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Transition form factors between arbitrary excited states of the H atom have been evaluated in closed

highly symmetric form within the framework of the noncompact dynamical group 0(4,2).

HE purpose of this paper is to present the exact
form of the charge form factors in the H atom
for transitions between any two excited states. The
motivations for this work are: (1) These arbitrary
transition form factors have, to our knowledge, not
been given in the literature; (2) to show the power of
the new simple algebraic methods using the representa-
tions of noncompact groups; and (3) for possible
adaptation of the results to the dynamics of strongly
interacting particles.

The form factors in question, denoted by Fn/i'm’,nim”
X (g?), are the vertex amplitudes shown in Fig. 1 as a
function of the momentum transfer ¢?=1==Fk*k"
—2kk' cosf. They govern the inelastic scattering of the
H atom by other charged particles or atoms if single
photon exchange is dominant, and are measured by
such scattering experiments. The transition form factors
from the ground state |100) to an arbitrary state |nim)
were first calculated by Massey and Mohr! by Schrd-
dinger theory. To our knowledge, these are the only form
factors known explicitly. We present here an evaluation
of arbitrary form factors solely within the conformal
group 0(4,2). The method does not make any reference
to spatial wave functions.

It has been shown recently that the dipole transitions
in the H atom can be described in a simple manner by
using the dynamical group O(4,2), the conformal group.?
Nambu? has investigated relativistic infinite-component
wave equations for H-like systems and has indicated
the calculation of form factors. Later, further properties
of the H atom within the group O(4,2) were investigated
by Fronsdal* and the present authors.® Fronsdal gave
also the form of the Galilei booster transformations on
the group 0(4,2), and evaluated the form factor of the
ground state.
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We summarize briefly the 0(4,2) description of the
H atom. Let Layy=—Ly,; a,b=1,2, ---6, be the 16
generators of 0(4,2). The subgroup O(4) generated by
Lay; a,b=1,2,3,4, describes the degeneracy of the
states of a given energy; the subgroup O(4,1)—dynami-
cal group in the rest frame—describes all bound states
|#lm), and, finally, the remaining generators Ly are
associated with dipole transitions, and Lgs with the
quantum number #.

The vector form factors are given by
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where |nlm,k) is the Galilei-boosted state of momentum
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k, ie., e*Ynm(x). The generators M; of the Galilei
transformations exp (¢k- M) are given by*

M= (Lis—Liy), (2)
provided we introduce the new states®
1 .
| ilm)=—e—*nLss | nim), ,=Inn, 3)

n

and a current operator I'y= (Lss— Lsg, Lig). Then the
charge form factors can be written as (for a booster
in the 3 direction)

(4)

Using Eqgs. (2) and (3) and the commutation relations
of 0(4,2) we can bring Eq. (4) to the form

Fnr = (' lm | Toe™*M3| film).
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Fic. 2. The triangular diagram which
gives the anomalous threshold obtained in
Eq. (17).
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In the evaluation of Eq. (5) we notice that Ls,=Kj,
L3s=—K4, Lis=K,; generate an 0(2,1) subalgebra
(transition group® K). The second matrix element in
Eq. (5) is that of a finite transformation of O(2,1) that
we express in terms of the Euler angles ¢, ¢, X:

e—-s’dn'uKle—ikn (K3+K2) — e—i¢K3/26—ixK2/2e—i¢K3/2 , (6)

and obtain

sinhix=

T,
n
(7

(02— n?)+ tn'*n?
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siny is exactly like sing with #» and »’ interchanged.
Next we express the operators K in terms of the genera-
tors corresponding to parabolic coordinates?

[N NJ= =203, [N&N&]=£N&, i=1,2 (8)
where

N3|nmom)=n;+ (m+1)/2]| nminam);
th I n1n2m>
= —[m+3=x3) (m+m+3£3) 12| nt1, ngm) (9)

as follows:

Singa=

1
K;=N—N,3; K1=;(N1++N2 —N{—Ny);
i

Ky=—3(N*—Ns*+Ni—Ng). (10)
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It is therefore easy to evaluate the matrix elements of
Eq. (6) in parabolic coordinates:

(n1""ns'"m | e ioKee—ixKrg=ibKs| o)
— p—i(n1/—ngl!) ¢e—i(n1—nz) ‘P<n1’,n2”m I

X €0 NN =i i) NN | g (11)

where the last matrix element is the product of two
finite O(2,1) transformations:

(m+1)/2 (x)

Gy gt ning™= Vg ma1)/2,np4 (mi1)2
i (m+1)/2 (x) .

XV nyrt i)z, nes i)z (12)
The V function for #,>n, is given by

Vart i 112, met a1y /2™ D2 (X)

=0, - (COSh%X)"("l"""l'*"’"H) (—’L Sinh%X) n1'—n1

XF(—mny, —ny—m, 14+n,—ny, —sinh2(3X)),

(13)

Onyrm=

1 rnl’ (nd+m) !:lm
(n'—n4) !l_ n1!(n1+m)!

[for m'<mi, use Vaypemiyzmy+mina2™2(X)], and
occurs universally in all form-factor calculations (scalar
or vector) and in the approximate evaluation of scatter-
ing amplitudes.>7

Similarly, the first matrix element in Eq. (5) is easily
calculated in parabolic coordinates, because

Lig=3(N1*+Ni+Nst+Ni); Lie=N. (14)

It remains then to change the basis |#mm) into
|nlm). Because this change of basis is connected with
the reduction of O(4) into O(3)X0(3), we have im-
mediately in terms of the 37 symbols

(nlm|nmem)= (—1)m (204 1)1 (15)
X( (n—1)/2 (n—1)/2 l)
(m—mitn)/2  (m+n1—ny)/2

—m

Consequently, collecting all the terms the final re-
sult is

l (n—1)/2 (n—1)/2 l
—m)((m—nl—{—ng)/Z (m+n1—mny)/2 )

—m.

X {nlé‘—ﬂ(‘mli"w w("l——M)“Gm'nz’m nzm'l‘[(”l"*" 1) (nll+m+ 1)]1/2h+n1’—n2' ,nx——n2""nGn1’+l,nz'm na"

where

hEg " m=cos[ (s'21) o+ sy ]
=—¢sin[ (s£1)e+sy] for

6 A. O. Barut and H. Kleinert, Phys. Rev. 156, 1546 (1967).

+ [nll (”1l+ m) Juzk_m'—nz’ ,m—nznl'nGm’—l,nz’ n nzm} s (16)

for (—1)"—r=—1
(—1)w=n=1.

7A. O. Barut and H. Kleinert, Phys. Rev. Letters 18, 754(1967).
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The form factor § has a singularity where the cosh}X term in Eq. (11) vanishes. From Eq. (7), this occurs at
(n'+n)*
nn'?

i=t1= -

=2(v/B'4+/B)? 17

and coincides exactly with the anomalous threshold singularity obtained from the triangular diagram shown in
Fig. 2 (B=binding energy).

The final result, Eq. (16), reduces in the special case to the Massey and Mohr result! which now has been written
in a highly symmetric form.



