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Fluctuation Pressure of a Stack of Membranes
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We show by Monte Carlo simulation that the fluctuations in a stack of membranes with spacing d
produce a pressure p =(0.148 ~ 0.006) T /ted, where T is the temperature (in units of ka) and tc is the
curvature elastic modulus.

PACS numbers: 68.10.Cr, 82.70.Kj, 87.20.Cn

Lamellar systems such as lecithin in water are kept
from sticking to each other by violent out-of-plane fluc-
tuations. ' For biophysical applications it is important
to know the precise pressure law, as a function of the dis-
tance d and temperature, which keeps the layers apart.
This problem was addressed first theoretically by Hel-
frich ' who obtained

p =0.46T /ted

where rc is the curvature elastic modulus. He derived
this result from what might be called a "self-consistent
liquid-crystal approximation. " The starting point is the
curvature energy of a single layer,
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in which the effect of steric hindrance of neighboring
layers is accounted for by a bare vertical compressibility.
It is normalized by insertion of the displacement field
u(x) = [(d' —d)/d]z, and the formation of the derivative

8 = (1/AdN)d 8 Et,./t)d (5)

Here u(x,y) is the vertical displacement of the mem-
brane and ut=&tu. Helfrich then assumed that a stack
of such layers can be treated like a smectic liquid crystal
with an energy (6~ =8„+t)Y )

linearized to

E = —' tc J"d'x(8'u)' (3)
Here, 4 is the area at T=0 and N the number of layers
on top of each other. Integrating out the fluctuations
yields the free energy
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By a change of the vertical size of the system, the free energy of fluctuation exhibits a compressibility,

Bn =(1/AdN)d t)~AF(B,d)/t)d (7)

By postulating the equality of the compressibility B and the compressibility of the fluctuations Bfi, Helfrich considers
Eq. (7) as a differential equation for 8(d) =Bn(d) which is solved by

8(d) =(3tr /128)T /ted .

Reinserted into (6) this gives the free-energy density

/sf =AF/NA =(3tr2/128) T /ted = 0.23T /ted,

and a pressure law

p = —6hf/Bd = 406 T 2/dtc.

(8)

(10)
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Apart from the dependence of the result on a quadratically divergent integral with a cutoff at x/d —one could, for in-
stance, have worked with an array of layers in the z direction rather than a continuum in which case k, would become
[2 —2cos(k, d)]/d and the final answer, Eqs. (9) and (10), would change by a factor

fdk, [2 —2cos(k, d)]' /d g

jdk Ik I

du„(x)
d

—the harmonic nature of the model may be of limited value in describing the hard-core repulsion between the mem-
branes. It is therefore worth while to find out what the pressure law really is. To do this we have studied the linearized
theory (3) on a square lattice with L z lattice sites and evaluated the partition function

N
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via Monte Carlo simulations where I runs over the
discretized xy plane and YY is the lattice version of the
two-dimensional Laplacian. The constraints on the verti-
cal displacements u„account for the steric interactions
between neighboring membranes and between the outer
membranes and walls at z 0 and z=(N+l)d which
are introduced to stabilize the system for finite N
(=number of layers). In order to save computer time,
we have restricted the variables u„(x) to integer num-

bers. In the temperature range in which we are interest-
ed, this is a very good approximation as is well known
from previous studies of a similar model in the context of
defect melting. 3

By a trivial scaling argument we see that Zn can de-
pend only on (T/x) '/z/1 such that we can fix d and ir

and study only the temperature dependence. In our

simulations on 16z and 32z square lattices (with periodic
boundary conditions), we have chosen d=5, x=1, and
varied the number of layers over N 2, . . . , 5. As a typ-
ical example, we show in Fig. 1(a) our data of the inter-
nal energy

E 8 1

8(1/T) T

taken on a 32 lattice with N 3 layers. For low T= 2,
we see the roughening transition above which the dis-
crete nature of the variables u„(x) becomes irrelevant.
This is demonstrated by the fact that the energy first ap-
proaches the linear Dulong-Petit law, e =T/2, valid for
continuous Gaussian fluctuations. The deviations from
the Dulong-Petit law which appear for higher T contain
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FIG. 1. (a) The internal energy e [8/8(1/T)1[(l/T)fl of a stack of three layers on a 322 square lattice between plates spaced
4h 20 units apart (x 1). The data points are taken in a thermal cycle with 250 sweeps for equilibration and 500 sweeps for
measurements. At small T= 2, we see the roughening transition above which the discreteness of our displacement variables be-
comes unimportant. Above this transition, e follows first a Dulong-Petit law e T/2 (continuous line). For larger T there are devia-
tions —T due to the steric hindrance by the neighboring membranes. The dashed line is a guide to the eye. (b) The quadratic de-
viations in (a) plotted against T . The slope of the linear fit is 0.0025 ~ 0.0001. (c) A plot of ( —Ae)d2 for systems of N 3, 4, and
5 layers between walls spaced 20, 25, and 30 units apart where d is the distance between the inner layers. To reduce statistical er-
rors, d has been averaged with respect to both neighbors. The case N 3 was done on a 32 square lattice, the cases N 4, 5 on a
16' square lattice. The universal straight line gives the pressure law (17).
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the desired information on the pressure. First of all, we
observe in Fig. 1(b) that they grow linearly in Tz such
that the free-energy density behaves like P.2 —(a)

&/2. 2
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confirming the above theoretical expectations. Recalling
d 5, ~-1, from the slope we read off
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a 0.063 ~ 0.003. (i3)
L

This amounts to a pressure of the entire stack of layers

upon the walls,

p = 0.126T /xd3. (i4)
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We still have to make some corrections due to the fi-
nite number of layers. For this we observe that after the
fluctuations set in, the distance between the inner layers
is slightly larger than between the outer layers and the
walls. For example, for three layers at T-20 [see Fig.
-2(a)],
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This implies that a neighboring fluctuating membrane is
slightly more repulsive than a neighboring wall. When
we correct for d with this factor, the results for systems
of N 3, 4, and 5 layers fall on top of each other, as
shown in Fig. 1(c), and we find

a 0.074 ~ 0.003,

and thus for the central membrane the pressure

p (0.148 ~ 0.006)T /xd 3

(16)
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which differs in size from Helfrich's estimate (10).
In view of the small equilibrium difference between

d/ayar /ayaf and d&aycr-wall it is not surprising that the energy
carried by each membrane is almost the same as for a
single membrane between two rigid plates at distance d
(to each side) which was found before.

The distribution of the central membrane is, to a very
good approximation, a Gaussian with width o2= 6.14 at
T 20 [see Fig. 2(a)]. The width is somewhat larger
than what we can calculate from (5), which would give
the expression
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FIG. 2. (a) The distribution of the three layers on a 322 lat-
tice at T 20. They are practically Gaussian. Notice that the
distance to the walls (=4.4) is almost the same as between
the layers (= 5.6). A neighboring membrane is slightly more
repulsive than a wall placed at its mean position. (b) A partic-
ular membrane configuration cut in the middle of the 322 lat-
tice at T 20. Notice that because of our choice of lattice pa-
rameters, the area of each membrane is about 2.5 times larger
than the base area.

With u(x) vanishing at the plates, the integral becomes
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If we take, more realistically, three discrete layers, 1/k,

In(N)+ln(N+ 1) 1

2 N2

On insertion of N 3, this gives the temperature-
independent result
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has to be replaced by
- -&/2
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N+1 N+1

and a is raised to 5.17.
Notice that the area of each membrane is so rough

that it is much larger (about 2.5 times at T=20) than
the base area [see Fig. 2(b)l. This does not mean, how-

ever, that the physical membrane has such a rough area.
The above roughness is a consequence of our choice of
lattice parameters which is made possible by the scaling
properties of the energy. If we go back to physical scales
for x, T,d, we find that the area of a lecithin membrane
at room temperature is enlarged by only a factor 1.02.
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