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Renormalization of Charge in Villain Lattice Gauge Theory
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We calculate the renormalization of charge in the Villain version of the U(1) lattice gauge theory
due to monopole loops with their Biot-Savart-type long-range interactions, up to tenth order. The
agreement with recent Monte Carlo data is very good except in the extreme vicinity of the critical
point.
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Recently, the Villain form of the U(1) lattice gauge U(1) LGT, there have been two attempts at explana-

theory (LGT) in four dimensions has been investigat- tion of the renormalization,® neither of them, howev-
ed via Monte Carlo methods with great accuracy.!-2 er, being able to find a scaling equation valid near the
One of the reasons® is the dual relationship of this critical point.

model with the Abelian Higgs model,* which is a pro- The purpose of this note is to present a systematic
totype model for spontaneous symmetry breakdown in };,oopse"" expansion of the charge renormalization
superconductors and unification schemes of weak and into monopole loops of increasing length: 4, 6, 8, and
electromagnetic interactions. The U(1) LGT contains 10. We count the loops explicitly, calculate their mag-
photons plus defects which are closed loops represent- netic interaction energy € on the lattice, and sum up
ing world lines of magnetic monopoles. If the stiffness their contributions to the charge renormalization (all
parameter B is decreased, small loops are excited and by hand). The counting process is quite tedious be-
renormalize the effective electric charge e = 1//B. At cause of the large number of different graphs at the
a certain critical stiffness, the entropy overwhelms the level of tenth order, most of them having different
energy, the monopole loops become infinitely long, magnetic interaction energies. Their contribution to
and the system goes into a phase in which the magnet- the renormalization of the stiffness is given exactly by

ic charges m =2mw+/B are screened. This is the phase the formula
in which electric charges are confined.
The renormalization of charge due to magnetic Br=1- 783 x*(1,(x)1,(0)). (1)
monopoles is very similar to the reduction of stiffness, X
in the Villain form of the two-dimensional XY model,

due to vortices which form a Coulomb gas in a plane. The integer numbers on the four links u, l,(x), satis-
In the latter case, there exists a powerful renor- fy V1, (x)=1[,(x)—1,(x—p) =0, parametrizing the
malization-group approach which permits calculation closed monopole loops on the cubic lattice. The ex-

of the renormalization up to the critical point.’ In the | pectation values are taken with respect to the loop par-
tition function

Z= 3 39,1 x,08%p "%4"22&(")”(""")’»("') : @
[I“(x)l X, i

where
" d“k4 plkx 1_
-7 (27) KK,

v(x)=

(3

(with X W= e™n— 1) is the Biot-Savart-type magnetic interaction on the lattice, which shows that m =27/ is the
magnetic charge in accordance with Dirac’s relation me = 21r.
The proof of formula (1) is quite straightforward. The U(1) Villain form is defined by the path integral

z=I1f ¢4, 0| 3 exp[—%E(V,,A,,—V,A“—"Zfrn“,)z C))
X, {n,, ()

X, pv
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[V,4,(x)=A4,(x+pu)—4,(x)], which shows that e =1/~/8 plays the role of the electric charge. The integer
numbers n,,, (x) generate the closed loops /,(x) of magnetic monopoles [explicitly, LX) =€ Vym (x+p)l.

The partition function (4) can, after a quadratic completion and an application of Poisson’s sum formula
SretmU=3 5(4—n), be brought to the form

z=1‘[fd,«i“(x)1'[a(v,,/i“) 3 55 1 (x).0€XP —% S L+, (04,04 (5)
X, u X e X, u

IF(x X, u<v

where /‘i“ is the dual (magnetic) photon and F,w = Vu/i,, - V,,/i” is the dual field strength €, (V,4,
= V,.A4,). Integrating out the A, field gives directly the loop partition function (2).
The renormalized charge is defined by the correlation

%Z(Fﬁ,,(x)) =Br=eg % (6)
",y
It can be recovered from (5) by addition of a source term i3y #<,,1~7“,,j » and differentiation of InZ twice with
respect to j,,,. Since j,, enters into (2) via the replacement L= 1,+Qm)"1v, Juv» We find directly that

82InZ _B 1
Bjy,vajkx ﬁv

(Fuvikx> = {[_ﬁvvxsu)‘_(ﬂl’)]—[)\f(”

+4r2 B2 ((([V,V, (Y V)21 — (uv))) — D). (D)

Contracting this with £8,,3,, gives |
— +3.X2f(x) and arrive at the exact formula (1).

Br=B+ %"ZEG(VV) llu(")]lu("))' ®) The curves resulting from the explicit evaluation of

X formula (1) up to loops of length 10 are shown in Figs.

The correction term can be written in Fourier space as 1 and 2 and compared with the Monte Carlo data of
872 . 1 DeGrand and Toussaint! and Jersak er al? While

- —g—kh_r.x}) F(Iu(k)lﬂ(k»' 9 agreement with the earlier data is excellent, the im-

_ mediate neighborhood of the critical point measured in
Since for small k, (/,(k)1,(k)) = f(k) starts out with Ref. 2 is not so well reproduced, as was to be expected.
k2f(0), we may replace the operation limy—. k=2 by It is here where a renormalization-group approach will
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¢ FIG. 2. The renormalized fine-structure constant
FIG. 1. Renormalized charge e as a function of the bare ag=ef/(4w) in the immediate vicinity of the critical point
charge e as compared with the Monte Carlo data of Ref. 1. in comparison with the most recent Monte Carlo data of
The numbers 4, 6, 8, and 10 indicate the sizes of free- Ref. 2. The curve labels 4, 6, 8, and 10 mean the same as in
monopole loops included in formula (1). Fig. 1.
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have to be developed.
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