Volume 128B, number 1,2

PHYSICS LETTERS

18 August 1983

LIMITATIONS TO THE COLEMAN—-WEINBERG MECHANISM

OF SPONTANEOUS MASS GENERATION

H. KLEINERT

Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
and Institut fiir Theoretische Physik der Freien Universitit Berlin, Arnimallee 14, 1000 Berlin 33, Germany

Received 3 May 1983

We point out that the second order phase transition of compact U (1) lattice gauge theory implies that a certain range of
abelian Higgs models escapes the Coleman—Weinberg mechanism of spontaneous mass generation and suggest ways for a

Monte Carlo investigation of the full range of its validity.

A decade ago, Coleman and Weinberg [1] argued
that the abelian Higgs model in four dimensions

L=—LF2, + 3|3, —ied,) ol

+1m?|o1? — Il (1)

should, for m? =0, generate spontaneously masses for
both the scalar field  as well as the photon field 4,
with a ratio

mi/mi = (3/m) e?/am . (2)

An equivalent statement is that the model has a first
order phase transition at m?>0.

The claim was derived from perturbation theory,
thus requiring sufficiently small e and .

For small k2 = 7\/62 < 1, the conclusion follows
directly from the observation, that the “black body™
radiation of the photons in the presence of a constant
p tield leads to an additional effective potential

AV = (3e*/64n%) o|* [log (1P IM?) — 28] , (3)

where M is an arbitrary mass scale. The corrected po-
tential has its minimum away from the field origin at
|| = M where the curvature of AV is m&, = (384/871'2)
X () |2. This minimum spontaneously violates the
U(1) symmetry ¢ = 7. Due to the minimal cou-
pling, the photon acquires a mass mi = e2|(p)|?, thus
leading to the ratio (2).
The initial restriction of small K could apparently

0031-9163/83/0000-0000/% 03.00 © 1983 North-Holland

be removed by a renormalization group argument ¥!
by which the coupling constant A could be changed
by a large amount with almost no change in e such
that any range of K could be covered *'.

Unfortunately, this argument considered by the
authors as a virtue, is actually a source of a severe dif-
ficulty: When starting at a certain mass scale in the
perturbative regime and changing this scale towards
the infrared, the coupling A rapidly becomes larger
and thus escapes into a regime where perturbation
theory is no longer valid and non-expandable terms of
the type e~ 1/A become important. These can easily
generate an infrared stable fixed point in which case
the model would certainly have a second phase transi-
tion such that there would be no spontaneous mass
generation.

That something like this can, indeed, happen is
seen in three dimensions where (1) coincides with the
Ginzburg—Landau theory of the superconductive
phase transition.

In the neighborhood of the critical temperature T,
the mass term behaves as m? = (T/T, — 1) and the cou-
plings A, e are of the order 7\~p"'3/5(Tc/TF)2, e~pll4

X (avp /c)l/ 2 where T is the Fermi temperature,

(Tp= p12:/2m§1 ~ 10% K), vp the Fermi velocity (vp =
pE/me1 ~ 10° cm/s), ¢ the light velocity, « the fine-
structure constant, and p is roughly the ratio of elec-

*1 See the last sentences in section V of ref. [1].
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tron mean free path over the clean superconductor’s
coherence length £y ~ vg/T,. In dirty samples, p and
thus e can be made arbitrarily small. In clean super-
conductors we have to take p =1 and e ~ 10~2. The
parameter K = (?\/455'2)1/2 '*--'p"l(c/ozvp)l/zTc/TF is the
ratio of magnetic pénetration depth versus coherence
length times 1/5/2 and it is customary to distinguish
type I and type II superconductors according tok =
1/2/2. For the superconductor, the Coleman—Wein-
berg argument [2] leads to an additional cubic poten-
tial AV = —(1/67) e || and this suggests a first
order phase transition with a latent heat AS ~ b2
at a precocious temperature Tprec slightly above T

Torec/Te — 1~ €SN~ p*(p/c)(TEIT): . (4)

Unfortunately, these quantities are too small to be
detectable, (Tprec — T ™~ 1070 K, typically), so the
conclusion was rather academic.

While superconductors cannot be used to test the
mechanism, there exists yet another physical transi-
tion with a completely different looking energy den-
sity which nevertheless is structurally isomorphic to
the superconductive case, as far as the Coleman—
Weinberg mechanism is concerned [2]. This is the

smectic A-nematic phase transition. Here the precocity

Tprec — T is of the order of 10~2 K and therefore
detectable. Nevertheless, the transition is found, ex-
perimentally, to be of second order, with a tempera-
ture resolution of 1073 K [3].

As we understand it now, the Coleman—Weinberg
mechanism in three dimensions breaks down if there
are strong fluctuations due to vortex loops. These
invalidate, on the one hand, the ¢ ~ const. assump-
tion underlying the calculation of AV since inside
each core of a vortex line ¢ =0, on the other hand,
the perturbative renormalization group argument, due
to non-expandable e 1/ type terms in the § function.

The vortex fluctuations increase with increasing .
The temperature interval in which they are important
was estimated by Ginzburg [4]. It is given by the con-
dition that condensation energy density times coher-
ence volume be of the order of the temperature,
which here amounts to

TGITe— 1 ~\%~p3(Te/TE)* . (5)

Compared with (4) we see that the ratio is k. Hence,
for large k (deep type II), Tprec lies within the Ginz-

70

PHYSICS LETTERS

18 August 1983

burg interval and the ¢ ~ const. assumption cannot
possibly be trustworthy. By constructing a dual field
theory of fluctuating vortex loops [5] it was possible
to estimate a tricritical value [6] k.~ 0.8 N2 where
the transition changes from first to second order. This
vortex field theory turns out tobe a gly |4 theory, due
to the short-range interaction between the vortex
lines, with the coupling g changing sign at the tricritical
value of k..

Naturally, the question arises as to the range of
validity of the Coleman—Weinberg argument in four
dimensions. It is well known that close to the critical
point, the abelian Higgs model forms the dual repre-
sentation of the abelian U(1) lattice gauge model [7]
whose partition function reads

Z= Hf A u(x)

_xp,“_ﬂ' 2T

Xexp(By 20 [eos(Vudy = Tod) =11}, (6)
X, MFV
where u, v are oriented link labels (u,v =1, 2, 3, 4)
and x runs over all lattice points. This partition func-
tion has been thoroughly investigated by Monte Carlo
methods [8] with the result that at 8 ~ 0.995 there is
a second order phase transition. The dual representa-
tion is found as follows: A Villain approximation [9]
brings Z to the periodic gaussian form

z~ 1 [ )
x,u_j; 2m

(7)
X 22 exp (——Bz 22 (Vud, -V, 4, — 27mm,)2 )

Ny () X, >V

The sum over n,,,(x) can be rewritten as

E ]—I f dfu.r.;(x)e)‘ip('Z> [‘fﬁv/zﬁ

";.w(x) X X, 1>V

T ifuv(vuAv - VvAu o 2”’2#”)])

1
2 S0~ 35 T fh).

fup Ge)=integer 28 x,u>v

Setting 1, = ewMDNZ «, integrating over A x> and
enforcing the integerness of f,,,, by a sum over closed
integer valued monopole world lines, /,;, this becomes
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z=xﬂ [ 44,0 8(9,4,)

LT 2w

Xexp|—
p( 208 x,u>v )

X 22 AV, Oexp(2m' 2 lu(x)zu(x)). (8)
lﬂv(x) Sl s X, M

The /,,(x) sum can be turned into a disorder field
theory [5] which close to the critical point becomes

2 87 ,1,,0 exp(Zm' 2 I“Eu)

1, (x) X,

+
critical limit f Do Dy

X exp{—s51(0 —ied) |2 — L [e2v(0) — 4] |2
—g=lelt +0(lpl® 10 ?l0l?, 1% M)}, 9)

where v(0) is the lattice Coulomb propagator at the
origin (~0.%55) and the charge e is an abbreviation
for e = 2m/B. At the mean field level, there is a second
order phase transition at § ~ 0.65 which is moved up
to B, ~ 0.995 by fluctuations.

Now, the partition function (8) with the disorder
fields (9) certainly constitutes an example for an abe-
lian Higgs model with a second order phase transition.
The charge e is, however, too large (~27) to give us
information on the range of coupling constants for
which the Coleman—Weinberg mechanism was derived.
Thus we have to modify the model such as to decrease
e?. This is possible by adding, in (8), a core energy for
the monopoles, say —%tlﬁ. In the disorder field theory
(9) this modifies the mass term to — ¢ (¢ + ezu(O) —
4) | 12 such that, at the mean field level, there is a
line of transitions ending at e?=0,¢=4.In the original
action (7) the core energy is equivalent to adding, in
the exponent

_"% £(€uvnx vvn?\fc)z : (10)

But from the experience with the three-dimensional
version [10], as well as other models [11], we know
that an increase in defect core energy can at most
soften the phase transition in which these proliferate.
Thus we expect the transition to remain second order
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along the whole line ¢ + 820(0) — 4 ~ (. Indeed, at

e? =0 the Higgs model reduces to a pure complex

lp |4 theory which is well known to undergo a continu-
ous transition.

In this way, we have generated a whole family of
abelian Higgs models with small e* which do not show
spontaneous mass generation. Thus we know that if,
by a change of scale towards the infrared, the coupling
A escapes to the large values implied by (9), there will
certainly be a second order phase transition, implying
the existence of an infrared stable fixed point.

At present, no information is available for small e
and \. Should the three-dimensional situation carry
over to four dimensions, this could endanger many of
the present applications to particle physics and cos-
mology (e.g. inflationary universe [12]). Monte Carlo
calculations can give valuable information on this
regime by taking the core energy as a gaussian random
variable fluctuating around some given mean value of

to. The integration

[ eyt Xl (e~ 102

Xexp{{—i=[t+ e2v(0) — 4]} ¢ I%}
=exp{{—se[tot+ e?v(0) — 4]} o2

+ [e/(2 - 16%)] lgl*}, (11)

generates an additional quartic term which can be
chosen to make the —zzl¢ [ term in (9) arbitrarily
small. Hence, a Monte Carlo study of the model (7),

modified by (10) and (11), would make it possible to
determine the domain in the coupling constant plane
over which the Coleman—-Weinberg mechanism is
valid.

The absence of the mechanism in actual supercon-
ductors at small e gnd A certainly demonstrates the
need for such an investigation.

The author is grateful to M. Nauenberg for many
interesting discussions, in particular for drawing his
attention to the calculations of critical indices in ref.
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