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ABSTRACT

We compare the defects in different physical systems,
exhibit their relevant properties for phase transitions,
and point out the similarity of the lattice field theories

by which their ensembles can be studied.

In recent years it has become clear that phase transitions
of many non-linear systems are caused by the proliferation
of topological excitations.1—4 These are characterized
by the failure of certain fields to satisfy integrability

conditions and will therefore be called defects.

For example, in superfluid Helium II, there are vortex
lines along which the phase of the order parameter has

non-commuting derivatives (see Fig. 1).
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Fig. 1. A vortex line with its non-integrable phase angle
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If

SR (L) = g“ B 7 - xew) (2)

denotes the delta function singular along a vortex line

L, parametrized by x(s), the vortex density is

AN ) = 2rm S, W) (3)

In a crystal, the displacement vector ui(i) may be non-

integrable due to dislocation lines (see Fig. 2-4)°
Cug) Y UgX) =y () # O (4)

whereCle(z) is called the dislocation density. A single
line along L is characterized by a Burgers vector bi
(which is a multiple of a lattice vector) and Mlk(x)

laS

reads
Ol = o, S (L) (5)

Dislocations may pile up to form disclinations (see Fig. 5)
in which case the local rotation field wizjiiﬁ"ai U may

become non-integrable with6
% A wel) = G vo  (©)

For a single disclination line one has (see Fig. 6,7,8)

O &) = 325, (L] (7)
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Fig. 2. An edge dislocation as the boundary line of a
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missing section of a lattice plane.

screw dislocation

3. A screw dislocation as the boundary line of a

torn part of the crystal.
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Fig. 4. The non-integrability of the displacement field
at a dislocation line,
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and LQ% is called the Frank vector of the line. 1In-
stead of a differential characterization, one can state
(1) ,(4),(6) also in the form of circuit integrals around
the defect line L

% J\b/ = 2N (8)
% oku\s = b\" (9)

(%7 dw; = G2, (10)

These show that §§\V¢,uhare not single valued. There is
a surface S; Spanned by the line L, whose precise position

is irrelevant, across which these variables have a jump
by 2xw lor S (see Figs. 1,2,3,6,7,8).

Apart from these defects, the fields K}MJ,“k are supposed
to be smooth such that the physical guantities formed from
its derivatives are integrable. For example, the super-

fluid velocity is given by ushoc 'a,x and satisfies
gégvy;gjgﬁ>%k_gf§)=?C) (11)

The strain is given by uln:%@un.eqnud and satisfies
Y- Y g - 0

(12)

Moreover, also the derivative of strain and rotation

field are supposed to be integrable

@(Ja}'—?j'g(’)(av_ ue“/}/i) >0 (13)

(fal.ql..—’ajok_)gu W (g =o (14)
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These integrability conditions imply conservation laws.7
Contracting (11) with iﬁb shows thatc(k(x) is di-
vergenceless

ok ) =0 (15)

such that vortex lines can never end. Similarly, writing

the dislocation density (4) as

Ao 6 = Zleg U Ug = T chge T T W, )
(16)
= Tuq A Ui g Y- 9wy
and differentiating with respect to Q%< ; equ. (12) leads
to

Vo Lo 69 = € o O (17)

%< ;'

which says that dislocations can end only on disclinations.
For disclinations themselves, a few manipulations lead

from (9),(10) and (11) to the conservation law
QQQM@ =Q (18)

which says that disclination cannot end.

The conservation laws (17) and (18) can be used to con-

struct a defect tensor

) (19)
/VL‘.‘. @;" - ‘i)' nle fak (o(hi - ngm_ 0(12 J
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>

Fig. 5. Dislocation lines can stack up to form a
rotational defect, a disclination.

Fig. 6. A wedge disclination with Frank vector parallel
to the line.

Fig. 7. A twist disclination with Frank vector orthogonal
to the line and the cutting interface.

Fig. 8. A splay disclination with Frank vector orthogonal
to the line but parallel to the cutting interface.

WRY,

Fig. 9. A disclination and an antidisclination spaced

a distance b apart from a dislocation of Burgers'
vector b,
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which is symmetric, due to (17), and divergenceless, due
to (18). Notice that this equals Belinfante's ¢onstruction
of a symmetric energy momentum tensor from a canonical one

8.. and a spin current densit -2 which reads
i3 P Y S‘”z itlgo(ak

= G — — 20
Kl\ w— O‘.‘ ‘[é (a( (Sl-f’h S"k‘{ +Skfjj) ( )

This is no accident since disclination density and dis-
location density can be identified with Einstein curvature
tensor8 and torsion tensor of a general affine (metric)
space and (17),(18) are the linearized manifestations of
the two fundamental identities (in Schouten's§ convention
the so-called second identity for the torsion and the
Bianchi identity for the curvature). The expression

(20) is a linearized version of the symmetric energy
momentum tensor of a gravitational Lagrangian dkfg“R_.
The metric of this space is %q==2qu and the connection
T1gu=’?c?;txk . The geometry of this space has a simple
orerational meaning: Imagine a distorted crystal to be
embedded in Fuclidean space. Distances are measured by

counting atoms in the distorted crystal. Vectors are

parallel if they correspond to parallel vectors before
the distortion (remaining attached to the crystalline

atoms during the distortion).

Insexrting the explicit forms (16),(6) into (19) we find

l‘i\(“ = Q-:Q,Q iinu fak_fbu u(n (21)

This double curl operation is called incompatibility.5
It plays the same role for symmetric tensors as the single

curl does for wvectors. If a curl of a vector vanishes
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everywhere, the vector can be written as a gradient of
an integrable scalar field. Similarly, if the double
curl vanishes, the strain tensor can be written as
,\i@;u"+’b!~u{) with integrable u‘-fieldsl Hence we can

conclude: A crystal is free of defects if qij:o.

The phenomenon of quark confinement arises if a gas of
magnetic monopoles squeezes electric flux lines into
thin tubes. In the usual description of magnetism it is
customary to use a vector potential Ai whose curl is the

magnetic field

Bcr i;‘ug{Ak (22)

A magnetic monopole of charge m is a source of Bi field

lines, defined by the condition
UB = T A, = m §7) (23)

Thus, in the presence of monopoles, the vector potential

fails to satisfy the integrability condition

Monopoles are defects in the vector potentiali

Notice that in a scalar description
b= 2 u (25)

this would not be the case. The scalar field of a mono-
- ‘\ -~ .
pole w(x)='J) myx) is singular but integrable. However,

in the scalar description, electric currents would cause
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defects since along them

which is a relation analogous to (1), (3) for vortex lines

in superfluid 4He.

Thus, in a system with electric currents and magnetic
monopoles there are always defects. With the traditional

choice of a vector potential, these are the monopoles.

Lattice formulations of partition functions permit a
simple study of ensembles of defects. If these are
line-like, there is usually a certain temperature where
the entropy overwhelms the energy and causes a pro-
liferation of lines. On a lattice in 3 dimensions, a
line involving n links has (ép)n configurations. If the

energy per link is <€ , the partition function
w %
2 =7 (" ek

indicates a proliferation for2 T>‘:= é/ﬁa 2D . Vortex

lines destroy the superfluid order1o, dislocation lines

the translational order (creating ligquid crystals‘)11

and disclination lines the rotational order.12

The magnetic monopoles in three dimensions behave like a
classical Coulomb gas. Since Debye, it has been known
that there is screening which changes the propagation of
fields for all temperatures, i.e. independent of how
dilute the gas is. This Debye screening causes quark

confinement, as was first observed by Polyakov.4

It is interesting to discover a great similarity between

the three models describing such different systems:
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Superfluid He is studied by means of an XY model on a

simple cubic lattice with sites 5.13

GZ_@osV;g&)-U
-— d w, L p.v
ny "E S i (27)

Nt 14 Ela

where Qz( = K&+ - x(x) is the lattice gradient across
the links 1-(1 o,0),(0,1,0),(0,0,1) connecting x and

§+%, The Villain approx1mat10n,14

~ G Mg -2
a(g(k_) e
ny = K E . < (28)

Ineeay”™
WithRy’(ro(ﬁ)e—P‘ Zrty) and ﬁv:°@b1(i4(ﬁ3/i‘xﬁ))j-1
displays the surfaces over which ¥ jumps (n3(o)=1
means that K’jumps when passing the XY plane for 0 to 1).
Instead of integrating from - to W we can integrate over
the entire ¥ axis, if we remove from n; the gradient of an

integer field, i.e.
n(-47n;—-§%n (29)

By choosing n-= Q;{n(, the remaining n; can be taken to

satisfy n,=0. Hence

N e V[QE @bf lrm)
= A
£= R, Snge TN e o

ﬁnag)% —

Introducing a conjugate variable Bi' which is the super-
fluid velocity and plays the same role as a magnetic
field for electric currents, in the gradient representa-
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tion (25), we can rewrite this as

N— & o — -{i %{ B‘-7 4 Z B{ (V"b/"?'"")
2 . Qv;

® 2
- W%@*’ﬂ@ c (31)
. > o -’5,‘ — 2“
ray " el

-0

—

The integrals over }( force Bi to be divergenceless.

Hence we can express Bi in terms of a vector potential

%::'fz;u Q,'Ak (32)

and write

&0 - £ E(S’M)%me Al
X\ 1 >, ¢

o e
2,=R 2 6, \M gome
v e nb'o,\jﬂ@ oh) (33)

where we have set

L)+ (D) (54)
This is an integer field satisfying €%£c=“2 It can be
pictured as superposition of closed integer lines and is
the lattice version of the vortex density {, () (recall
(3)) . Due to (33), the vortex lines interact in the

same way as electric currents (Biot-Savart forces). From
(34) we see that the 1i form the boundary lines of the
surfaces across which the phase i{ jumps. Hence li are
the vortex lines. The smallest is given by a single

ni(x) being equal to one which gives a loop around one
plaguette. This can be identified with a roton. 1In fact,
its energy turns out to be about the same as that of a

roton. Rotons have dipole forces. These do not change
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the field propagators as long as they are dilute. Only
when they proliferate does screening set in and there is
a close relation to the Meissner screening of magnetic
field lines in super conductors. There exists a disorder
field theory of the Ginzburg-Landau type describing this
proliferation of vortices and the Meissner like screen-
ing.1o
In a crystal} we can construct a similar model containing
dislocations and disclinations. The linear elastic energy
is, in terms of the displacement vector

= A Ao e Va2
e(ff) /a, O(U‘]'Eg)u(> (35)

if we neglect the Lamé constant X , for brevity. Dis-
location lines are characterized by jumps of u, across

certain surfaces. Their ensemble can be studied by15'16

¢ -.,(E (eoehit Gih) = 1) +LZ.@°7V"""")]
£.= r;&df_gfr) ’ (36)

C S A2 L S ey

meft gk fn xi) 2w (37)

We have renormalized us to Ai=%%ﬂ'ui such that it is
periodic in Zu / and set ({-,.E}ux’@ﬂiﬂ. We can again extend
the Ai integrations over all real values by restricting
n,. to
1]
Nn..=nN,, =0 (38)
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Just as in (30) it is possible to introduce a conjugate

stress variable Q}{ and write

@ 1 2
(N YTy
Z = ’2\/ ‘ﬂ‘ ) Sdiqr e e X 1 4
mt Y ‘:‘Sllal rz_ﬂ_,
L (39)

A*’Vﬂ- ?rn‘l)-hg v NA ef’l“)

DS, e e
F 5l>
n. o ¢ i

ViV = O (40)

which is the standard equation for linear elasticity.
This can be taken advantage of to express Q}{ in terms

of a symmetric gauge field

—.

- >
Th = T Tiwn v ra K, (41)

In this way, (32) becomes

_p e
Lar =2y I 0‘”;; & (]

~d 5@- = 00 x)° +2ﬁ§>< «(fz)
Z S, k
ln“alk

where éﬁfyﬁ} is a gauge fixing factor (for example

lr.c C“'(ch(’d) ) and

<Jf

/V\('\' = ‘Zt"c( i-,'um e Vu- n’@n (43}
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is a symmetric integer tensor satisfying

fe—

Vet =0 (44)

This is the lattice version of the defect density (21).

integrating out the ¥ fields gives

7 6** TR et i)
Loate ¢ = Ly L v e X
v ' /&n&)t
~ v
where
7 3 -2
Vgl | = \)Off"} (QD—ZZ\‘%L-) (46)

is the lattice version of the 4(hH potential. It di-
verges which implies that only such defect configurations

qinm) can contribute which are neutral

Z M) O (47)
For these, in turn, we can use the finite subtracted
potential
V) = Vuli) ~ (2D (48)

Similar to the XY model, the melting model has a critical
temperature at which dislocation loops proliferate. These
cause a screening of the elastic forces, which can again
be viewed as a Meissner effect, by going to a disorder
field description.17 Contrary to the XY model, the
transition is now of first order. The reason for this is

quite simple: Lattice defects allow for certain collective
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formations whose energy is much lower than the sum of the
individual energies. An example was given before: Many
dislocation lines can pile up on top of each other and
form a disclination line (see Fig. 5). If two such dis-
clination lines run through the crystal in opposite di-
rections the energy between line elements grows like R.
Hence they are permanently confined. 1In fact, one may
consider the disclinations as fundamental defect lines

as confined pairs (see Fig. 9). When the dislocation
lines proliferate, they screen the elastic forces from

R to ’I/R.18
stituents. The proliferation alone would be a second

This leads to the deconfinement of its con-

order transition, the ensuing deconfinement opens up an
additional reservoir of entropy and this is what causes

the discontinuity of the transition.

An ensemble of monopoles in a magnetic field can be
studied with the model4

2 T GM 2 ﬁ?ﬁi@n (Q%‘--V,'A\J —1>

xidy I (49)

called lattice QED. 1Its Villain approximation reads

Zi; C?’A VA— ZVnL}
1y T \
2 = ]Z ® Z TF g oUv(‘QS’ S (50)

fouie V &n @453 ¢ 7q

Introducing a conjugate magnetic field gives

Z}wu - szp gd.f T cM w51
hcido o A7y T W

—%&’g;?'ﬁ "Fcii S { (Vﬁ Vﬁ- l)

X(!
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Summing over the nij forces fij to be integer whereupon

the integrations over Ai give

V. L. =O

Ve £y (52)
Therefore one can write

r*gq- = e V. @ (53)

with an integer scalar field (@@9_ This, in turn, can
be integrated over all real values if one couples it to

an integer field m(x):

, M -~ Z-(L%WCP)Z +2cr<‘§ Ea) wix]
2 =gt \E*l(gd Cq) o T )

Integrating out the (¢ rfielad gives

N — bug?> ME 0,00 )
2%\1 Z(QVQ'L\T c o= (55)
‘ £
Zrﬁ,lw%‘(j
where
(L .
v, (5) = d*k ¢ @D—Zgooafc:) (56)

is the lattice Coulomb potential. The field m(x) para-
metrizes the ensemble of monopole charges. It is related
to the jumps nij via

(57)
e T Ot
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under the constraint ﬂ,s,. = n\-s- G

The Debye screening can be seen by separating the self-

energy of the monopoles and writing

' t
V X = 10 ) = ‘
&) = 0le) £ V) = 2527 +0G) s

which allows bringing (55) to the form

N o - L Z(ﬁ pAZs ﬂ?m
2y B LT TR
sV Y gy N fay

(59)

2
Z . _r,vq_g V(0) Zm'z’x) + 270 ( Z Clime)
(g

For large ﬁ; , only nukp=qf1has to be summed and the

last factor becomes

._In_-,.v‘-m"
Le Zcosz.zrfe(x) 60)
€
The curvature of the cosine term induces a mass
- wre,
2 2 Rz Y@
m = YR°€E (61)

and this is responsible for confinement.

Comparing the partition function (27), (36), and (49)

we notice the following relation. The latter two cases
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can be considered as special constraint versions of an

extended XY model for three angular variables

m o > (CODV‘-_X,. *1)

I / N
Z = 7‘_‘ dﬁk) e B 4 (62)
XY T v 2r

As long as the angles are independent, this partition

function is simply the cube of the individual XY models.

{ 3
EXY = Ly (63)

The melting model counts only the energy of symmetric
combinations, the gauge model that of antisymmetric com-~
binations of V..

Y

The XY model has a second order phase transition and so

does (62). The antisymmetric combination has no phase
transition (permanent confinement). The symmetric com-

bination, on the other hand, describes melting which is

a first order transition. Thus, symmetrization of the

tensor \}Xi in (62) hardens the transition, antisym-

metrization softens it.

The simplest way of studying the phase diagram of such

theories is via a mean field approximation plus loop

19,20

corrections. This follows from the possibility

of rewriting the partition functions in the following

way

_BNp T g 2 Uk W hced)

Xt
X

J
Z =¢ Eg e e (64)
)(y S —F 2mw
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SMf: T [Z U, (K)L{ (etd) U, fxﬂ)u -(x) +z§u @uﬁm}j

|>J

= OKAT
z\n&l(’ < ,\E.—\' e € (65)

-t

P Z u (X)u (K+J(_/( RET J(,{ (<)

2N
Z : galfh e
10«% k‘ _-[( 21' (66)
- ) (‘A"(_]
where WU x=e e U(O{) =e . Melting and

!
the first term in the gauge theory differ only by the

position of a star on the U's which corresponds graph-

ically to exchanging a rotation graph fﬁ} by a dis-
tortion graph {3

The introduction of two auxiliary complex fields via the

identity
{eo . %Zo( +@— W) +ece,
A ologd, ol + )
R- g _':"'T'@ d,U\%\ﬂ(Uu(’@ e (67)
X () |
- gD -

permits a reformulation of the partition functions as

integrals over the fluctuating energiesqg’20

ffg xy [0:; ? u(xm*(mq L(o((k)u(chc) - /5031;654)]

!XFL/

(68)

“f Fm(v E [(‘:Z Wy (k)u ﬁm) W, ({«_Qua() +Z{':Z U(&)U[K-HJ

Y(69)

-y Z@;&)ugﬁc)*@.)"g%iﬁlgﬂdrl) ]
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- : U T ¥
P 2y

(70)

_L Z E g <)~ fo’s Iﬂo(c\);l

The mean field equations are

uf = LD
1 @)

in all three cases and

(71)

oL =G6p for XY (72)
%ﬁJ’Lﬂb@Jﬂiﬂud) for melting model (73)
‘0(\_!: q{slu({ for gauge (74)

This gives a second order transition for the XY model
M
at @¢i=4f3 . For melting16 and guage models20 one finds,

on the other hand, a first order transition at

il

MF
(> 49 melting

C

KeE
€

Y

1492 gauge

For ﬁwéﬁkHF, the mean fields are zero, for[3>fkup
they grow from zero to u~4 R olt_f\- GFJXF}))@.Fluctuation
corrections change the energy for low (% by adding a

power series in ﬁ which is known21 up to @}2 . Above

UE
¢ 1 the loop correction gives the major contributions
and shifts 13? slightly upwards. For the XY model, this

bringsﬁﬁk up to .47 (see Fig. 11).
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Fig. 1ll. The same plot as in Fig. 9, but for the melting
model.
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Fig. 13. The potential of the disorder field theory of

dislocation plus disclination lines as a func~-
tion of the dislocation field |¥} The curve
"dislocations only" corresponds to the pure pro-
liferation (second order transitions). The
break~-up due to Meissner screening causes the
additional lowering of the energy which causes
the first order phase transition.
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For the gauge theory, the corrections are so important
that they wipe out the transition completely. The model
always remains on the energy branch obtained by the low

@ expansion.

The melting theory, on the other hand, retains the first
order of the mean field transition. The jump in entropy
comes out S=1l.4kp per site, in good agreement with
experimental data.22,23 The shape of the specific heat
agrees reasonably with experimental curves (see Fig.
12.)

In conclusion we see that defects form the common basis
for the understanding of many phase transitions. Their
analysis can give an important clue concerning the order
of the transition. Melting and U(1) lattice gauge theory
are, in one respect, guite similar, namely by having the
same mean field approximations. However, their defects
are quite different, and this explains why melting is a
first order transition while the gauge theory has con-

finement at all temperatures.

Closed defect lines have dipole interactions. For this
reason, few of them cannot cause screening. Their pro-
liferation is necessary to achieve this. Point defects,
with Coulomb forces, on the other hand, screen for all
temperatures in three dimensions, as is known from Debye's
classical work. If closed defect lines can break up

after screening the coupled transition "proliferation

plus break up" is of first order (see Fig. 13.)
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