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We construct a generalization of Widom’s model of microemulsions which permits the contact
of polar and apolar material. This is necessary to explain the behavior of certain short chain
amphiphilic systems. The same interactions have previously been proposed by Robledo, but the
partition function which he derived from these interactions and discussed in detail in his paper
(a partition function of a spin 1 Ising system) does not quite represent these interactions. We
arrive at a spin 3/2 Ising model with nearest neighbor interactions. Robledo’s spin 1 form is
recovered as an approximation whose range of validity is discussed. We particularly investigate
the limit towards Widom’s model, the progression of Winsor microemulsion, and the question
of retrograde solubility in the binary water—amphiphile subsystem, which has been advocated

by Robledo.

I. INTRODUCTION

Widom"? has introduced a lattice model of microemul-
sions in which the links of a simple cubic lattice are occupied
by water, oil, or amphiphile “molecules.” The endpoints of
these link-molecules are assigned to be either of type 4 (wa-
ter or polar head of the amphiphile) or of type B (oil or
hydrocarbon chain of the amphiphile) as shown in Fig.
1(a).Only 4 or B ends are allowed to meet at each lattice site
[Figs. 1(b), 1(c)]. This makes his construction equivalent
to an Ising model. To account for the formation of microe-
mulsions with its typical three-phase coexistence and the as-
sociated low interfacial tension, one has to introduce next
nearest neighbor interactions representing mean’® or Gaus-
sian® curvature energies of the surfactant film.

Widom? has calculated some properties of his model in a
generalized mean-field approximation using only the mean
curvature energy plus contact energies between amphiphile
molecules. The resulting picture of phase equilibria and in-
terfacial tensions is quite promising and one may hope that
the model does indeed describe some features of microemul-
sions.

It is, however, obvious that the infinite repulsions
between the unlike 4 and B ends impose constraints which
are often not met in real systems. Although the infinite re-
pulsion is quite appropriate if 4 and B represent water and a
strongly hydrophobic oil, the three other possible 4-B en-
counters (water-hydrocarbon amphiphile tail, oil-polar
amphiphile head, hydrocarbon tail-polar head of the amphi-
phile) may have much weaker repulsions. This is, for exam-
ple, witnessed by the monomer or oligomer solution of short
chain amphiphiles in pure water or oil.* Despite the absence
of micellar aggregation at the binary composition boundar-
ies, such systems may form proper microemulsions.’

Consequently, in order to account for the variation of
microemulsions with the chemical nature of its components,
it may be important to soften the infinite 4B repulsions and
to lift the energetic degeneracy of the four possible 4B en-
counters. As Robledo® has pointed out, such a generaliza-
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tion will also permit the study of the evolution of microemul-
sions from conventional solution behavior.

In the work of Wheeler and Widom,” which forms the
basis of Widom’s models, it has already been noticed that
such softened repulsions may be incorporated using an Ising
model on a decorated lattice. An explicit formulation has
been given by Huckaby, Kowalski and Shinmi.® If these
models are restricted to nearest neighbor interactions, only
three energies €,,, €45, €pp are possible and no distinction
can be made as to whether A4 refers to the polar head of the
amphiphile or to water and whether B refers to oil or the
hydrocarbon tail of the amphiphile. To differentiate the var-
ious AB (as well as A4 or BB) energies from each other,
four-spin interactions have to be introduced.

Robledo® has proposed another generalization of Wi-
dom’s model which allows for arbitrary values of all the pos-
sible pair interactions between water (4), oil (B), amphi-
phile polar head (a) and hydrocarbon tail (b). His
formulation allows one to incorporate Widom’s curvature
energies” using nearest neighbor interactions only. The price
which has to be paid for these simple interactions is an en-
largement of the spin space. It requires more than the two
local states of the spin 1/2 Ising model.

Unfortunately, Robledo’s claim that Widom’s model
and its generalization is equivalent to a spin 1 Ising model is
wrong. As we shall show in the sequel, the equivalence holds
for the spin 3/2 model only. Robledo’s spin 1 formulation
may then be recovered as an approximation.

Il. THE SPIN 3/2 ISING MODEL

In order to account for the four different types of molec-
ular constituents in a ternary water—oil-amphiphile solu-
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FIG. 1. (a) The three link molecules A4 (water), BB (oil), and AB (am-
phiphile), (b) 4 endpoints, (c) B endpoints meeting at a lattice site.
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tion, Robledo introduces the link-molecules 44 for water,
BB for oil and ab for the amphiphile, a representing its polar
head and b its apolar hydrocarbon tail [Fig. 2(a)]. All possi-
ble combinations of 4, B, a, b ends are allowed to meet at the
lattice sites. Each pair of links which are joined at a right
angle gives rise to an energy €z Where R, Se{4, B, a,b} label
the two molecular ends which meet at the central site [ Fig.
2(b)]. For R,S = a,a or b,b this construction includes Wi-
dom’s mean curvature energies.” We shall slightly generalize
this scheme to include also Widom’s contact interactions,
assigning the energies S5 (R,Se{4, B, a,b}) to the encoun-
ter of the species R and S at the central site of a straight pair
of links [Fig. 2(b) ].

Setting up the partition function, Robledo has tried to
sum directly over the two possible orientations of each am-
phiphile molecule. In doing so he apparently commits an
error apd his partition function [his Eq. (5)] ignores the
coupling between the amphiphile orientations. In order to
account for that, we are forced to leave the summation un-
done. Then the four possible occupations on each link of the
simple cubic lattice may be parametrized by a spin 3/2 vari-
able. For our purposes it will be convenient to use a mixed
spin 1—spin 1/2 representation which represents a standard
way of writing spin 3/2 models.’ Introducing separate spin
variables for the occupational and orientational degree of
freedom, we set s; (x) =0, + 1, — 1 for amphiphile, water,
oil on the link which emerges from the site x along one of the
three positive lattice vectors a; (i = 1,2,3). If 5,(x) =0, a
further spin 1/2 variable specifies the orientation of the am-
phiphile: o, (x) = + lor — 1iftheaend orthe b end of the
amphiphile is at the site x (Fig. 3).

For a compact notation and easier calculations it is a
convenient standard procedure®'® to introduce the projec-
tors onto the spin states:

PY(x)=1-s(x), PF(x)=1(x)[s(x) £ 1],
QF(x)=4[1t0:(x)], (1)

which assume the values 0 or 1 for the four exclusive link
occupations. They evidently obey the relations

PYx)+PF(x)+P (x)=1,

[PP(x)]*=P(x),

[PEX)]?=PF(x),

PF(x)P)(x) =P} (x)P (x) =0,

0 FX)+Q07 (x)=1, [QFX)]=027F(x),
20 f(x)Q; (x)=0. (2)

In terms of these variables, the partition function is

A A FIG. 2. (a) The three molecules in
O O Robledo’s model. (b) Four mole-
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FIG. 3. The four possible link occupations and the associated spin and pro-
jector values.

Z =

X4 5;(x) =0, + 1 0y(x) = + 1]
+,uZP?(X)+VZ[P,-+(X)—P,“(X)]]. (3)

Here E is the energy which will be specified subsequently. u
and v are chemical potentials which control the amphiphile
concentration () and the water-to-oil ratio (v). Notice that
the Q £ (x) do not enter in the chemical potential terms as in
general there will be no external field which allows manipu-
lation of the overall amphiphile orientation. In Eq. (3) we
have counted each water and oil occupation twice, allowing
these molecules to have the same orientational degrees of
freedom as the amphiphile. If one prefers to count each wa-
ter or oil molecule only once, one may insert a factor
P2(x) + 4P ;7 (x) + 4P, (x) for each link into Eq. (3).
Due to Eq. (2) this merely introduces a shift in the chemical
potential z —u — In 2 and an overall constant factor for Z
which has no consequences for the properties of the model.

For the purpose of writing down the interaction energy
E, it is convenient to introduce also projectors P, Q for links
which emerge from a site x along one of the three negative
lattice vectors — a,. The following definitions will facilitate
the notation:

s_;(x)=s;(x—a,),PE(x)=PF(x—a,),

P° ,(x) =P%x —a,),

o_(x)=—0,(x—17;), QF(x)=QF(x—a,).

4)

With this convention Fig. 3 is also valid if one replaces
i— —ialong witha, - — a,.

The energy may be expressed as a sum over the contri-
butions from the lattice sites. At each site, 12 pairs of bent
links and three pairs of straight links contribute to the energy

E _ _ —
sz,%v{%ﬂAAP:Pf +1BssP i Py +BusP P,

+P2(,3AaQ,4+PV+ +BsQ. P +BAbQ;Pv+
+B8¢Q:P‘V_) +P2P3(%ﬂaaQy+Q:—
+1BwQ: @ +BuQ,5 Q) ). (5

The indices u,v run over the values + 7 and all P,Q should be
read as P(x), Q(x). The factors 1/2 in front of the diagonal
Brr account for the fact that these terms are included twice
in the summation over u#v. As we want to allow for differ-
ent energies of bent and straight pairs of links, we identify

_ [eRS/kT, H#—v
RS ™ |6ps/kT, p=—+

Notice that although Egs. (3) and (5) define a nearest
neighbor spin 3/2 model, the model is unconventional in two

R,Se{A4,B,a,b }. (6)
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respects: As the spins are defined on the links of a simple ~ with
cubic lattice, an unusual nearest neighbor structure results. A (x) =P (x)+P°(x)Q = (x).
Moreover, if §zs#€xs in Eq. (6) the interactions have a # # # g

directional dependence. As the A (x) are projectors {4, (x)d, (x) =0,

The infnite repulsions of polar-apolar species in Wi- [Af (x)]*=AZ(x)}, one has
dom’s model correspond to the limit H FM (x) = H A/j (x) + H 4 ReS

BAB=BAb=ﬁBa =By =F-» N n<v M ©
and a particularly simple condition which reproduces his . 1+ s(x) AF(x)
mean curvature and contact energies is e 2 I;:I g

Bia =Bss =Bus =P =0,

1 —s(x) -

Baa =K(1+A)/KT, B,, =K(1—A)/kT (8) 4
with K and A being Widom’s rigidity and spontaneous curva- 1#
ture parameters.” As we will show in the next section, Eq. = {——+‘-Y(x—)A a (X)
(8) is not a necessary condition to recover Widom’s model sx)= 1 p 2
in the limit (7). For the general case, K and A will be given in 1 —s(x) A-(x)
Eq. (14). XA, .
lli. THE LIMIT OF WIDOM’S SPIN 1/2 MODEL Having introduced the spin 1/2 variables s(x), the partition

It is useful to see how our partition function (3) reduces function (3) reads

to the spin 1/2 form of Widom’s model in the limit (7). We ] [ ]
) Z,.., =
rewrite the energy (5) as g IxI s(x)zi 1 !Z-,! si(x)=z(), +1 az(x)z= +1
E=E +E,
1+ £ —E/KT+u 3 PYx) +v I[P (1) ~ P (0]

E/KT =B 3 {P}P; +P3(Q P} +QFP ) xe

X FEV l+s(X) I—S(X) —- }
- —— 47 ——"4 .
+PLPYQ Q7 Hx) Xl;[[ 2 A+ w (0
&=2{‘ﬁ P P} +1BpsP, P (10)
KT G, w v T 2lBE uty As we want to perform the summation over the spin 3/2
4P 2 BaQ P +Ba Q7 P;) varia;bles ;v,. ()x), o;(x), we1 rew;ite; the last factor as
+s(x —s(x _
+PLPY(BuQ,l Q) +18uQ,r 2 )}X). (9) H[—2 A5 () +—"—A4, (X>}
X0
In the limit f— co, the occupations of E, are forbidden and _
one has =H[1—+2.LX)'A,‘+ (x) +—lﬂA i (X)]
;i?oe_E‘/kT__—x,,I,LFW(X)’ XH[ 1 +;(x) A+ (%) + 1——;(x) 4 Z.-(x)}-
F,x)=A4_(x)4,(x)+4 a2 (04 7 (x), | With the aid of Eq. (4) and the shift x —x + a,, this becomes
1+s(x) + o + 1—s(x) _ 0 _
H _Z_—[Px (x)+P/(x)Q; (X)] +_2—"[P, (x) +P/(x)Q; (X)]
; 1 - a,
X[lis(%_a—')[f’?(m +PX(x)Q; (x)] +—S—(x—+——)[P.-“ (x) +P{(x)Q;* (X)]]
1+s(x) I +s(x+a,) 1—s(x) 1—s(x+a)__
= P P, (11)
H[ 2 2 r+— 2 ()

- _ B 1 |
+ 1+2s(x) 1 s(;+a,)p?(x)gi+ x) + 1 ;(x) +S(;+a,)

PXx)Q (X)].

The projectors P,Q in the chemical potentials and in the en- Iand the summation over the spin 3/2 variables s; (x), o; (x)
ergy E, in Eq. (10) may now be identified as may be performed, as they occur only in the factorized form
14+s(x) 1+s(x+a,) [Eq. (11)] in the partition function [Eq. (10)]. The result

Pr(x)= 5 ) ) is
- Z__w=[ . ]exp{—E/kT
POx)Q * (x) = li-;(x) 1—|—S(;&+a,-), s SR >
1—s(x)s(x +a,) +£‘2[1_S(X)S(X+ai)]+3vzs(x)]’
PO(x) = = (12) 2% " (13)

J. Chem. Phys., Vol. 88, No. 2, 15 January 1988



T. Hofs#ss and H. Kieinert: Microemuisions 1159

with E, [Eq. (9)] expressed in terms of the spin 1/2 Ising
variables s(x) using Eq. (12).

Employing Eq. (8), it is trivial to verify that this is in-
deed the partition function of Widom’s model. To express
Widom’s interaction parameters K, A in terms of the Bgs in
the general case, one may consider a single pair of bent links
which contributes to E, in Eq. (9). With Eq. (12), this con-
tribution may be expressed in terms of the spin 1/2 Ising
variables which reside on the sites of the lattice. As the con-
tributions which are linear in s or which couple nearest
neighbors s(x)s(x + a;) may be absorbed in the chemical
potential terms of Eq. (13), only the quadratic s terms which
couple next to nearest neighbors and the terms cubic in s are
relevant for the interaction. Comparing with Widom’s
work? or with the special case defined in Eq. (8), one obtains
that Widom’s K and A parameters are given by

K(1+A4
—(T;-_.l': aa—zﬁAa +BAA’
K(1-24)

kT =By — 285 + Bys- (14)

IV. THE LIMIT OF ROBLEDO’S SPIN 1 MODEL

Robledo’s spin 1 formulation® may be obtained by an
approximate summation over the amphiphile orientations.
For this purpose we split the energy in Eq. (5) into the first
three Q-independent terms which we call E, and rewrite the
Boltzmann factors of the Q-dependent energy part E, as

e—E./kT:H H [1+6G,.(x)],

X u<v
G, (x) =Po{K Q. P} +KpQ P
+K QP +Kp QP }
+P2P?/{%KaaQ,u+Qj— +%Kbe,u_Qv—

+ K, Q5 Q)+ (peov). (15)

Here again all projectors P,Q should be read as P(x), Q(x)
and the K are defined as

R,Se{4,B,a,b}. (16)

It is easy to verify that this does indeed properly reproduce
the Boltzmann weights of the various configurations.
Rewriting the partition function (3) as

]exp[ —E/kT+u z Po(x)

Kis = e Prs L

z= [
X,{ s5(x)=0,+1

+vx2J[Pi+(x)—Pi—(x)]]Z[P], an
zh=1 > ] II[1+G.x] (18)
xi oi(x)=+1] xu<v

we may expand the products over 1 + G and organize the
terms by the number of involved link pairs. Keeping only
single pairs, we approximate

[M[1+6.®]-1+ 3 G.x. (19)

X<V X<V

The summation over o, (x) may now be performed easily in

this lowest order approximation. Extracting an overall fac-
tor 2°Y, where N is the total number of lattice sites, this
amounts to replacing the Q i (x) in Eq. (15) by 1/2. Denot-
ing this new G by G, we approximate in a second step

zP1=11 zil][l +x,,,2<vG"”""]

X,i o(x) =
> ﬁ,w(x)]

Xu<V

=23N[1+

-2V [1+ G, (®] (20)

Xt <V

This procedure is well known from the conventional high-
temperature expansions of spin models. Both approximation
steps together amount to the summation over all disconnect-
ed link pairs on the lattice. Inserting the approximate Z
into Eq. (17) we may again rewrite the (1 4 G) factors as an
energy in the exponent of the Boltzmann factor with the
result

Z(O) — 23N [H

x,i 5;(x)=0,%1

]exp{,u ZP?(X)

+v [P (x) — P ()] -E/kT]. (21

The new energy is
E _ -
= 3 {8BuPiPS +1BuP P +BusP P

KT xf
+K,PP%+K_P;PS+KPOPO}(x), (22)
where we have
K, = —In{(e P=+e )2},
K_= —In{(e P+ e Pm=)/2},
Ko= —In{(e P +e P 4 2¢ Py /4},

This expression does indeed reproduce Robledo’s result if
one uses 85 = 01in Eq. (6).

Using P;* (x) + P (x) + P{(x) = 1, the energy may
be rewritten in a form which employs P *P ~,P *P°, P ~P°
interactions only. This allows us to read off directly the be-
havior at the binary boundaries. Absorbing linear terms
~Z2 [P (x) =P (x)], ~Z; P{(x) in the chemical
potentials and dropping an irrelevant constant, one obtains

%: S {aPPS+bP P, +cP P }HX)
X, FV

(23)

with (24)
a=K, —3Ko—3Bus
b=K_ "%Ko_%»BBB’
¢=PBup —34Bas +Bsp)- (25)

As Robledo has noticed, the temperature dependence of the
a,b couplings may give rise to an unconventional solution
behavior on the binary oil-amphiphile or water-amphiphile
boundaries. The latter, in particular, may develop an upper
miscibility gap which has been advocated by Kahlweit® as a
prerequisite for the formation of three-phase equilibria in
nonionic amphiphile-water—oil mixtures.
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Indeed, the model presented here, shares some features
with standard lattice models of binary mixtures which de-
scribe retrograde solubility: Based on an idea by Hirsch-

felder, Stevenson, and Eyring!' from 1937, the interactions

among the components of the mixture have an orientational
dependence which reflects special binding directions of the
‘molecules. As the temperature is raised, the attraction is
washed out by thermal fluctuations and a phase separation
may occur. This effect becomes apparent in the temperature
dependence of the isotropic interaction energies which re-
main after the extra orientational degrees of freedom have
been summed over. Whereas this summation may be per-
formed exactly in the decorated lattice model of Wheeler
and Andersen,'? it can only be done approximately in the
model of Walker, Vause, and Goldstein.!> They use very
successfully the lowest order of the high temperature expan-
sion which is identical to the steps leading from Eq. (15) to
Eq. (21).

It must be noticed, however, that this does not imply the
same approximation to work well also in the present model.
In fact, it was found that a large number ¢ of possible orienta-
tions had to be introduced in the lattice theories of retro-
grade solubility to explain the experimental widths of upper
coexistence curves''!3: typically ¢ = 500'% or ¢ = 5000.'""*
Consequently, one should expect that the two possible am-
phiphile directions which are included in Robledo’s approxi-
mation (g = 2), give much too narrow coexistence curves.
[We also do not agree with Robledo’s claim that the coexis-
tence curves may be asymmetrical, in the binary composi-
tion space, e.g., for the binary water—amphiphile boundary,
Egs. (21) and (24) always give a critical point at
(P ) = (P~) =4. Robledo’s claim of asymmetrical criti-
cal points results from a misinterpretation of the activity. ]
The number g of accessible orientations plays yet another
important role. The expansion parameters of the approxima-
tion [Egs. (15)-(25)] and its corrections are the Kz of Eq.
(16) divided by.q. Small values of K y s /g are not only needed
to obtain a quantitatively good approximation but are also a
prerequisite of its qualitative validity: High-temperature ex-
pansions have, in general, a finite radius of convergence and
above some critical coupling (here the K5/q), the expan-
sion breaks down and approximate forms like Egs. (21)-
(23) become useless.

Whether this happens in the present model depends on
the physically relevant ranges of the parameters Sgs. A reli-
able answer to this question requires quite elaborate calcula-
tions but some qualifications can be given more easily.
Working out the o dependence in Eq. (15), one verifies that
only the following linear combinations of the Kz enter into
the expansion parameters

Ky — Ky = Pae_ o7 Plu
K, — K, =e P e Pr
K, +Ky —2K, =e Puye P _2¢ P
K, —K,, =e Pu_e P (26)

Indeed, if these combinations vanish, the @ and b ends of the

T. Hofsdss and H. Kleinert: Microemulsions

amphiphile act identically, the energy [Eq. (5)] of the spin
3/2 model no longer depends on Q * and the summation
over o in the partition function (3) becomes trivial. The first
three expressions in Eq. (26) acquire maximal values in the
limit (7) of Widom’s model (at fixed B ,,, Bgys Ba.q» and
By )- Therefore, it is reasonable to check the validity of Rob-
ledo’s approximation in this simplifying limit. Then the wa-
ter—amphiphile, oil-amphiphile, and water—oil couplings in
Eq. (25) reduce to

a=PB4 — 3B +B..) +1iin(1 4 e Bw)

b =P _%(ﬁzw + Bes) +%1n(1 +e_(B“"—B"b)),
C— 0. 7

Notice that in this limit the spin 1 partition function speci-
fied by Eqgs. (21) and (24) cannot be reduced to the spin 1/2
form of Widom’s model. This should come as no surprise, as
the amphiphile orientation does not occur any more in the
spin 1 partition function [Eq. (21)], whereas it plays an
essential role in the setup of Widom’s model.

For this reason it remains nontrivial to judge the quality
of Robledo’s approximation even in this limit. We will re-
turn to this question in the next section where we focus on
the binary amphiphile-water and amphiphile~oil boundar-
ies, trying to gain some further insight into the role of retro-
grade solubility in these models.

V. THE WIDOM MODEL AT THE BINARY BOUNDARIES
AND RETROGRADE SOLUBILITY

Let us first investigate how the binary miscibility gaps of
the water—amphiphile and the oil-amphiphile systems arise
in Widom’s model: In the absence of either oil (BB) or water
(A4A), the amphiphile (4B) can only occur in the form of
elementary “micelles” which consist of six amphiphile links
joined together at a common site. Each micelle produces a
fixed intramicellar energy which arises from the contact of
amphiphile links at its central site. Then the total intramicel-
lar energy is proportional to the number of micelles, or
equivalently to the amphiphile concentration and may there-
fore be absorbed in its chemical potential. The remaining
intermicellar energies are due to the contact of micelles, giv-
ing rise to K(1 + A) or K(1 — 1) contributions for the wa-
ter—amphiphile or oil-amphiphile solutions (Fig. 4). De-
pending on the sign and magnitude of A (assuming K > 0),
these intermicellar interactions are either purely attractive
or purely repulsive. So in Widom’s model, these two binary
subsystems are both equivalent to a hard core gas of micelles
with either attractive or repulsive short-range interactions.
Only lower miscribility gaps will occur, unless K or A are
themselves appropriate functions of the temperature.

A fixes the spontaneous curvature of the amphiphile in-
terface and plays the role of the Bancroft parameter in Wi-
dom’s model.> For the Winsor I microemulsions at lower
temperatures, A has to be positive, favoring oil-in-water cur-
vatures. As the temperature is raised through the Winsor I1I
region of three-phase equilibria, A has to decrease to become
negative, favoring the water-in-oil curvatures of the Winsor
II microemulsions at higher temperatures. (This scheme re-
fers to systems with nonionic amphiphiles. For ionic amphi-
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FIG. 4. Contacts of two micelles in the water-amphiphile system which
contribute (a) 2K (1 + A), (b) K(1 + A) to the intermicellar energy.

philes, salinity replaces the role of temperature.) Then with
A being a monotonically decreasing function of 7, the repul-
sive contact energies K(1 + A) of micelles in the water-am-
phiphile system also go down as the temperature is raised,
giving way to an attraction for 4 < — 1 which will eventually
lead to a phase separation if — A becomes sufficiently large.
The same picture applies to the binary oil-amphiphile sys-
tem with the reverse temperature dependence, leading to
regular solution behavior in agreement with experimental
results.’

Let us now discuss the implications of this scenario for
the spin 3/2 model and Robledo’s spin 1 form:

In the last section we have argued that Robledo’s ap-
proximation should become worst in Widom’s limit [Eq.
(7)]. Using Eq. (14) to rephrase the contact energies of
water—amphiphile (a) and of oil-amphiphile (b) [see Eq.
(25)] in terms of Widom’s parameters K and A, we have

K(1+4) 1

kT + 2

K(1-2) 1
kT + 2
At the binary water-amphiphile boundary the absence of oil
implies P, (x) =0, P (x) + PJ(x) = 1. Absorbing a
linear term ~ =, ,P(x) in the chemical potential and drop-

ping an irrelevant constant, the energy (24) reduces to

EWA
o= 2a x,;va (x)P2(x).

Similarly, at the oil-amphiphile boundary, Eq. (24) reduces
to

ln(l + e+ (ﬁaa'—ﬁbb)),

~ (Bua= P

b= In(l+e (28)

(29)

E,
=2 x,l;vpg(x)zag(x). (30)

Thus for B,, = B, this produces the same amphiphile con-

tact energies as Widom’s model. Of course, the association
into micelles is absent in Robledo’s approximation. This is
evident from the fact that this approximation reduces to sim-
ple Ising models at the binary boundaries which can exhibit
only a single nonuniform phase, the long-ranged antiferro-
magnet. Still, the overall phase behavior at the binary boun-
daries is the same. Although this does not imply that this
also holds for the full ternary composition space, the result
suggests that Robledo’s approximation reproduces the mac-
roscopic phase behavior all the way from the monofunc-
tional amphiphile [vanishing expansion parameters in Eq.
(26) ] to the extremely difunctional amphiphiles of Widom’s
limit (7), provided B,, — By, is “small” enough.

However, this also implies that the unconventional tem-
perature dependence of the couplings in Egs. (23) and (25)
drops out in Widom’s limit. Indeed this property arose from
the (approximate) summation over the amphiphile orienta-
tion, a degree of freedom which is absent in Widom’s model
as there the orientation of the amphiphile is completely fixed
by its local neighbors. The variation of 4, or more generally
of K(1 + A), which is needed in Widom’s model to obtain
retrograde solubility and the progression of the Winsor
phases, implies by Eq. (14) that also some of the S5 have to
have a more complicated temperature dependence than the
simple 1/T behavior of Eq. (6). Thus the €xg, 55 cannot be
interpreted as elementary interaction energies but have to be
phenomenological functions of 7.

As the above results only apply to the limit (7) of Wi-
dom’s model, one could try to maintain the idea that retro-
grade solubility and the progression of Winsor phases arises
naturally in the spin 3/2 model or Robledo’s approximate
spin 1 form by adopting the following point of view.

Widom’s model may be unphysical as it completely ne-
glects any orientational degree of freedom of the amphiphile
molecules and a more realistic description should be ob-
tained if one drops the limit (7) and uses finite values of all
B rs- Then the summation over the amphiphile orientations
will produce approximately Robledo’s spin 1 model [Eqs.
(21) and (24)] with its temperature dependent coupling,
Egs. (23) and (25).

Such an approach does, however, pose several problems
which would have to be resolved: As we have argued in the
last section, the two orientational options for the amphiphile
molecules are likely to produce too narrow coexistence
curves in the water-amphiphile system. If this is true, one
would have to generalize the model to incorporate a larger
number of possible orientations. Furthermore, if one in-
creases the repulsion between polar and apolar groups, mov-
ing in the direction indicated by Widom’s limit (7), the feasi-
bility to obtain retrograde solution behavior is weakened
(raising the cloud point temperature and/or narrowing the
coexistence curve) and at the same time, the tendency of the
amphiphile to aggregate into micelles in oil or water is in-
creased. But this connection between micellar aggregation
and retrograde solubility is not present in real systems and
one would have to show that this interrelation disappears
with a proper choice of the interaction energies [Eq. (6)].
Finally, one should notice that if the Hirschfelder-Steven-
son-Eyring'! mechanism is the origin of the retrograde be-
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havior in aqueous amphiphile solutions (which is by no
means ascertained) it is unlikely that the amphiphile orien-
tation is the main cause of this phenomenon: In the original
proposal’! and in the detailed models and their applications
to real systems,'>** the hydrogen bonds of the water mole-
cules are the important orientational degrees of freedom.
This readily explains why oil-amphiphile systems exhibit
only regular solution behavior. Of course, the same differ-
ence between aqueous and organic amphiphile solutions
may be obtained by proper choices for the interaction ener-
gies [Eq. (6)] in the spin 3/2 model but it seems to be rather
artificial to attribute the retrograde solubility to the amphi-
phile orientation alone.

VIl. CONCLUSION

We have seen that if we want to permit the contact
between polar and apolar material, Widom’s Ising-like mod-
el generalizes into a spin 3/2 Ising-like model. This seems to
have all necessary ingredients to discuss formation of realis-
tic microemulsions that involved shorter chain amphiphile
molecules.

The spin 1 form of Robledo, who had originally pro-
posed a related generalization, has been exposed as an ap-
proximation. In the limit of very weak ampbhiphiles it be-
comes exact and one obtains the regular ternary solution
model. In the opposite extreme of infinite repulsions
between polar and apolar species, the spin 3/2 model turns
into Widom’s model. In this case the spin 1 approximation
fails to describe the micellar aggregation but still reproduces
the macroscopic phase behavior, at least at the binary water—
amphiphile and oil-amphiphile boundaries. This led us to
conjecture that the spin 1 form is a good approximation for
the macroscopic properties for all relevant couplings.

In Widom’s model the progression through the Winsor
phases of nonionic amphiphile—oil-water systems implies re-
trograde solubility behavior at the binary water—amphiphile
boundary and normal solubility behavior at the oil-amphi-
phile boundary, in agreement with experimental results.
This behavior has to be introduced by an appropriate phe-
nomenological choice for the temperature dependence of the
couplings. In the spin 3/2 model, such a temperature depen-
dence may, in principle, be generated intrinsically through
the orientational degrees of freedom of the amphiphile. This
becomes apparent in Robledo’s spin 1 approximation. How-
ever, both in the limit of Widom’s model as well as in the
regular solution limit, this property is lost. Moreover, as the

available number of amphiphile orientations is very small
and the role of water is completely neglected it is hard to
imagine that the model can properly account for retrograde
solubility behavior and the Winsor phase progression with-
out introducing the appropriate temperature dependence ex-
plicitly into the interaction energies.

In this work we have not yet presented any applications.
Some preliminary studies, however, encourage us to expect
that the model will describe the known phase diagrams>!* as
well as the recently measured correlation functions'® of mi-
croemulsions, using as an input only the temperature-, pres-
sure-, and salinity-dependent strengths of the hydrophilic
and hydrophobic parts of the amphiphiles. This will be help-
fulin determining the necessary properties of tensides which
make the three-phase regime as large as possible and place it
into the desired position in the multidimensional phase dia-
gram.
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