly = =t Ot — algh),

Ly, = 1){2i) (aCb+ — aCb) (4.9)
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on the Hilbert space

1 af’””"“azﬂ“ b1+1'h+m bzf nz[ 0> m >0
|nyngm) = [ng!(ny + [m ) ng! (ng + |m|)!] f2 for
afnza;ﬂ]—mbfnlbgrnz—mIO> m < O

(4.4)

for all »,, ny =0, where a,b] are creation operators satisfying the commu-

tation rules o
[a,ai] = Oys [brD]] = Ors. (4.5)

The commutation rules of L,, are

[Lva,ul] = ig,uuLyl (4:'6)

g = (1111_1).

The representation is obviously unitary and irreducible. Its Casimir operators
have the values

with

025 LabLab = _4:,
04 = LabLbchdea = 0 . (47)

L, L;; generate an O(4) subgroup which keeps the total number of operators a,b
or
N =1,(a*a + bt + 2) (4.8)

invariant. On the states |n;nym) we find
N | nyngmy = nlngngm) = (ny + ny -+ [m] + 1) |nyngm). (4.9)
The other diagonal operators are:
Lg|ny nym) = m|nyngmy, (4.10)
Mg|nynym) = (ny — ny)|nnym). (4.11)
If we identify the operators as

L = orbital angular momentum,

No— (4.12)

V—2H

where H is the Hamiltonian of the H-Atom, we see that we have thus generated
with O (4,1) the complete bound state Hilbert space of the hydrogen atom in the
parabolic basis which is used for the theory of the Stark effect. In position space,
the wave functions are given by [77]

Ine]

4
) —i—(&En\ 2 7) _ ,
Un, nzm(S) /E (P) = elmqun‘ mym € 2 (ﬁ) X Llnzll [l (éln) le,ﬂ[m[ (77/7”) (413)
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where

§=r-z,
n=r —z (4.14)

and @ is the azimutal angle and the normalization constant is:

—\naH(lm]—m)/2 ! ! Y
Nnnm: ( ) — oSl . (415)
o Yn? (ry + m) 1 (ng + m) 13

In the position representation L and L;, = R; (which is the well known Lenz
Runge vector) are

L=rxp (4.16)
R=1,pxL—~Lxp)—7# (4.17)

if one identifies uy, p, (&, 17, D) with |[n nam). [12]

One may then ask, what the usual wave functions v,;,(z), on which L2 and L,
are diagonal, look like on our representation space. For this one just has to
observe that

L=J+K, R=-—-J+K (4.18)

defines L, E in terms of the commuting O(3) x O(3) generators of a- and b-spin:
J =1, atca, K —1,brcb. (4.19)

On [nynym), O(3) X O(3) is diagonal since all a’s, b’s commute among each other

and therefore couple totally symmetrically to j =k = (n;-}-ny - |m|)/2 = (n — 1)/2.
One can also read easily off, by counting up- and down-states that:

Ja = omy —ny +m), kg =10y — ny + m). (4.20)

Now one only has to use the fact that J and K commute. Then the basis on which
12 is diagonal is just given by means of Wigner’s 3 — j symbols

n —1 n—1
—— [
|nlmy = (=)™ (21 + 1)) 2 2 |1y ngm).
Ya(ng —ny +m) 1y(ng —ny+ m) —m
(4.21)
In x-space one has to identify |nlm) with
_T o\ ,
Poim(®) = Nye (E) F(—n,, 21 4+ 2,2 Z) [11] (4.22)
where
B 2h+1 (n + D1
A%"‘(2z+-1)!n2[ ! (4.23)

and n, is the radial quantum number », =n — 1 — 1.
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Observe now, that the group 0 (4,1) can be extended to O(4,2) on the same Hilbert
space by introducing the additional (hermitian) operators

L = ;;{- (ato;Cb+ 4+ aCo;b),

21
Lyg = 1, (@7 Clt 4 aCb),
Ly=N ' (4.24)

which close with (4.3) under the commutation rules (4.6) with y, etc. running now
from 1 to 6 and the metric

g = (1111_141). (4.25)

This is, on the other hand, the maximal continuous extension of 0(4,1) on this
Hilbert space, as one can easily see [3]. The only operations one can add are
discrete ones, like parity, which we shall discuss in Ch. V.

The group 0 (4,2) turns out to be the dynamical group of the Tl-atom with respect
to electromagnetic transitions. To show this we shall make extensive use of the
0(2,1) x 0(2,1) subgroup of O(4,2) containing only the generators:

Lgs, Ly, Lys; L, Lgg, Lyg- (4.26)

Define the operators
N{ = —ajby,
N = —a,by,
N3 =1 (af ag 4 b by 4+ 1) = (N,, + N, + 1),
Ny =aily,
Ny =a,b,,
N} = 1Ys(af ay -+ by by + 1) = 1[5 (Ng, + Np, - 1) (4.27)

and, as usual, their cartesian combinations
TL 1 + T—
N, =1,(N + N,

1
2 B —
Ni*ﬂ(N@ — ;). | (4.28)
Then we see that also these operators commute according to 0(2,1) X 0(2,1)
rules:
[NiNi] =iguN% (i, 7, k = eyclic, running from 1 to 3),
2 2

1
2

[V, N1 =0, g=(l1 1) (+.29)
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In terms of NI, the operators (4.26) are:
Ly, = N — N3,
Lgs = Ny — N3,
Ly; = N -+ N3,
36 = — N7 -+ N,
Ly = N1 + Ny,
Ly = N3 + N3. (4.30)
On the basis |nyn,m) the matrix elements of N, have a very simple represen-

2
tation, as can be seen by direct application of (4.27) onto (4.4):

e
NEingngm) = —[(7@1 -+ {(1)}) (731 + m -+ {(1)})] |1y -+ 1%2m>,
1 0\
NElngngm» = {(7?2 -f- {0}) (71-2 4 m + {O})} ning 4 1my,

N2 |nynam) = (2n, 4 m) |[nynym) (r =1,2). (4.31)

The whole O (4,2) can be given in z-space representation if we find NI as functions
of x. Using (4.31) and

‘ w g +m-1 0 AN

L 4. ,(8) :—IW (5 F +n +m 1 — é) L., (8),

L (&) = _1__ gﬁ —ng ) L™, (L) (4.32)
in—1-+m (”/1 "i“ 77@)2 85 1 110

one easily finds before the states wu, (£, 37, D)

L0 . ¢ L no\2
Nl+:_DL(¢;—§+L+TZ§+7?'1+1)(W )

w1 os 2n + 1
- a 5 L3 T 2
].\T - = —D e - 5 ___m e . ¢
1 ”_’jz (S Py + 2n ) Tnl) (n T 1) (4.33)

where D ,, 1is the dilatation operator defined by [14]:
nt+1
Dyu(2) = u(ax). (4.34)

3. The Dipole Operator in 0(4,2) Language

In order that O(4,2) may be the dynamical group of the H-atom, we have to
be able to express at least the diople operator & completely in terms of Lie algebra,
operators and group elements. This is indeed possible. Consider for example
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z = 1/,(¢ — 7). Using the recursion relation of Laguerre polynomials [13]

ny -+ 1
Lg:w m( r) = — m L:Zi+wz+1(x) + (2711 + m + 1) Ln1+m(x) -
- (nl + ,}n)2 L:Ln;+1n+l(x) (435)
we obtain
& ny 41 I\fn,m2
— Up, n,m = ! 2 Dn+1 Up +1nam +

721 +m 41 Nysgngm -

V)

—+ 2ny + m 4 1) U nym —
N

- (7@1 + 7”)2 i Dn—l Up,~1n.m (436)
ny—1ngm T 7

and a similar equation for n/n , g, Where D is again the dilatation operator,
(4.34). If one inserts N from (4.31), we find

. n 41 n —1)2
7 n
n -+ 1)2 n — 1)2
Ny nym = (Dﬁ-tl N; ( n ) - Ma -+ N -+ D”__._l N; -gT)—) U ngm - (437)
n 7

Subtracting these equations and making use of the rotational symmetry and the
relations (4.30), one obtains for the x-operator [14]:

1 n-+1 ) n — 1)2
xi:Dq,i_lg(L%—sz)(——v)--]—‘M,;JrD'1%( @.5+@Li6)(_n_),
n n
1 . n 4 1 _ n — 1)2
TZD“_JEEE(L 45 ( 7 R n—1gy (Lyg @L45)(“ ) . (4.38)

n

The dilatation operator in front turns out to be up to a factor a group element in
0 (4,2). This permits us to write the 2 operator in the form

(n'U'm' |x;|nlm) =

"Um' ek Liinlm) -+ (n'I'm'| Ly |nlm) (4.39)

where w,’, is the Rydberg frequency for the transition n — »’
1 1 1 n? —n'
L _ 4.40
D' 2n? + 2n't 2 nPnt (440)

B,n = log — . (4.41)

The proof for this formula is given in Appendix C.



Group Dynamics of Elementary Particles 29

For the momentum operator p;, the group theoretical form turns out to be very
simple. Since L;, commutes with the Hamiltonian

. ) 1
pi =[H, x] =1 l:—m:xz] (4.42)
leads to
1 :
' I'm’|p;|nlm) = — ' Um' [e-n'nLal Inim). (4.43)

We therefore can introduce the new non-orthogonal “tilted’” basis into the Hilbert
space

|7mlm)= —;— e~0nlas | 0 I m) (4.44)

with the tilting angle
0, = logna (4.45)

in which the momentum operator becomes simply [16]
pi = Ly, (4.46)

Remember that this holds for atomic units u =1, e =1, # = 1. The parameter
a in (4.45) is arbitrary. Thus we see that the conformal group indeed contains the
whole algebra of abservables of the H-atom in its Hilbert space, and dipole
transitions can ce calculated by means of group and Lie algebra operations. Hence
0(4,2) is, according to our definition in the introduction, the dynamical group
with respect to dipole transition. In the next section and Sec. 5 we shall show
moreover, that the operators giving all electromagnetic form factors of bound
states for arbitrary non-relativistic momentum transfers are also in the group.
Thus O(4,2) will prove to be in fact the dynamical group with respect to any
electromagnetic bound-bound transition.

4. Complete Form Factors of the H-Atom

a) The Form Factor in O (4,2) Language

The last section has provided us with an algebraic expression for the momentum
operator p;. From the correspondence principle we know that 1/m, p; is also the
current operator of the electron in the H-atom, in the dipole approximation. In the
notation of Ch. IT we therefore identify the spatial part of the electromagnetic
current I'; in this approximation with p; or,

1
m

e

if it is understood (from (4.43)) that the physical states are represented by the
tilted expressions:

|
|nim) = ‘;e"l@nLu]nlm); 6, = Inna. (4.48)
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Let’s now recall how the complete non-relativistic form factor for all momentum
transfers is calculated in Schrodinger theory. There we have to form the Fourier
transform of electron charge and current distribution between an H-atom at rest
and one that moves with momentum ¢q. We obtain as the current operator

. . q’
JO =1 Jo=1T" 4.4
H + 2me ( 9)

giving the charge and current distribution of the electron by [11]
In = [ Yl (@) Jreia% y,,, () dS (4.50)

where ¢ is the momentum transfer, and », = u/m, . e~7® forms evidently a
representation of the Galilei group on the space of bound state wave functions.
In accordance with the discussion in Ch. (11.2) this is a dynamical way of repre-
senting the Galilei group, with the matrix elements giving transition probabilities
under electromagnetic interactions. This case therefore provides us with an
instructive physical example where group elements can indeed be used to give us
complete transition form factors for all momentum transfers.
Here we know the answer to the interpretation problem of the matrix elements of
the booster:

B = e-iaz. (4.51)

How does one calculate I# as in (4.50) without referring to the z-representation
using only group theoretical operations?

Under the above assumption, that O (4,2) is the dynamical group of the H-atom,
we have to find then (Galilean generators M representing & inside the Lie algebra.
M has to satisfy the commutation rules of the Galilean group (which are satisfied
by its @-representation M == as one can easily verify)

[L;M;] =i M, (¢, 7, k cyclie, running form 1 to 3).  (4.53)
What is now the complete current operator J# corresponding to (4.49) in group
theoretical language? The algebraic part of J¢, I'', has been fixed to give the
correct dipole transitions by (4.47). But then also the zeroth component [ is
determined from (4.49): I'* as a Galilean current vector has to satisfy the commu-

tation rules:

[M;, 1] =0, 4 (4.54)
(M, T] =il". (4.55)

These equations (4.52, 3, 4, 5) have a unique solution in the Lie algebra once [I';
has been fixed to be I'' = (1/2m,) L.

M has to be a vector from (4.53), hence its most general form is a combination of
Ly, Lig. Ly, Inserting this into (4.52) the combination is restricted to be

1
M; = —my, . (cosx Ls + sinx Lig — Lyy)

with an arbitrary parameter a’.
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Commuting this with I"* according to (4.55), it gives as a possible 1™

o1
10— —’%’ — (008 Lgy — Lyg) (4.56)

which is, however, seen to fulfill (4¢.54) only for » = 0. Normalizing the charge to
one finally fixes a’ to be the tilting parameter @ of equ. (4.48). Hence the only
possible vector operator is

1 1 (" 4+ p) 1

My
G — L), — L; (L — —
I me( p (Lsg 16)> . Lw) + Om, a (Lsg — Lyg)
1 1 (" + p) 1
= (_c; (Lss — L), E Lig + 2—77% o (Lisg — Ligg) (4.57)
with the Galilean generators
My = "2 (Lig — Ly, (4.58)

Thus we get for the prescription of calculating I« inside the O (4,2) group, cor-
responding to the position space equation (4.50),

q Il

Ie= (@ U | Jo e ™ mim). (4.59)

We want to stress the fact that this expression is only that part of the total form
factor of the H-atom which is due to the electronic orbit.

Remember that Equ. (4.59) has been obtained by postulating 0(4,2) to be a
dynamical group for all momentum transfers ¢. Otherwise M would not have been
uniquely specified ; one could have added vectors in the enveloping algebra to it.
Our postulate will be justified in Sec. 5, where we shall prove Equ. (4.59) by a
direct transformation of (4.50) to the group theoretical form (4.59). First, this
equation will be used to obtain the full bound-bound charge from factors for any
transition

n —n -+ yp. (4.60)

b) Evaluation of the Form Factors

We evaluate here Equ. (4.60) for the charge part [17]

a4
I = @ Um JoC M |im). (4.61)

We furthermore use again the special frame of reference in which ¢ points in the
Z-direction, without loss of generality. Then I° is explicitly, absorbing tacitly
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m,/M into ¢:
(1} 1 — - E(LSS—L;“) _
d :E<nl(L56—L4e)e “ ") =
1 - LI

- ann’ <7’l/’ |e%0n Fas (L56 - L46)6 ’ a’( )6 m:LL&sln> —
1, N |

= - \r - e—Wn nliss g~ ss—Las) | .
o 0Ly — Lgg) -0t emimChos=iud ) (4.62)

wehre 0, = In(n/n’), as in (4.41). Inserting a complete set of intermediate states,
we can write :

1 s .
e A L el DY (4.63)

The matrix elements of I are easily found to be (for m = 0):
(| Iy =n,
(| I0\nf + 1, mgymy = Yy [(n5 + 1) (05 ++ m + DI, (4.64)
(n]I°ny — 1, mg, m) =y [y (g + m)]'le
by using the representations (4.4) and (4.27). The finite transformation

G — e—ien’ﬂL‘S e—fq?L(Lss—L:;;) (4-65)

can be evaluated if one observes that
K1 = L45’ K2 = —L35, Ks = L34

close to an 0(2,1) subalgebra of the 0(2,1) X O(2,1) algebra discussed in (4.30)
satisfying:

[K,, K,] = —iK,, [Ky, K3l =1K,, [Ky, K ] =1K,. (4.66)

K, is diagonal on the |n;n,m) basis with the eigenvalue n; — n,. The other
two operators can be written more explicitly in terms of the generators Ni as

K, =N+ N3, (4.67)
K, = —(Ni — N3).
Consider now the representation of elements of the O (2,1) groups formed by N i

An irreducible representation of the N algebra, for instance, which contains
a state |nymym) contains all the states

|0, g, mp, ...,|00, Ny, Tg) (4.68)
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with the eigenvalues of N3 being n, 4 |m] + 1/2. Then in the notation of BARG-
MANN [12] (see App- A.39) the matrix element of e-*¥if is just a vf  function
with the Casimir operator &k = m + 1/2

m+1
N 2 p
(ningm’ |e V18| nynam) = v R ni1 (sh §) O ny Omm « (4.69)
7+ 5 i+ —5—
Similarly, one obtains for ¢-i¥i6
m+1 ﬂ
N2 . 2
(ningm' |e='¥ibny ngm) = v . mt m-1 (_ sh E‘) O, Om'm
nt 5 Mt
and therefore for e~k:8
m+1 m+1
minym’ | e Kb | pyngmy=v * _— er1(—]—shﬂ) m+1 m+1 (—Shé)am’m.
ni+ '-‘2— y Mt n9+ s Nat 2
(4.70)
Knowing this we can find the matrix elements of the operator
G — e—‘wn'nLas e—fQ"(Lsi—'Lu) (4:71)

by parametrizing it in Euler form. Inserting K; from (4.66), we have to find Euler
angles «, 8, ¥ such that

G = ¢ 10K o~ EotKy) — g-iaK, p~iEK, g—iyEs (4.72)

One does this most easily in the 2 X2 quaternion representation of 0(2,1),
substituting

K1 =5 Kg =5 K3 - (473)

from which one finds for the left side of Equ. (4.72) the expression

0

—) (05 — '130'3)] sh % (4.74)

¢—i0EKy g—ing(Es+Ks) — oh E + I:o-l _ "9 (1 — cth 5

2 2

while the “Euler quaternion is

&+ y hﬂ

e10Es p—1Ey g~iyKs — cos 5 ch 5 4
-+ o4 cos —2— sh g -+ o, sin x ;_ v shg — 20y 8in (x _g 7 ch g (4.75)
Comparison of (4.74) with (4.75) gives the four equations:
ch % — cos © 'g Y ch -g- (4.76a)
sh% — cos = ;yshg. (4.76b)

3 Zeitschrift ,,Fortschritte der Physik“, Heft 1/2
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ng 7 6 . ax—y B /

5 (1 cth 5) sh 5 =sin-— sh R (4.76¢)
nq 6 6 . x+y B .
"Q—(l — cth —2—) sh? = sin — ch 5 (4.76d)

Squaring b) and ¢) and adding them we obtain

2 42 2
sh2§ — sh? g_ (1 + %?_ (1 — cth _g_) ) ‘ (4.77)

If we insert 0 from (4.41), we find

p — 1 " p)2 125,21
By T A
B 1 2, ap
h 5= [ + )2 + g*n/2n2]s, (4.78)

s

2 ]/n" )

For o« we obtain then

sin o = —2n'n*q . nq
*= [0 —nE t e [+ n) - g shp
2 p2 12072 42
€08 & = v [ (.79)

{0 =P @B L0+ ) el

For y one has to exchange n— —n’ in (4.78). The phase of has been fixed such
that in the limit ¢ — 0

— 7 Jr
W 7, | S (4.80)
0 0

for n' £ n, respectively, as we can see from the Equ. (4.79).
With these angles, the matrix elements of the finite transformation G becomes
in the |n,nym) basis:
Grininen, = (Ringm |G (g?)| nyngm) =
m+1 m+1
— e—i(n{—n;)a e—i(nl—nz)y Y v 2 Sh—ﬁ— v 2 ——Shﬁ- F
ni+m—|—1 +m+1 + P, n;+m+1 m+1 P) mm

—3 1y 5 3 g+ g

(4.81)
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Collecting the different terms in Equs. (4.63), (4.64) and changing to the [nlm)
basis according to (4.21) we finally obtain (m = 0):

n —1 n —1 %
20+ 1) (21 + 1)) n 2
Ig’ Vongalae T [( - ) ( + )] 2 ’ ’ ’ ’ X
n nm, | M — N -+ 0 m—{—nl—-nz_
Ny Ty 9 9
n—1 n —1 7
X - 2 X {0 o2l Griminen, -
M — Ny + Ny M F Ry — Ny T T e T
2 2
+ 10 + 1) () =+ m A+ DT B3 Gt minn, +
+ [y (0] = M) kot sy Gt t e} (4.82)
where:
1
( T)}z',z Cos , +1
- = ! f — -t = . :
Oy [—i sinJ R T Rt or () [_1:| 5%
—1
Every G contains a term ch-("+" £/2 which has a singularity when
ch —g— =0. (4.84)
From (4.78) we see that this happens at
— (" + n)?
= (4.85)
which can be written in terms of the binding energies of the states |nlm) -
B, = L 4.86
ST (4.86)
as - -
¢* = —2(VB, + VB, ). (4.87)

Observe that this position of the singularity coincides up to order B/M ~ 10-1
exactly with the anomalous threshold of the diagram

3*
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which can be calculated from the CuTkosKY rules to lie at [18]

cos 0, = cos (0, -+ 65) (4.88)
with
2m? — ¢2
COS 91 _ ‘—'——2‘81’”—'62— 3
m2 -+ m2 — M?
cos 0, = ,
2m,m
my2 - m? — M2
cos 0, = .
g 2m,m

Solving this we obtain

1
2 m 2 m?

{(m + m? — M?) (mi + m? — M%) —

t=q% =2m? —

— (@2 (m? + m?) — (m? — m — DY) QM (m? = + m?) —
— (m — m?) — M. (4:89)

For M = M’ this reduces to

1
t = 4m§ - ;n—z [mg "I" m2 — M2]2_ (4:.90)

If, as in the case of the H-atom, M differs from m +- m, only by a very small
binding energy B,

M =m -+ m, — B (4.91)

and find up to order (B/(m -+ me))2
t =2 % (me + m) (JB + B (4.92)
which reduces for M = M’ to

t =87 (m, - m)B. (4.93)
m

We see that (4.85) coincides exactly with this since the units are chosen as atomic
units and (4.85) holds actually for m/Mg instead of q.

Let’s return to Eq. (4.82). In the ground state, one obtains for the charge distri-
bution the double pole formula

1

1(1),0,0;1.0,0 — (““‘"ﬁ? (4-94)

1 — —
4
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This form factor falls off much faster than the O(3,1) form factor for spin 0
discussed in Ch. IT, p. 11.

I — 1 (4.95)

t 3/2
(1 - er)

First the power in the denominator is different and second, the position of the pole
has been shifted towards the origin by a factor of M, which is very large in terms
of atomic units. This increases the slope dramatically.

There is another characteristic difference between the form factors (4.82) and our
0(3,1) results (2.20). While there the singularity lies for all transitions at the same
place 4 M2, it depends in the O(4,2) group strongly on n (see (4.85)). Looking
back at (4.77) we see that this effect comes from the tilting operation ek,
which doesn’t exist in 0 (3,1).

Observe that all form factors approach 6, , for ¢t — 0 as is clear from the Schro-
dinger form

— [ Prpm(x)e a7 () da. (4.96)
In the algebraic approach this means that
, 1 —ilogﬁ,L”
/ (Lyg — Lse) € "

\n -~ n> (4.97)

1s a unit matrix. We verify this not so obvious property in App. D.

5. Fock Sphere Representation

A natural unitary representation space for the spectrum generating group O (4,1)
can be given on the set of normed homogeneous functions f(z,) in the 5-dimensio-
nal parameter space of O(4,1) [19]. The scalar product is defined as

(,9) =2 [ *(2) g(2) (%) dz (4.98)

which projects out the irreducible part of the representation that remains on the
light cone.
A finite group element ¢ of O (4,1) transforms f(z) into

Py =U(G) ) UG) = [(=6) (4.99)
@ can be written as
Goq = (e la) 4 (4.100)
with
(Lab)ea = % (JacIvas — JadFoa) (4.101)

and its x-representation is:

Lab -

1
7 (za ab 2 3a) H (4 102)

U(Q) = e~ivasTas (4.103)
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It is easy to verify that a function can be normed if and only if its degree of
homogeneity IV satisfies the conditions:

N = —% Fiv, v —real (: B L v for Op, 1)) (4.104)
or
—3<N<0 (—(p—1)<N<O0 for O(p1)). (4.105)

In such an irreducible representation, the parameter z; can be removed out of
the operators and states defining new functions @ by

fz) =25 (&) | (4.106)

where we have introduced homogenous coordinates

Y (4.107)

5

On the functions @(£,) the finite transformations are then given by the factor
representation

U (@) D) UG) = (5,64 + GDY O (E*G) (4.108)
where

* = = -1 _ .
The infinitesimal generators are then
1. .
Lyv — '71:_ (g‘u 81' _I_ ;v a‘u): (4110)
1
Lus = — = [6u(N — (£8) + & (4-111)
and the scalar product becomes
(P, @)= (', f) = [ Az 2 0*(§) §(§) d Q (4.112)
where
A9 =2§(& —1)dé. (4.113)

zs can in general not be eliminated out of the scalar product. A complete ortho-
gonal set of functions in the representation space is given by

fvme =25 7 Yy im0 (2,) (4.114)

where the yy,;.s are homogeneous polynomials of degree # —1 in z
i.e., they can be written in terms coordinate tensors

e

Ywmta(Za) =2yt e 2, (4.115)
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and in terms of 4-dimensional spherical harmonics as
Yxm-1,a(Zu) = (25)" 7 Ynin-1,a (&) - (4.116)
Observe that yy , 1, solves the potential equation in four dimensions:
PYnno1,0(2s) =0 (4.117)

which is therefore invariant under the operations of 0(4,1) for every N.
The Casimir operators of O (4,1) are:

Oy = Ly L* = 2[(3 + (28)) (8)] = 2[(p — 1 + 29) (2&)] for O(p,1) (4.118)

and
Cy =Lyt Lyl =0 (4.119)

which give in front of functions of homogeneity N, from the Euler equation:

(:6) F &) = N () (4.120)

C, =2N@3 + N) (4.121)

C,=0. (4.122)

We see that N = —2 gives the same representation as the one used in (4.3) (see

(4.7)). This is also clear from another reason. On the H-atom representation there
exists a 5-vector ([, L) (Equ. 4.24) transforming like z, in the z-represen-
tation of O(4,1). But the operator z, raises the degree of homogeneity from N to
N + 1. Hence, it can only then exist inside a single representation if ¥ and N + 1
are equivalent. From the Casimir operators C,, C;, we see that this is only the
case for N = —2(—p/2 for O (p, 1)).

The functions fy , , can be chosen to be eigenstates of L2, Ly. They also satisfy

n? — 1
By e = =g frme- (4123)
Hence, with the labels &« =1, m; N = —2 we have the correspondence :
s (za) = (2| nim). (4.124)

Therefore we can formally introduce a completeness relation:
[ @282 |20z = 1. (4.125)

Observe now, that since there exists for any O(p, 1) an operator I', on the re-
presentation space with N = —p/2 which transforms like z; and is completely
expressible as a function of &, we can define a new scalar product replacing (4.112)
by

(B, ®) = f @'* (&) T2V 43 (&) A2, (4.126)

and eliminate in this way the fifth variable z; completely out of the representation.
It is only in this case, that one can represent O (p, 1) unitarily on a space with p
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variables. I'2¥+3 is the metric which makes the non-hermitian operators L,
equivalent to hermitian ones. For the particular case of the H-atom represen-
tation, the invariant scalar product then becomes

= [@*(5) ') B(§) dQ;
= [®* (&) Lz D(£) d2:. (4.127)
Analogously to what we did in Equs. (4.123) and (4.124) we can now introduce
the special homogeneous functions in &: @_, , ; »(£) and identify them with the
H-atom states |nim) through the formal definition:
D (§) = Dyg . 1m = (E|nlm) (4.128)

with the completeness relation

[aQ:8 L3 () = 1. (4.129)

The explicit connection between hydrogen wave functions and @ (£)’s can now
easily be given. Fock [20] observed that the n-dependent stereographic projection
of the wave functions ,,, (p) in momentum space onto the surface of a sphere in
4-dimension with unit radius defined by

= 2pnp pz — Py 1

— , 5 = n — —— 4.130
ST Ptk T T (+.130)
or its Inverse
S 14 £
— Py —— 2 — p? . 4.131
P pﬂ 1 . 54 ’ pn 1 o §4 ( )
and
- 1 (p; + p?)? ) S
Dot (8) = -+ "——3,30 Vurn (@) = D, (1 — £072 Wi | P —“ (4.132)
4 D, 1 —

transforms the Schrodinger equation

P2 1 .
3~ E) e =551 9919 — P Yam (@) (4.133)

into the integral equation for 4-dimensional spherical harmonies

1
2p.m

Buim () = ——— f 20w 01 — &2 Bum (). (4.134)

which therefore are just our @,,;,(£) defined in Equ. (4.128). The physical scalar
product is not equal to the invariant one. For equal principal quantum numbers
it is found to be

(15 Pudonys = [ 42 DX () Do () (4.135)
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since the (n-dependent) spherical angle is

(2pn)?
dOr =288 — 1) dé — —=P)" g3, 4.136
¢ (5~ 1ds @+ p2p P (4-136)

giving together with (4.132)
(5 Yadonys = [ A3 v, (4.137)

For n' == n, the scalar product (4.135) obviously gives zero, since the functions
@', ® are spherical harmonics of different degree. In this case d2; becomes a
more involved function of the momentum and p, p,- than (4.136).

The quantum mechanical operators & and p have a complicated n-dependent
form before the functions just as discussed in Ch. IV. 3. But like there, we can
introduce the alternative states

L (p* + a?)?

é}_nlm (&) = Y a2 Vaim(D) (4.138)

together with the fixed stereographic projection which one obtains by substituting
P» = a in Equs. (4.130), (4¢.131). The physical scalar product then becomes

L

1 —
0, Vs = - [ 42 58 (1 — &) B =

_* 1 1 —_
— (427 @) - - (B — L) B (4.139)

56

or in terms of the invariant scalar product (4.127)

, _ 1 _
(#’ ’ y’)phys = (QD 3 E (Lss - L45) @)- (4.14:0)

Thus the physical scalar product corresponds to using the Galilean charge operator
(4.56) I = 1[a(Ls; — L,g) in the invariant scalar product. For the operators ;
and p; we find

. 0 .0&, O 1
PR ——— —_ == —_— e e ~———L~ .41
Ty L4 apl 4 3}9@ 35# a (LzS 14) (41 )
and from (4.131)
&
Pi =& £ @ (Lyg — Lyg)™" Lyg (4.142)
4

whose physical matrix elements are from (4.139) expressible in terms of the
invariant scalar product as (', p;y)pnys = (B', L;g®). Comparing this with (4.59)

we find that we can identify the states @,;, (&) with 1/n|%im) of (4.45). There-
fore, the connection with @ (£) must be again given by the tilting operation

Tnnanlm (5) == ¢nlm (4'143)
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with
T, =¢tls, 0 =Inna. (4.144)

Applying this to @ (&) we indeed find
eionLlis P, (&) = (ch Inna — shlnna §,)2®,(5*T,) =

7’L2a2 [(1 (1 T 2 )]_2 6" (E*Tn) =

P 3
- (1 — &,)2 (p,,l__§4). (4.145)

But the functions on the right side are according to (4.128) just the spherical
harmonics in £ up to a factor 1 /]/E. Hence,

Tyn®,(§) = Yn Gy (é). (4.146)

We see from this equation that 7,n®,(£) has the norm one in the invariant
scalar product (4.127) in agreement with Sec. 2, where this state is |nlm) and

the invariant scalar product (n'?’m’|nlm). @ itself has the invariant norm n-2
like the state (4.44).

Observe that the tilter dilates the p in the wave function by p,/a, as has been
discussed in x-space when deriving Equ. (4.39) (see App. C).

We have thus established a one to one correspondence between our states |nim)
and functions in the 4-dimensional & space. This correspondence can be sum-
marized by:

V@i (§) = (& nlm), (4.147)
@zm £) = (&|mlm), (4.148)
Jd0:18) Ll 5| = 1. (4.149)

6. Galilean Majorana Equation

The Schrodinger equation for bound states can be written without the use of x
coordinates in a purely algebraic form corresponding to the Majorana equation
for an 0(3,1) multiplet. Since

Leg|nlm) = n|nlm)

we find for |mlm) by tilting

zna, ((nz T ) - (— - “2) 46) [lm) = n|nlm) (4.150)

or, using the energy E = —1/(2n?)

dad

a? a? _
[(E’ — —) L — (E + —2——) Ly + a] |nim) = 0. (4.151)
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Remember now that the Galilean transformed states e-¢*y,;, (x), whose scalar
product with 4,y (¥) gives the charge distribution I, uim (see (4.82)),
are algebraically represented by

. gt
"ZE(LH—L'M)

e |7lm).

For these states we can therefore also find a Schrédinger equation by trans-
forming (4.151) according to

. q . q 2
1— (L5 — L) — 8= (Lys— L) q; q

e Lyge @ = Lgg — ;t L + 942 (Lsg — Lyg) »
. q . q 2
1 —{(Lys— L) — i —{(Lys—Lys) qi: q

e ? Lye © = Ly — Ez Ly + o (Lss — Lyg),

Sl o i i L

= Lig — — (Lgg — Lyg)- (4.152)

L..e
16 a

This gives

e a2 _
[( - g) (Lsg — Lyg) — B (Lsg + Lyg) — aqiLyg + a,] |mim) = 0. (4.153)
Electromagnetic interactions with the electron can now be introduced through
the minimal substitution ¢ — ¢ — A. The resulting additional term corresponds
exactly to the same current as that given by equ. (4.57).

7. Representation Mixing

The reason why we went to O (4,2) as a. dynamical group was to prescribe mixing
of irreducible representations of the boosting group in a definite way, as was
discussed in Ch. IT. 5. In the case of the H-atom, this boosting group is Galilean.
It is interesting to see now, how the hydrogen atom mixes representations of the
Galilean group. We can see this best if we go to the a-representations of 1, (%)
of 0(4,2). Then the Galilean transformations leading to the form factor I° are
simply obtained using the Galilean generators M; = —ux;. The boosted states are
(see 5.52)

(x|nlm, q) = e 1, () (4.154)

and the Casimir operators of this representation of the (alilei group are
C,=xL =0 (4.155)
which follows from parity invariance of the states w,;,(x), and
Cy = a% = r2. (4.156)

Hence, the projections of the states y(x) onto a fixed radial shell are the basis of
an irreducible representation. Every state can be expanded into the irreducible
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states by using the radial part of the wave function R,,(r) as
Inlm) = f dr Ry (7) f A2 Yom(2) 2). (4.157)

Therefore, R,;(r) is just the spectral distribution of irreducible representations
over the state |»lm) which correspond to ¢} (v) defined in (2.39). Thus the idea
of a wave function governing the representation mixing turns out to have a
quantum mechanical example.

V. Current Conservation, Mass Spectra, and Infinite Component Wave Equations

For the O (3,1) currents we have seen in Ch. IL. 5 that, given a vector operator I'~,
the requirement of /™ leading to a conserved current is sufficient to specify the
mass spectrum. Remember that in that case the physical states were eigenstates of
I’ In a larger group this is not necessarily so, as we saw in the discussion of the
H-atom. The physical states are in general tilted in the form

el 1) (5.1)

where [n) denotes the basis of the representation space and S, an arbitrary
rotational scalar in the Lie algebra. Assume that a vector operator I'# as well as
a Lorentz booster M have been specified in the Lie algebra. The assumption that
I't gives the electromagnetic interaction then turns out to determine S, uniquely
for all » given its value for one state (say the ground state). After the S, have
been fixed, current conservation then specifies the masses of all particles (if it
can be achieved at all for all transitions).

We first show how the 8, are determined. Since the zeroth component of the
current consists of the charge of the system, which in turn is proportional to the
physical scalar product between initial and final state, we require that between
particles of charge one x and &’ at zero 3-momentum transfer

(' |0 n) = Oyn X gy (5.2)
where g, is the charge of the state n. In terms of the scalars S, and I, this becomes
<7’L/ |e~iSn: FoeiS” I 76) = Op'p - (5.3)

In the case of the H-atom this has been shown to hold in App. D, if (and, as one can
easily see, only if)

Sy = —0, Ly, 0, = log na (5.4)

which contains one free parameter a that can be fixed by prescribing 6,, for
example.

Given these §,, let’s now require the electromagnetic current I', to be conserved.
Like in Ch. I1.5, this implies again

(n' e [(M — p®) T + p*I'%] €Mt gisalm) = 0 (5.5)
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with the same notation as there and this gives the condition:
M I (2) = M (n| =i I'0 ¢t ¢iSn ) —
= M (n| e~ eMsl [0 ¢iSu|9) = MI%* (—). (5.6)

nn

For diagonal transitions, » ==n', m =m’, and we see that the current is
conserved if I°({) is even in { (since it has to be real anyhow from general argu-
ments). For nondiagonal transitions, Equ. (5.6) gives a rather complicated
system of equations for the masses. Obviously the solution is only determined up
to a multiplicative constant.

Sometimes it may be easier to require current conservation directly from (5.5)
instead of (5.6). Then one has to see that

B py—M

= (5.7)

if the boosted particle moves in the third direction. In the Galilean limit of the
H-atom this leads, for example, to the condition:

13 En —En’ +

g2
2M
19 q )

(5.8)

We may now calculate 19, I3 from (4.59), insert them into Equ. (5.8), and determine
E, to be

B, = ——. (5.9)

In special cases it may be possible that one can obtain a simpler relation between
current conservation and mass spectra by means of infinite component wave
equations, as it happened in the O(3,1) theory. Suppose the physical states

p(p) = (psa[M 5]| €M €5 | m) (5.10)

can be written as solutions of the very general Poincare invariant infinite com-
ponent wave equation:

[pI"+ (M2, W) 8 + = (M2 W] y(p) =0 (5.11)

with the same notation as in Ch. IL.6, except that a term S has been added where
& is now some Lorentz scalar operator in the Lie algebra that exists only for
groups larger than O (3,1) (except for the trivial one, the Casimir operator L2 — M?2).
This equation again projects the mass contents out of the scalar products (5.10).
The current can now obviously be conserved for all transitions if x and » are
constants. This is indeed the case for the Galilean equivalent equation of the
H-atom (4.147) as can easily be verified.

The algebraic structure of the infinite component equation (5.11) is very similar to
that of the Majorana equation in Ch. II.6. There occurs, however, one new
feature in groups larger than O(3,1): It may sometimes be possible to express the
content of Equ. (5.11) purely algebraically on the Hilbert space of states |n)
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without going to the wave funetions ¢ (p) in (5.11). This happens if the momentum
operator can be given in terms of the group. generators. As remarked in Ch. 11.6,
for 0(3,1) such a relation cannot exist since I'# is the only vector on the Hilbert
space. An example for this is supplied by BorM’s [21] construction of momentum
operator on an O (4,1) Hilbert space: He shows that

Lys = % P, + % %’}%}; (5.12)
leads to mass content
M? = 72x2 — 9/4 72 4 A2 s(s + 1) (5.13)
in an O (4,1) representation where the value of the Casimir operator
Cy=1/2 L, Lw (5.14)

is «. From (5.12) we can obtain a Majorana equation like (5.11) for v (p) by simply
contracting (5.12) with Pe. If O (4,1) with C, = « is assumed to be the dynamical
group of the electromagnetic interactions of the masses (5.13), L, has to be the
electromagnetic current operator I',. It would be interesting to see whether this
current is conserved with the mass spectrum (5.13).

VI. O(4,2) Dynamics in Particle Physics

1. Description of the Model

After we have learned how nature does its representation mixing in the exactly
soluble case of the H-atom, we may try to apply similar methods to the case of
particle  dynamics. The first problem is to

Y - Nt find a possible group gf quantum num-
bers. Then one may use this group, or an ex-

- BT tension of it, to do group dynamics.
611/ —— Inspection of the baryon quantum numbers
shows that the levels of the isospin 12 baryon
~ 47/ resonances look like the spectrum of relati-
g2 vistic hydrogen atom with some spin-orbit
o 3572 é,f//gj_ii/f coupling. We have shown the observed levels
= BT p— on Fig. 5, and tried to assign the quantum
numbers |njm, n) of the relativistic H-atom,

e where 7 is the parity.

, , , Up to n =2 the assignments is very good
otz Jae 2 and above that, many of the states with
. j —=n —1/2 do exist. It will be interesting to

. see whether the others will be found in the
Fig. 5. Thelevels of the isospin 1/2 baryons are

shown and a possible assignment to the future. _
quantum numbers of the Dirae hydro-  There is a simple representation of O (4,2) con-

m nuibers ) 11 _ <) cor
g:;efif:;:j ) /2112726: (ig'ihllll;)v:)ﬁli? taining all these fermions. It can be given in

for every n = 1,2,3,...) explicit form by the states:
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Y

: | A N L 1 12 ) — 1/2 J
— ( — Y™ — l2 f ?
[njm +) = (=) [n+} + 2] @71 r=Z1,2(3/2——r m—+r — 3/2 -m) ~

X (@) - (—)"hibS) [n,§ — 12, m 4+ — 3/2) (6.1)

where |nlm) are the hydrogenic states used in Ch.IV, and parity is again

defined by @ —b, b - —a and for the ground state by |0) —1¢|0). For the
lowest states, we find explicitly

I%Tt>:f% (@t +ib7)[0); 7 =12
233 )y e T e 10)
2l = |t T it ani ) o5 b +w;b;r)}o>li
RS V% (of -+ ib7) (af by — a5 b)10). (6.2)

This representation unfortunately contains more than just the states of the
relativistic hydrogen atom. For every =, the highest 7 occurs in both parities, in
the H-atom only once with parity (—)*! (See Fig. 5). Since O(4,2) dynamics is
now, however, easily calculable after all the preliminary work on the H-atom, we
shall assume as a first approximation that the effect of this deficiency issmall, or that
the missing particles just haven’t been seen yet. The results will indeed be very
good : One obtains for ground state a double pole formula as magnetic form factor
and finds for the magnetic moment p = —1/6. [23, 24]

Since isospin has been neglected throughout the approach we shall again, as in
Ch. I1, identify the results as isoscalar properties of the nucleons. Then the shape
of the magnetic form factor agrees very well with experiment while the magnitude
is slightly off. (s = (1], + #a)/2 = 0.44)

It is probable that by inclusion of S U (3) the magnitude of x will change without
affecting the good result for the shape.

There also exist other extensions of O(4,2) by parity. As we shall show, however,

in Sec. 3, the one given here is the only one which leads to a nontrivial theory
with O(4,2) as the dynamical group.

2. The Most General Electromagnetic Interaction
Using the electromagnetic theory of the H-atom as a guide we construct the most
general possible theory of the same type on the fermion representation space.

Putting the initial particle again at rest and boosting the final one into the Z-
direction with rapidity £, the form factor has the structure:

It (L) = (n] e7i5 In g+iMal 151 ) (6.3)
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where M;(i =1, 2,3) are Lorentz generators in the Lie algebra under which 7+
transforms like a four-vector, while §;, S, are arbitrary rotational scalars. We
shall assume in this work that I» is a purely algebraic vector operator I'# like in
the 0(3,1) discussion. According to the dynamical group philosophy, I'* and S;, S,
have to be also elements of the Lie algebra.

Since M; must be a vector under the rotation subgroup of 0 (4,2), it can at most
be a linear combination of L;,, L, L and the commutation rules

[Mi7 M7] _— —’I/L“ (64:)
fix this combination to be of the form
M; =che(cos T Ly + sin v L) + sh e Ly, (6.5)

Observe now that this M; can be rotated by operators of the form €S into Ly,
namely

Ly = e'luse g=iLsst M ;¢iLost g=iLase, (6.6)
We therefore can assume without loss of generality that
M,‘ = Li5 (67)

otherwise we could bring M; to this form by changing § and I'# appropriately.
Next, we can assume S to contain only Ly, and Ly

S12 = 6§L45 + A12L4s: (6.8)

the only other possible term Ly, could always be taken out of the matrix element
(6.3) giving only an overall phase change, since Lyq is diagonal on the Hilbert
space.  and A are tilting angles which we allow, as in the case of the H-atom,
to depend on n.

Finally, the most general current operator I'* must be a linear combination of

Ff - (Lam Lis),

I'y = (L5, —Lay), (6.9)
say :
e =alt +bTY. (6.10)

Define now the tilted operators O’ as
0" = 52 0¢S (6.11)
then the form factor /¢ can be written as

I = (0| Twe-iSiis i ny = 37 (0 | T [0y (0 |G Q) |m)  (6.12)
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where we have inserted a complete set of states and defined

G (L) = e~Sag+MalgiSs, (6.13)

We first bring & to a form in which its matrix elements can easily be calculated.
We write G explicitly, inserting (6.7) and (6.8) into (6.13):

G(C) = g~ i(deLystOsLys) piLysl pi( A1 Lag+G1Lss) (6‘14)
Now observe that the operators Ni and N} (i = 1, 2, 3) defined by:
NI =15 (L5 + Lyg), N} = Yo (Lagg — Lgg), N§ = 1[5 (Lse + Lyy),
Ny =13 {— Ly -+ Ly), N3 = Yo (Lgs 4~ Lyg), N3 =y (Lgg — Ly) (6.15)
form an 0 (2,1) x 0 (2,1} algebra with the commutation rules
[V], ¥{] = iguNE, g =(11_4)
2 2 2
[&], N3] = 0. (6.16)
Then ¢ can be brought to Euler angle form of 0(2,1) x 0(2,1)

G (C) - e“‘i(alNla—“sts) e—i(ﬁx‘le*’ﬁﬁsz) e—i(Vlle—?zAst) (6. 1 7)

by a simple parameter transformation. The outer factors can be taken out of
the matrix elements of G as phases, since Ly, and L are diagonal in the represen-
tation. All that remains is the product

<n l e—HALN PN ) [ 1> p— Z <n I e—BuN:* l n') <n’ I e—iB:Nq? I ]_> (6 1 8)

but every factor is again just a global representation of 0(2,1) v%_ (sh 8/2) given
by BARGMANN, which has been extensively used in the Chs.II and IV (See
App. A. 39).

The Kuler angles are readily evaluated. To simplify G(¢) take, in Equ. (6.14),

the right tilter to the left. Then we obtain:

G(C) = g HdeLyet Oy Las) pi( A1 Lyt Ls) e—1lluLiastv Lygtu Ly,) (619)
with:
62
u=1-4 —(chr —1), : (6.20a)
v
v == (chy — 1) 43 , (6.20b)
v
6
w = — shy. (6.20¢)
v

Inserting the 0(2,1) X O(2,1) operators (6.15) we find
G () = e idelastO:lss) oM Last 0:Lss) oI = Nt Ny*— NoP)+uw( N - Ny")

4 Zeitschrift ,Fortschritte der Physik”, Heit 1/2
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where the second factor can be separated into the product of two commuting
operators G ({), G»({) in the form:

Gl (C) . GZ (C) = 6+l'C[QJI\TLI—Q‘A712+’El‘i\713] eiz[—ul\'gl+1'x\"23-—8{'3723} . (621)

In this work we shall confine our attention to the form factors of the 1/2+ ground
state. As we saw in the general considerations of Ch.V, the tilting operator §
for this state contains among the angles A, 6 one free parameter (corresponding
to @ in the H-atom). For the higher states 4, and 0, may then be determined
from the relations (6.2), for example. We have not done this yet; therefore we
also cannot make any statements about the mass spectrum following from current
conservation. We shall leave these problems open for the time being.

For the ground state then, call

6561:62, A=A1=A2

and only G = G, ({) G4({) remains in (6.21).
We can now calculate the Euler angles o= oy, f=$,,y =y, for the first

factor in the same way as in Ch. IV, by going to the 2 < 2 quaternion represen-
tation:

oy ot

1 __ 7 _O;} . 2 73 ... _3
NM=ig, NM=igz, NM=3. (6.22)
The quat-efnion for ¢, becomes
G, () = ch % — (wo, — vo, — tWog) sh % (6.23)

dod et

which has to be compared with the Euler quaternion of

e—-ia,Nl” 6—1'[)’1\712 e——i;J.Nl‘”

which is
. at+y B ox—y B
G (§) = cos 5 ch 5 — 8D — sh 5 O
x — Coo
+ cos 5 7 sh —g_ Oy - 18I —p ¥ ch T§~ Oy. (6.24)
This yields the four equations:
x+y B ¢ ‘
COs 5 ch -2— = Ch ?, (625&;)
m“gngzumé, (6.25D)
x—y B g -
cos — sh 5 =7 sh 5 (6.25¢)
sin “;Vchg— = —w sh—g-. (6.25d)
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One can casily convinee oneself that the same equations hold also for «,, f,, ..
From (6.25b) and (6.25¢) we find

sh ﬁ ]/u2 -+ v2 sh % ch g = Vl 4 gh? % (6.26)
such that
sinr ¥ * cos Y Y (6.27)

2 T Yo 2 Vet

From (6.25a) and (6.25b} we see that for { — 0, x — —y, therefore (o« — y)/2
is equal to the angle a(or — y) for { = 0. We do not give the general solution
of (6.25) since only the following special combination of Euler angles, apart from
(x —1)/2, (x + »)/2, will be needed for the form factor of the ground state:

3o -+ x —
cos 5 = CO8 5 -+
+ 2 Sin2(x+ycos(x—y—}—sm +ycosa+ysin“—y (6.28)
2 2 2 2
which becomes due to (6.25)
ch =
3o + y v wio i} ww I 2
cos — =4 e — 2 - th? . 1  _th-_ . (6.29)
2 —Vuz I o2 (u? -}- v2)') 2 w0 2 ch s

Consider now the current I# generated by I'" =alf 4 bI'4. For the electric
form factor we need I° for the magnetic one I1 in order to apply Equ. (2.31).
According to Equ. (6.12), I'# has to be tilted to I'* before we can use it. We find

7] A
I =L, = chv Ly + shy (— Ly — — L45) s
Vv v

A -
14 v v

AT 6 A ’
Iy — L, = Ly + — shy Ly, + (chy — 1) (7 Ly + > LlG) ’

7 A
IV = — L, = —chv Ly, — shv( Ly + — Lm) (6.31)

and therefore need the currents associated with the operators L :

Lop = (| Lgy |n") (n'|G(L) | ). (6.32)

4.*
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The operator representations of the L’s occurring in (6.30) are given by (4.30)
and those in (6.31) follow from (4.3) to be, explicitly:

L14 = —1fy (af ag + dg Ay — bl by — by b,)

Lys =1y (af bf —ay by + a;by — ayb,)

1
Ly = —3; (a7 b —ad by — a,by + ayby,). (6.33)

Inserting the L’s into (6.30), (6.31) we find, calculating /() from (6.17) in the
same way as in (4.81): .

p
sh -
1 x —y 3x £y 2
Iyg = ——- (cos + 2 cos ) ,
2 2 2 ch%—@
145_"51-46,
Isezg—cosa;y lﬁ,
3t
ch 5
shE
1 x —y 2
I, = — g sin — 5
cht —
2
L5 =il
114:_21sin“"g” lﬁ. (6.34)
ch® —

We collect now all these terms to obtain for the total currents 1°, I*

A A3 ¢
0 _p = 2 oh 2
I (achv b . Sh'V) 5 ch 5

— ae_@Ashv—bA—(e-_;—%A)(chv—l)—l—ib} X
| v
[ ¢
ch —
3 v w2 g W I 2
x| =— — 2] ———5-th?— — th —~——— | | X
LZ YR + o (w2 + o2’ 2 w42 2 chg




Group Dynamics of Elementary Particles 53

shg
I' =y 2 (6.36)

a

ch 5

with the magnetic moment being
_ T [ AG — M) 6 —d :
M_—?uLaT(chv—l)—b . shv“-za]-{«
A

—I—%w a—?;shv—bchv] (6.37)

if the charge, i.e. I°({ == 0), has been normalized to 1. Comparing (6.36) with
(2.31) we obtain the first important result: The magnetic form factor is

Gy = —2 ; (6.38)
ht .~
g
which becomes with (6.26)
Gy = e - (6.39)

(1 -+ (u? -+ v?) sh? g)a

and introducing from (2.21) the invariant momentum transfer through

t =q% —= —4M? shzg (6.40)
we find ;
u
Gy (1) = 1 2 t 5 (6.41)
S

Hence, the magnetic form factor has the shape of a double pole formula with a
singularity at:
4 M?

b= (6.42)

Since %2 =#2 =1+ w? = 1 the pole position corresponds in general to an
anomalous threshold, just as we observed it for the H-atom. We see that the
singularity degenerates to a normal threshold at ¢ =4M? if w = 0, hence,
¢ = 0. It is, therefore, the L,; tilter which is responsible for the shift of the pole
position. L, doesn’t affect it at all. The shape (6.41) is in excellent agreement
with experiment, which is usually fitted best by [22]

Gy = = ;L/O‘ﬂ)z , (¢ in units (GeV)?). (6.43)
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What are the electric form factor and the value of u given by this theory? Except
from the charge normalization, we have to impose two physical conditions upon
the currents.

a) They have to be conserved.

b) They have to be real from general dispersion theoretical arguments.

These conditions restrict the theory to have only two solutions. As we discussed

in Ch. V, current conservation forces I° to be even in {. But from (6.35) we see that
then necessarily » = 0. This is fulfilled if either § =0 or A = 0. In the first

case (6.20) gives

and the form factors become

1
GE - t 2
(1 B 4M2)
u
GM — f 3
( — 44Mz)
= —1. (6.44)
In the second case we obtain
ch26 __f%
4 4 M2 |

Gp = | 1 + 5 th?0 t -
— 2 —_ 2
(1 ch?0 - Mz) (1 ch?f - M2)

Gy = i o
(1_0h20m—2)

u=—Ys (6.45)

As in Ch. IT we may again tentatively identify the result as applying to the
isoscalar properties of the nucleons, i.e.

G

3 =0
Gt _ e

2 M
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The first solution reproduces then very well the observed symmetry
G
U

But the magnitude of x and the shape of G and (& are far off the observed
curve (6.43), since 4 M* = 3.5 and u® = 0.44. The sécond solution is far better.

Choosing 8 such that

:GE'

ch?f = 5

we reproduce the correct singularity at ¢ = 0.71 and obtain explicitly

¢
4 071 1
=6 (1—“071)
¢
Ow 1 (6.46)

w o £\
('~ o)
We have plotted these functions onto the experimental data on Fig. 6 and find

a good agreement. The magnitude of the magnetic moment is, however, slightly
wrong. Proper inclusion of § U (3) will probably correct this defect.

1,0
\ (a)
o ' \\L\
v‘

/u
001 F \3\'\"
f; '\1\_}_—.§~
2 4 6 8 100(GeV/e) T
I 1 L T T lr T T I[ T 1 I T T . L
20 60 100 40O 180 220 [fY
-t
0,7F H
g6 - (b)
a5 r

G 04 - %
¢
SN

Q2 r ~
' §—~

i ~ g
05 ~1 s, 2
T L 1 T L] l.\:-—._]- . I T [ 1 I[(GeV/C} J

H T
2 6 10 14 18 22 26 30 34 38 42 46 S50 [f
~t

Fig. 6. The electromagnetic form factors obtained form 0 (4,2) theory are shown and compared with those of the
nucleons, The dashed line in (b) shows the best fit employed by the experimentalists [22] assuming Gr = Gy
In (a) that best fit coincides with our curve
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3. Other Possible Extensions by Parity

Starting from an irreducible representation of O (4,2) built up on the states

1

1]
[njm) = (—)" [n +7+ 5] [2(27 + 1)]"

3
n,j—%,m—k r—§> (6.47)

1/2 i—=12 g\
,221:2(3/2—1* m+ r— 3/2 m)a”

we may ask, how many other extensions by parity one could construct on this
space giving possibly different theories. According to the philosophy of the dyna-
mical group approach, O (4,2) has to contain the current operators I'#, the Lorentz
generators M;, and the tilter S as Lie algebra elements. Under these conditions,
the group extension chosen in {6.1) turns out to be unique.

On the table 2 we have listed all the possibilities of how the L,,’s could transform
under parity. We have restricted L;; to be an axial vector because its physical
meaning as angular momentum is fixed. The parities of Ly, Ly, Lig can be
chosen freely while those of Ly, Ly, Lyg are then determined.

Table 2
Possible Reflection Properties of L, under Parity.

Case IL; Ly, Lyi Ly Ly Ly Ly  Parity Operation

(1) -+ - - — + + + a—=bb—>—2-
@ + - - o+ o+ = -

& + - + - = 4 -

@ + — 4+ + = — 4+ a=bb-a

(5) -+ + — — _ = -+  a—>ia,b—>1ib
® + + - + - -

m + + + - F = -

(8) + -+ + + + -+ + a—=ia,b—> —ib

In order to construct now a form factor of the structure (3.1), we need a tilter
S and a Iy, both scalars under parity and rotation. Therefore only the cases (1)
and (8) on the table are possible. Since we need moreover a Lorentz generator
M,;, which is odd under parity, case (8) can also be excluded. Therefore only
(1) remains and parity can be represented with doubling of the states by the
prescription (6.1):

That doubling is really needed to represent parity in case (1) can easily be seen
in the following way: If there is no doubling, every state picks up at most a
phase under parity:

H|njmy = n(—=yod njm). (6.48)

f(n, j) cannot depend on m since L; is an axial vector. From (6.47) we see that
L, is necessarily a scalar. We also can easily prove that L; has to be an axial
vector.

Suppose it were a vector. Then L;, applied to |njm) has to change parity. On the
other hand, L;; conserves n and has matrix elements between equal as well as
different j’s. But this is impossible; there is no choice of f(n, ) that can make L;,
& vector.
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Consider now the case that L;, is an axial vector. Then obviously f(n, §) can only
be a function of n. Two cases can now be distinguished: Either L,; 4 1L, =
— a* (b is a scalar (L,g and L,y have the same parity since Ly, is parity even),
then f(n) =0, since a+Cb* changes » but not the parity, or L, -- L, is a
pseudoscalar, then by the same kind of argument f(n) == 0.

Hence, only the cases (8) and (5) on the table can be verified without doubling
of the representation space. They are explicitly given by

H|njm) = n|njm) | (6.49)
H|njm) = 5(—)|njm) (6.50)
and can operationally be defined by
a—ia, b-—>-—ib, |0)—i|0) (6.51)
a—1ta, b-—>1b, [0)—1|0) (6.52)

respectively.

All other cases need doubling which can be achieved by using the direct product
of Ly, with ¢4 or oy, according to whether they are scalars or pseudoscalars. The
cases (1) and (4) also allow for an operational definition of parity by

a—b, b—>—a, |0)—>1|0), (6.53)

a-—>b, b-—>a, [0)—>1%|0) (6.54)
respectively.
If we allow a Iy from outside the Lie algebra we only need one scalar as a tilter

S and the theory is much richer. O (4,2) is then, however, not any more the dyna-
mical group of the system. Such a model is briefly discussed in Sec. 4.

4. An0O(4,2) Model with a Current outside the Lie Algebra

On the O(3,1) ~ IT Hilbert space we found that the physically best electro-
magnetic currents were reproduced by the theory if the algebraic current operator
closes with the Lie algebra of 0 (3,1) to a representation of O (3,2) on the same space.
A similar thing happened with the exactly soluble model of the H-atom: On the
0 (4,1) Hilbert space the algebraic part of the correct electromagnetic current ex-
tends the group to 0(4,2) without increasing the number of states. These facts
supported our postulate in Ch. I that algebraic current operators should be in
the Lie algebra of some group on the space of physical states. In this section
we want to test the postulate once more. We consider a model theory with

the same structure as before but assume that the current operator is given by
the vector

1
I's = {2—?] (ath — b*a), 71— (ato;Cat — aCo;a 4 bto;Cbt — bOaib)} (6.55)

which lies outside.the O (4,2) algebra. It is important to notice I'* cannot be used
to extend the group O (4,2) without increasing the Hilbert space. In fact, operating
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with it on our O {4,2) states (6.1) it generates a representation space of the group
C(4), whose generators are, apart from the 0(4,2) generators (4.3) and (4.24)

szl == ‘;— (aﬁ'o‘kb - b+o’ka),

Liy = _2—1;; (ato;b — bto;a),
7 1 +
_Lz;5 = _*_? (a O'iCa+ A atOGia’):
It ! b+ + —b b
05 = —?( O'ZOb — 00'1: );

1
LY = 5 (ato;Cat + aCoya),

Ll == 2% (bto;Cb+ 4 bCo;b),
1
Ly = 5 (ath + bta),
Ly = L (ath — bta)
B2 ’

Ly = 21_® (a+ta — b+b). | (6.56)

Altogether there are 36 generators which is the maximal number of bilinear
operators one can form with the eight creation and annihilation operators a’,bt;
ay, by (r == 1, 2).

For this current we obtain using methods just like in Sec. 2 that the electro-
magnetic form factors are (in the 4 = 0 case)

1 1

GF — —
(1 — ch?0 /432 (1 —¢/0.71)2
g ot
g _ - 2sh?0th? g2 “ 1 —¢/0.71
T 1 —chIOaME T [1 — tjO.TLP
{4 =—ch20 = —9 (6.57)

which is a result much worse than that of Sec. 2. Thus, our postulate proves
again useful, excluding this theory from consideration.
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VII. Epilogue

The idea that group dynamics governs particle interactions has passed its first
tests quite well considering the simplicity of the models discussed. The coupling
of baryons to pseudoscalar mesons seems to follow 0(3,1) x SU(3) symmetry,
at least in the range of low momentum transfer in which the corresponding decays
have been observed. For higher momentum transfers the amplitudes start oscil-
lating and we don’t expect them to be a good approximation anymore. One will
need a larger dynamical group to describe this region, probably O (4,2). The
group O (4,2) has been used for a theory of the electromagnetic form factor of the
1/2+ ground state, which is in good agreement with experiment, except that the
magnitude of the magnetic moment is somewhat off. A non-trivial inclusion of
internal symmetries will probably be needed to change this value. Before one
can do this correctly it does not make sense to try to predict the electromagnetic
form factors of the higher resonances as yet, which are in principle all determined.
Such predictions will be the next goal in this approach.

Once one can describe three-particle vertices properly, the investigation of
scattering problems by similar methods will be desirable. Some attempts in this
direction have already been made [26], with quite encouraging results. The ampli-
tudes are, however, all real and correspond to a contact interaction. Unitarity
will probably have to be included by summing diagrams and one might have to
formulate a quantum field theory with infinite component wave equations. How
far one will be able to go in this direction is not yet clear.

The strength of the theory is that it can connect processes involving many diffe-
rent spins and treat whole towers of particles on the same footing, with amplitudes
analytic in the external spins. Tts weakness has been, until now, that the finding
of the possible dynamical group from the (only partially observed) particle spectra
18, to some extent, guesswork, and that the identification of the interaction
~operators is often not unique. One will need more stringent principles to find
rigorous identification rules.

The point of view of our approach has been to understand the simplest models
of group dynamics as well as possible, rather than look at more realistic models,
whose structure we cannot yet understand. Indeed our models give far better
results than others, which start out with larger groups, SL(6, (), for example
[25]. Simplicity again proves to be a good guide when trying to uncover dynamical
structures. There still remains much to be learned.

Appendix A :
The Irreducible Representations of the Lorentz Group

1. Infinitesimal Representations

The Lie algebra of 0(3,1) consists of the angular momentum and boosting vec-
tors L and M which close like:

[LiLj] = oLy, [Ly, Ml =i My, [M;, M;] = —iLy. (A1)

An irreducible representation is given by a tower of spins between j, and §; — 1
and the matrix elements are

Lyljm) =[G Fm) (G £m+ 1)]]j,m+1),
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Lyljm) = m|jm),
Moljm) =2 GFm)GFm—1I" Cilj —1,m 1) —
— (G Fm) G+ m-+ DI A4)5,m 1) +
+{0Em+ DG Lm+2)hCpylj+1,m L+ 1),
Mljmy = [ — m*h Cjlj — 1, m) — mA;lf, m) —

- [(? + 1)2 - 7”‘2]1/2 0}'+1|j + 17 m>7 (*AZ)
where:
vJol1 Jo? v [(2 —78) (52 — fi’)]"’*
v R TR 7[ i1 (A-5)

We see, if 7, is not an integer (or half-integer) number, the representation doesn’t
break off and the tower becomes infinitely high.
In O(3,1) tensor notation, when

Ly Lyal = —igula; n = 0,1,23:9 = (L —1 —1 4} (A9
we can identify:
Ly=L, Lg,=M,. (A.5)
The Casimir operators are then
Cr =1y Ly Lt* = L — M? =g - j} — 1
Co= —Yyemes L, Ly, =L -M = +ij,j,. (A.6)

?

We see that parity changes the sign of C; and therefore j, — —j, or j, — —ji,

and that [f,, 7,] is equivalent to [—j, —7,]. The representations are unitary
for

a) jo=0,5, =1 (trivial representation),
b) j, = integer or half-integer (for j, =0,» = 0 only)
Jp=1w, — o0 < v << O (principal series),
e) jo=00<y4, <1 (supplementary series) (A.7)

and are all infinite dimensional (except a). For j,, , both integer or half-integer,
the representations are non-unitary and equivalent to the well known D)
representation with

jo=1ls —s'|, ji=sgn(s —s)[s ¢ + 1]. (A.8)

In this case L, i M represent unitarily O(4). s, s’ are just the spins in the SU (2) X
X SU(2) diagonalization defined by

J =1y (L —iM),
K =1,(L+iM). (A.9)
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2. Global Representations
0(3,1) is isomorphic to SL(2, C) through the relation:
Arord = A% ¢v; ot = (6% 6), o = Pauli matrices (A.10)

from which follows:

A (A)y =1, tr [A*ox A57] (A.11)
+ 4= 1? Mg, (A.12)

2 _ l ~ —~
N2 = AF:AxGPO"’G;G".

Then we can obtain the unitary irreducible representations [,»] of

4= (“}“i) (A.13)

a3y
on the space of all normed functions f(z, 2*) on the complex plane by defining:

ajz + ai (a%z + aé)*)

U(A)f(z, 2*) = (@32 + ad)¥iv-icl (q22 - a2)is+ol f(

atz + a3’ \a?z - a2
(A.14)
with the scalar products
9) = [dady f*(z, 2*) g (2, 2*) (A.15)
for the principal series (z =« + ¢y) and
d:v oly dx' dy' . .
0.9 = | i s FE ) A9

for the supplementary series. On this space the infinitesimal representation become :
Jp = =228, — Yy (—iv — jy + 1)z,
J. =4,
Ty =28, -+ Yy (—iv — o 4 1),
K, =2% 0 4+ 1y (—ov + §, + 1)2*,
K = —du,
Ky = —2%0p — Yy (—iv 4 jy - 1). (A.17)
The basis functions, which diagonalize L? and L, on this space, are:

29+ 1 (—iv PG A+ m)! (7—Wb)']
(+iv + DG+ 70! (G — o)

I

fim(z, 2%) = (z, 2% [jov] [m[jov]) = [

’ 1 — zz*
X (_)) ~m+9.,(1 — zz*)—w—m—l X Pgm;t?o m—ja) i + o (A18)
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where P®# is Jacobi’s Polynomial. On this basis, the representation (A. 14)
leads then to:

J'mljor] 1€ [jm[fov]) = B/ (L [Ggr])- (A.19)

B is given explicitly in (2.20) for j = m and plotted on Fig. 7 for § = 1/,. B has
the symmetry properties

B Clior]D) = (=)= B Clior]), B/ (Cljev]) = Bii Clo —»])-  (A.20)

For m =& j one obtains a much more complicated result. The reader is referred
ro STROM s paper [3] for a discussion of this case.

The boosters in an arbitrary direction are obtained from (A. 19) by using the
formula

G'm! [l 6™ |jm[jgr]) = 3 DL () Bl €l DEn 6. (A21)

m

For j, =0 the hypergeometric function in (A. 19) has the special arguments
g +1—4,7 + 1,24+ 2,1 —e¥)

i.e. has the form F(a, b, 2b,2),z =1 — ¢ 2. By means of the identity

Fla,b,2b,2) = (1 —z)42 F(a,2b —a, b + 1/, ) (A.22)
with
BT IAT
MU Ul (T —sh2g)2 (A.23)
4)1 —z
we get for F:
F == 65‘7"“*7'1)1"(9" +1—5,7+14+4.7+ %, — sh? %) (A.24)
and using
Fla,b,c,x) =1 —x)* P F(c —a,c —b,c,x) (A.25)
we find

AL | . .
F = (ch g) 134y +1—71)F(§ -+ f1s -,‘13— — 4, 7 -k %, —sh? %) (A.26)

Hence, we get the alternative form for B

(shi‘)f’—?'

AV
2 2
(eh 2)

v i op g [ D) DG 12 92 [ R
MO =2 ?T![(i’—i)!(%’% 1! 25! ]

Fls + 90 Ye — i7" 4 35 —sh? {/2) can finally also be expressed in terms of
Legendre functions of 1% kind:

i .1 .. 3 ¢
F(§+ ?}_: '2—7 _'?1:? +'§: —Shz—_) (A‘27)

BJI(£[0,v]) = N7H0, jy) 5

. (A.28)
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Using the relation
c—1
1:2) Y Pl -2z (A.29)

Fa,1-a,c,z) :F(c)(

we find

11 .. 3 z . 1 T i
= o 7 o 2 > — ’ ~n 2 371
F(2+91,2 jl,y+2, sh 2) (7 —|—2).(t112) P75 (ch &)
(A.30)
and therefore

—j 1/,
B0, v]) = N0, §,) 27~ (j' + %)' (sh —2C—~ ch —;) : P70 (chl). (A31)

For » = 0,7,== 0, replace in the functional part j; by — j, and use N(yo, 0)
as normalization constant.

3. The Degenerate Cases [jyv] = [0, f/2] and [1/,, 0]

Here there exists convenient explicit representation of L, M in terms of creation
and annihilation operators

L; =1, (atoia),
M; = —«—i— (a¥6iCat 4+ aCola), C =ic? . (A.32)
on the Hilbert space
[im) = -+ m)! (j — m)!Th afi*madi—=|0) (A.33)

where for [0, 1/y], j runs through all bosons 0,1,2,... and for [!/,, 0] through
all fermions 1/, 3/,, 5/,,.... M3 can be written in terms of an 0 (2,1) algebra formed

by
_K+ j— m% a‘i‘alaﬁ', _K_ — -%— ao‘laj K3 — -% (a+a —l— 1) (A34:)

satisfying the commutations rules

[K+, K] = —2K?, (A.35)
[KS, K*] = | K* (A.36)

as
My =1, (K+ -+ K-) = K? (A.37)

and therefore the booster B(Z) is
B(l) = ¢iE% (A. 38)
whose matrix elements are the representation of 0(2,1) found by BARGMANN.
(Fm| B jm) = vl ;@) (A.39)

5 Zeitschrift , Fortschritte der Physik“, Heft 1/2



66 H. M. KLEINERT

where 2 () is the representation of the quaternion

a:(—%é)1a|=1 (A.40)

given for m = n by

0k, (@) = Oy &0 =t Bk —n, 1 —n —k, 1+ m —n, —ff)  (A41)

mit

with
1 m— k) (m-+k—1)

( !J’z
Gmnm(m _-n)![(n*k)!(n*f-k—l)!] .

(A.42)

m, n denote the eigenvalues of K, on the states and & is the lowest of them which
characterizes the representation (which is D} in BArReMANN’s notation). For
m < n use vT and f — — B*. In our case the quaternion of 38 is obtained using
K, = —to, as

ch — sh

B(f) = , (A.43)

bo| v b

wm
=
b e by

and we see that K3 has the eigenvalues j 4 1/,. Hence,

w1y oyt E —
CHRSTE FRTN (@) = Oty o+ 10 (Sh 2) -

F\I-
(-3

B 1 (7" —m) (' + m)!
T GG T m)! ( ) *
ch —-
2
X F(m—j, —m — 4,1 4§ — 4, —sh? é—) (A.44)

We compare this with (A. 27) for j, = 4 4/2 and find
i o :
Bﬁ J C O, ? — v;'+172,j+1f2 Sh E— (AA45)

4. Limits of the B-Functions

as expected.

a) £ —0
For small ¢, F(a, b, c,z) ~ 1 + (abjc) z, hence,

G+ L) G o)
1

(A. 46)

Fy +1 — 4,7 +1+§e2)-+21 —e®)~1-
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Then to lowest order in :

BT [jov] = N7H(sh £~ (1 + O()) (A.47)
&Wmm:mmmwx%%+m4+”+ljﬁf““%}-
_U‘ﬁﬂwL+W+l+?uz+l+hCH:
:Nﬁﬁb-ﬁi%%%iﬁé :AW%;%gi. (A48)
b) {— o0

For large ¢, we make use of the formula:

I'eylI'ie —a — b)
I'(c —a) I'(c — b)

T(e) Ia+b—c)
T(a) I'(b)

Fla,b, e, z) = Fla,b,a +b —c+4 1,1 —2) +

(1 — g)e—n-b Flc—a,c—bc—a—b+1,1--2) (A49)

which gives for z -1 and Re(¢c —a —8) < 0
(c -1 @+b—c—1)!

~ —_ c—g-b
Fa, b, e z2) ~ TR TR (1 — z)r—e-b, (A.50)
Hence
: . C 29 1) Gy —1 —1iv)! .
FO 41 —iv,§ 1 475,2) + 2,1 —e¥) = Ta— TE— e la=in)

v / foo 21 A TN SRR

and
» 1 27+ D) Ge— 1 —in)] cos (vl -- D,)

1)) — N —(J-je+10¢ A51
= Y Ty E e = | —isinpr o) A
where the phase angle is given by:

(o — 1+ i9)! e Go = 14 9)!
cos 20, [Re (4" + iv)! ‘ o (3" + iv)! -
{i-sin 2@,} - {lm} (jo — 1 —av)!’ tan &, = Re (Jo — 1 -Fan)! ° (4.52)
G —iv)! RCENTL
Observe that the factor in front reduces to
oy LD ! _
0"+t Y@ 42 . G )
z[ @i+l 6! 27 4 1 t }%
GG —ddt G =D G +d) (0 —do+ 1) (5 4 v . .. (52 4 »¥)
(A.53)
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such that we get for the simplest cases

. 1 2 cos (v{ — arc tan 2v)
7 (| - S Ast
! (C [2 v]) 1 ¢ {—z -8in (¥ — arc tan 2v) { )
g2
4
or, explicitly
1,1 —1 ] 1 o .
B L i 1 el et (cos vl + 2vsinwl),
L - Z _[_ '))2
1, 1; _1 1 _Ii . .
By (L o= et (sin vl — 2v cos »{) {A.55)
..H n Z + yz
and
2]/2 cos 2y

—5— —t et v{ — arc tan EREER k
2 ]/_ Loy —isin (Z - y2)

, 1 272 1 : i
By (C [;, V]) V et ((g — vz) cos v{ + 2vsin vC),

__+ﬂvﬁ+ﬁ

Bt (c: F-, v]) _—i2y2 —- — 'vz) sin ¥Z — 2v cos vC) (A.56)

_”H2V_+ﬁ

Observe that I3 in this range is (from (2.20))

1 2 4
13 = et | ——wv(sinvl —2rcosvl) 4 — —3———1:2 cos L + 2vsinvl)| =
1 5 3 3 \\4
2 7
1 ) .
= et {cos vl | 2vsinyl) = I° (A.BT)
I

as it should be from current conservation (2.31).

Appendix B

Existence of a Vector Operator
Suppose there is a vector I'#, then it has to fulfill:
(M) =T, (B.1)
[M; ] =2 1. (B.2)
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Let’s abbreviate |jm[jof;]) by |jm7). Given a set of irreducible representations
|jmt), which ones can be connected by a vector I'#? The answer is, as one expects
from the nonunitary selection rules:

DVt D7) (s 5,87 -+ D6=as) L D) L s ) (B.3)
that

o) = (o = 1, 4a)s G 71 + 1), (o — 1, 40)s (s o — 1)

and in this case the reduced matrix elements of I'® defined by

I'ylymt) = |jmt") v, (B.4)
are [2]

yi’r = VY ]d(? + jO + 1) (? A— ?0) if ?6 = jﬂ + 17

vie=re YU+ DG —5) i =4+ 1. (B-5)
In the particular case that v and v’ are parity conjugate of each other
T = (+doj)s T =(—jpfr) or T = (jojy) (B.6)
I exists only.if 7T = (Y, ¢v) or (0,1},). The only hermitian I"° is
I = Yyi or () yg (B.7)

and since parity is P = (1), only the first one generates a vector, the other an
axial vector. Using (B.1), one finds that on the states

[jm1)y = [jm[Yy, iv]),

[jm2) = |jm [y, —iv]), (B.8)
the vector I is

Foljm1l) = (j -+ 5) |jm2),

i jmly = L VG T m)GFm —1)C;|j—1,m-=1,2) +

+ VG F m) (G £ m + 1) (27 4 1) 4;jm = 1,2) F

FVGEm+1) (G Em+2) Oy lj 41, mF 1,2,

irBimly = Y2 —m2 C1j — 1, m 2) -+ m(25 4 1) 4; |jm2) +

VG DT = m2 Oy [+ 1, m D, (B.9)
with '
0.:_'5_]/j2_§_,,2 A M2 (B.10)
T2j g+

and on the parity eigenstates |-£) = [1) 4 |2) one finally gets equations (2.13).
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For (1/5, 0) or (0, 1/,) there is a a*, @ representation of I'* corresponding to (A.32)
which is
I' =1/, (ata + 1) = K

I' = 41/, (at0; cat + —aco;a). (B.11)

In this case, and, as we can verify from (B.9), only in this case (except for the
Dirac limit j; = 3/2), I'* close under commutation rules among each other,

giving
(I, 7] = —iLy
[, %] = — M, (B.12)
hence, Ly, Lyy= M;, L;; = I'" and L, = I'"" generate together ((3,2) with
the commutation rules

o L] = —gulirs g = (111 1 _4) (B.13)

Appendiz C:

Group Theoretical Structure of the Dipole Operator

I one inserts intermediate states into (4.34) and observes that L;, 7= L;; raises
(lowers) » by one unit, one obtains
' Um/ || nlmy = (W' Um' | Dpyq| n+ 1, 1'm") x

|

(n + 1)

X (n b 10w | Dy — i Dyg iy =2y
1 g 7 14 r ? 14 h (nb‘il)z
A WU | Dy_q | n—1,0,myn —1,U,m | Lyt i Lyg | nlm)y—— -+
n
+ R'Um’ | Ly [nlm). (C.1)

Hence we have only to find group theoretical expressions for the matrix elements
of Dy, 1. From the definition (4.29) it follows that these matrix elements can be
7

expressed in terms of the integrals over hypergeometric functions:

4 7’1; :{: 7,7
{n'lm D%il n 41, Imy — =1 = Yu(n &= 1) d' s (C.2)

v nn'\'/s NmN 'l 2 , 2
d;.l;n’,l = (‘L’T') -L-ll-’lﬂ J%%(—))l ( ? > nr: ?)a (03)

241 (n + D'

— 4
N n2(21 + 1)1 [ 0! ’ (C4)

0
E+%

JE (g, ks ml, k') = [emTE§Q+fF(——n,, o+ 1,k F(—nlo+1—1,k¢). (C.5)

0
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These integrals have been evaluated by GorpoN [27] recursively with the result

k’2 i kz (k?‘ o k’T’) ng)f%(n: k; TL,., k’),

(20 4+ 1)1 n,! 1
(n — w4+ n)! (BE)H

X F(—nl,n-+1+1,1+n—n,u?,

b —k o VEK

M:m, P == k’—}—]{;. (0-6)

JEO (n, k;nl, k) = —

S50 (e, b5 0], K') =

’Ul+1 un—n' %

For n << #' one has to exchange » and #’ in (C. 6) and u — —u. If we unse the
identity

1 2
(a,b,c;z) (1_2)2F(a,c ’c’z——l)
and
% 0 1
sinh — = ———, cosh - = ———
2 ]/I—uz 2 ]/1—u2

to rewrite J{1% in (C.6) and define the functions

0\ —@t+n) O \m—n’) 20
v P (0) = O (COShE) (sinh 5) F(mn;, —n'—11+n—n, —sinh?)

(C.7)
with
o, — 1 nt(n 4 DT
o (n —w'}t {nil(n 40!
we obtain finally
'\ fn  m 1
77’ L — e l'*% ’ .8
wln'l (nn’) (T’ ‘L') ginh Hr’r Vi (Bz r) (C )
where the angle 8,-, is determined by
L B T —1 Oy, THT
sinh = ———, c¢osh — = .
2 2 1/1“5’ 2 2 )7
In particular then Equ. (C.2) becomes
, (12 1
D 1 RS S LY s ST/ )
{n lm‘ n%l n -1, Im) = —F‘ Sinh 0 AR T (/) (C.9)

There is good reason of introducing the functions v, in (C.7). Consider the non-
compact group generators K, =Ly, K, = —L, and Ky =Lg =N of
0(4,2). They form the algebra of O(2,1) subgroup. The action of the raising and
lowering operators K* =K, 4+ K, is Al=0, 4m =0 and Adm = £1.
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The states |n{m), for fixed { and m, form therefore a basis for an irreducible
representation Dy of this O(2,1), the transition group, characterized by the lowest
eigenvalue of K; =N  which is clearly n =17+ 1. The matrix elements for
D, of the finite O(2,1) transformations are given by

et

e~k | " Im)y = |nlm) vl 1 (6) (C.10)
where ¢t is precisely the function introduced in (C. 7). Therefore (C. 9) becomes

(n’ lm‘ Dnj:l {n'Im|enafr|n +1,Imy. (C.11)

sinh 8,,,,

This equation inserted into (C. 1) finally gives Equ. (4. 36).

Appendix D :

Proof of the Orthogonality Relation (4.97)

For n" = n the expression (4.97) has a value one, since L, has only non-diagonal
elements. Let’s assume that »' > n. Inserting intermediate states we get five
terms which consist of combinations of

m1 m+1 0
2 2
v m-1 m+1(+ sh _2—) v ., m+1 m+1 (_'Sh E)

nl+'_2_’nl+ 2 ﬂz"[‘Ts s+ 3

with 6 = log nfn.
Fxpressing them in terms of hypergeometric functions according to App. (A.41)
we can write the different contributions as

1 (n{+1)(ny+m+1)sh@/2

2 ny + 1 —n, ch g2 " s
_{__1_ (ny + 1) (nf -+ m - 1) sh 6/2 o )
2 ny+ 1 —ny ch g2 "M T
1, ch 6/2 _
+§ (nl - ) h 6/2 'nm,l 'Unzng
ch ch 6/2 -
53 ( Sh 9/2 Uning Unjn,
+ %' Vaiu, Vi, _ (D.1)

where ¢*) indicates that a » function like (A. 41) has to be used, which is modified
such that the third argument in the hypergeometric functionis 1 +m —=n - 1
instead of 1 -~ m — ». One can then collect ¥ and v together through the
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identity
clce —1){z—1)Fla,b,c—1,2) +c[lc—1) —(2¢c —a — b — 1)z) Fa,b,c,z) +
+{c—a)(c—bzF(a,b,c+1,2) =0 - (D.2)

and finds that the first four terms in (D. 1) indeed cancel the last one.
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Notes added in procf

1) (s. p.6) In the Language of infinite component fields (see Ch. V) every representation spe-
cifies a different local interaction Lagrangian leading exactly to the transition amplitudes
(2.6). One may say: A dynamical boost is such a representation of the Lorentz group which
makes a given interaction local.

2) (see p. 9) Such terms have meanwhile been employed to obtain quite good electromagnetic
form factors for the nucleons (see A. O. BaruT, D. Corrigax and H. KLrIiNERT, Phys. Rev.
Letters 20, 167 (1968)). The authors apply the ideas developped in Ch. V. to fix the contri--
butions of the different terms to the current from the observed baryon mass spectrum.

3) (see p. 15) A factor

pr o VIB/2P 4 9% - 72 + o7]
i 3/2 .0 §

has been divided out of all amplitudes B%l;;" * in order to permit a better comparison of curves
with different » values (see also the Figs. 7a--d).
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von 6.— M pro Heft im Akademie-Verlag, GmbH, 108 Berlin, Leipziger Str. 3/4.



