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Abstract

We point out that electromagnetism with Dirac magnetic

monopoles harbors an extra local gauge invariance to be called mono-

pole gauge invariance. The gauge transformations act on a gauge �eld

of monopoles FP
�� and is independent of the ordinary electromagnetic

gauge invariance. The extra invariance expresses the physical irrel-

evance of the shape of the Dirac strings attached to the monopoles.

The independent nature of the new gauge symmetry is illustrated by

comparison with two other systems, super
uids and solids, which are

not gauge-invariant from the outset but which nevertheless possess a

precise analog of the monopole gauge invariance in their vortex and

defect structure, respectively. The extra monopole gauge invariance

is shown to be responsible for the Dirac charge quantization condition

2eg=�hc= integer which can now be proved for any �xed particle orbits,

i.e., without invoking 
uctuating orbits which would corresond to the

standard derivation using Schr�odinger wave functions. The only place

where quantum physics enters in our theory is by admitting the action

to jump by 2��h� integer without physical consequences when moving

the string at �xed orbit.

�Work supported in part by Deutsche Forschungsgemeinschaft under grant no. Kl.

256. Part of this work was done during the author's sabbatical leave at the University of

Miami.
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1 Introduction

The purpose of this note is to point out that if Dirac magnetic monopoles [1]

are added to electromagnetism, the theory possesses one more independent

gauge symmetry which makes the Dirac string irrelevant and enforces the

Dirac charge quantization for any �xed particle orbit. No use is made of the

single-valuedness of particle wave functions as in other works [1, 2] which in

our path integral discussion would correspond to summing over all 
uctuat-

ing particle orbits. The only quantum feature entering is that the action is

allowed to jump by 2��h� integer when moving around the string of a �xed

particle orbit without physical consequences. With this admission, the action

is invariant under two mutually independent types of gauge transformations,

the usual electromagnetic gauge transformations of the vector potential A�

which keep the electromagnetic �eld strengths F�� = @�A� � @�A� invariant,

plus the extra gauge transformations on the monopole gauge �eld F P
�� which

describes the world lines of the magnetic monopoles [the reason for using a

superscript P will become clear below when discussing the non-gauge invari-

ant sytems after Eq. (44)]. The various gauges of the latter correspond to

various shapes of the Dirac strings emerging from the monopoles.

As usual, there exists a dual description of the system with a dual vector

potential ~A�. Correspondingly, there will be a pair of gauge symmetries,

to be called magnetoelectric and charge gauge invariance, the latter being

new. Both are completely independent of the initial electromagnetic gauge

invariance.

The fact that all these extra gauge invariances are completely indepen-

dent of the initial electromagnetic one will be illustrated by means of two

completely di�erent physical systems, elasic solids and super
uids. These

are not gauge-invariant from the outset by having no analog of the electro-

magnetic gauge invariance. They do, however, exhibit a perfect analog of the
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extra monopole gauge invariance. They also contain analogs of the magne-

toelectric and the charge gauge invariance which will demonstrate that also

these are independent of the initial electromagnetic gauge invariance.

Although the physical properties of Dirac magnetic monopoles are theo-

retically quite well understood we feel that there is still a lack of an elegant

description of the singular Dirac string which imports the monopole 
ux from

spatial in�nity. In particular, the existence of the additional monopole gauge

invariance (and its dual partner) has apparently been overlooked. We see this

as a reason why the literature displays frustrations when setting up and inter-

preting various �eld actions for studying the �eld and particle 
uctuations.

The most recent formulation [2] was restricted to a single electron-monopole

pair and made use of two electromagnetic gauge �elds depending on the rel-

ative position of the particles. In our formulation it would correspond to two

speci�c choices of gauges of our monopole gauge �eld F P
�� depending on the

position of the charge with respect to the monopole. Using these the authors

of [2] have, as they call it, \exorcized" the Dirac string, but at the cost of

having a term in the action which keeps requiring case distinctions. We �nd

that by keeping all string degrees of freedom in the action of the system as

in Dirac's original work [1], but by making full use of the the extra gauge

invariance, we can ensure the physical irrelevance of the strings in a most

natural and universal way.

2 Monopole Gauge Invariance

The classical free-�eld electromagnetic action without monopoles reads, in a

euclidean formulation (using natural units with c = 1),

A0 =
1

16�

Z
d4xF 2

��; (1)
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where F�� = @�A� � @�A� is the electromagnetic �eld strength expressed in

terms of the usual electromagnetic vector potential A�. For brevity we have

written F 2
�� for the contracted F��F��. The �eld A� is single-valued and

integrable, i.e., it satis�es the Schwartz condition

(@�@� � @�@�)A� = 0: (2)

Electromagnetic gauge transformations change

A� ! A� + @��; (3)

without changing F��. Thus � must be integrable as well,

(@�@� � @�@�)� = 0: (4)

Magnetic monopoles are line-like objects in 4-space (worldlines) along which

the observable �eld strength F obs
�� satis�es

1

2
�����@�F

obs
�� = �4�~|�; (5)

where ~|� is the magnetic current which for a monopole of magnetic charge g

is proportional to a �-function singularity on its world line �x�(�),

��(x;L) �
Z
d�

d�x�(�)

ds
�(4)(x� �x(�)); (6)

namely,

~|� = g��(x;L): (7)

To make the Dirac string invisible in Bohm-Aharonov scattering with charged

particles we shall later [below Eq. (25)] �nd the requirement that the mag-

netic charge g and the fundamental electric charge e are related by the Dirac

quantization condition
2eg

�hc
= integer; (8)
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with c = 1 in the natural units at hand.

Eq. (5) shows that F obs
�� cannot be represented as a curl of a single-valued

vector potential A� [the left-hand side would be �����(@�@� � @�@�)A�)/2].

The easiest way of circumventing this problem is by incorporating the mono-

pole worldline into the electromagnetic �eld theory is via an extra monopole

gauge �eld,

F P
�� � 4�g~���(x;S): (9)

Here ~���(x;S) is the dual,

~���(x;S) �
1

2
��������(x;S); (10)

of the �-function ��� which is singular on the world surface S,

���(x;S) �
Z
d�d�

"
d�x�(�)

d�

d�x�(� )

d�
� (�$ �)

#
�(4)(x� �x(�; � )); (11)

and S is any surface whose boundary coincides with the world line of the

monopole, i.e.,
1

2
�����@�~���(x;S) = ��(x;L) (12)

(this being Stokes' theorem in a local formulation). The precise location of

the surface is irrelevant, only the boundary line L has a physical meaning.

The surface S is the worldsurface of the Dirac string. Thus, for any line L

there are many possible surfaces S. We can go over from one S to another,

say S0, at �xed boundary L as follows

~���(x;S)! ~���(x;S
0) = ~���(x;S) + @���(x;V )� @���(x;V ); (13)

where

��(x;V ) � �����

Z
d�d�d�

d�x�
d�

d�x�
d�

d�x�
d�

�(4) (x� �x(�; �; �)) (14)

is the �-function that is singular on a three-dimensional volume V in 4-space

swept out when the surface S moves through 4-space.
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Many monopoles are, of course, represented by an appropriate additive

superposition of various gauge �elds of the form (9) with di�erent surfaces S.

Note that these gauge �elds are of an entirely new type: If we approximate

the spacetime continuum by a simple hypercubic lattice of spacing �, the

superpositions of (9) can be written as F P
�� = 4�gN��(x)=�2 where N��(x) is

an arbitrary integer-valued antisymmetric tensor �eld. It may be imagined

as living on the plaquettes of the lattice.

We are now ready to set up the electromagnetic action in the presence of

a monopole world line. It depends only on the di�erence between the total

�eld strength F�� = @�A� � @�A� of the integrable vector potential A� and

the monopole gauge �eld F P
�� of (9), i.e., it is given by [3]

A0 +Amg � A0;mg =
Z
d4x

1

16�

�
F�� � F P

��

�2
: (15)

The subtraction of F P
�� is essential in avoiding an in�nite energy density that

would otherwise be carried by the 
ux tube in F�� inside the Dirac string,

the di�erences

F obs
�� � F�� � F P

��

being the regular observable �eld strengths. Since only �elds with �nite

action are physical, the action contains no contributions from squares of �-

functions as it might initially appear.

The action (15) exhibits two types of gauge invariances. First, the original

electromagnetic one under (3), under which F P
�� is trivially invariant. Second,

there is gauge invariance under monopole gauge transformations

F P
�� ! F P

�� + @��
P
� � @��

P
� ; (16)

with integrable vector functions �P
� (x), which by (13) have the general form

�P
� (x) = 4�g��(x;V ); (17)
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with arbitrary choices of 3-volumes V . Certainly, �P
� (x) can also be a super-

position of such functions with various V 's, �P
� (x) = 4�g

P
V ��(x;V ). In this

way one obtains all functions of x whose values are integer multiples of 4�g.

To have invariance of (15), the transformation (16) must be accompanied by

a shift in the electromagnetic gauge �eld [4]

A� ! A� + �P
� : (18)

From Eqs. (9), (12), and (13) we see that the physical signi�cance of the part

(16) of the monopole gauge transformation is to change the Dirac world sur-

face withouth changing its boundary, the monopole world line. An exception

is only the submanifold of the form �P
� = @��P with �P = 4�g

P
V4 �(x;V4),

where �(x;V4) is the �-function on the four-volume V4,

�(x;V4) � �����

Z
d�d�d�d�

d�x�
d�

d�x�
d�

d�x�
d�

d�x�
d�

�(4) (x� �x(�; �; �; �)) : (19)

This does not give any change in F P
�� since it is a submanifold of the original

gauge transformations (3). In general, the �eld strengths F�� are changed

by moving the Dirac string through space, but the observable �eld strengths

F obs
�� are invariant.

The part (18) of the monopole gauge transformations expresses the fact

that in the presence of monopoles the gauge �eld A� is necessarily a cyclic

variable for which A� and A� + 2n� are identical for any integer n.

It must be emphasized that this transformation has no relation with the

original gauge transformation (3). This will become most obvious in the

counterexample to be given in Eq. (43) of a theory which exhibits the ana-

log of the monopole gauge invariance although it has no counterpart of the

original electromagnetic gauge invariance. Hopefully, the counterexamle will

eventually do away with an often-found misconception [4] that, since the

movement of the Dirac string can be achieved by a transformation,

A� ! A� + g@�
; (20)
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where 
 is the spherical angle over which the string has swept, the invisi-

bility of the string may be related to the electromagnetic gauge invariance

(together with the single-valuedness of wave functions). After all, (20) looks

precisely like (3), with � = g
. This argument, however, is invalid since

the spherical angle is a multivalued function which fails to satisfy the inte-

grability condition (4). This is why (20) is not a gauge transformation in

spite of its suggestive appearance. It cannot possibly be since it changes the

magnetic �eld along the Dirac string. Sometimes, (20) is referred to as a

\singular gauge transformation" or \general gauge transformation". Obvi-

ously, this terminology is strongly misleading and must be rejected. After all,

if we were to allow for such \singular" ( i.e. non-integrable) transformations

� in (3) we could reach an arbitrary �eld F�� starting from F�� � 0 and the

physics would certainly not be invariant under this [5].

3 Monopoles and Charge Quantization

The fundamental di�erence between the original and the monopole gauge

invariance becomes relevant if one wants to describe also electric charges via

the current interaction

Ael = i
Z
d4xj�(x)A�(x) (21)

where j�(x) is the electric current of the world line of a charged particle

j� = e��(x;L): (22)

Due to ordinary current conservation

@�j� = 0; (23)

the action (21) is trivially invariant under electromagnetic gauge transfor-

mations (3). In contrast, it can remain invariant under monopole gauge
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transformations (16), (18) only if the monopole charge satis�es the quanti-

zation condition (8). Indeed, the change of the electric interaction, and thus

also of the total action

Atot � A0 +Amg +Ael (24)

is

Ael !Ael + i4�egI (25)

where

I �
Z
d4x��(L)��(V ): (26)

This is an integer number if L passes through V and zero if it misses V

(i.e., if the string in the operation (13) sweeps across L or not). But physics

is invariant under jumps of the action by 2�� integer since this does not

contribute to any path integral since this involves only the exponential e�A=�h.

In this way we derive the charge quantization (8). It must be emphasized

that this is done here with much less quantum mechanical input than in

earlier works [1]. Our derivation requires no wave functions as, for instance,

the Refs. [1, 4]. In path integral language at hand, this would imply a sum

over 
uctuating particle orbits to be present. In our proof, however, the

orbits are allowed to remain �xed, only the strings are moved around by the

monopole gauge transformation.

4 Dual Gauge Fields

We now come to the other pair of gauge �elds which are dual to the �rst ones,

to be called magnetoelectric and the charge gauge �elds. The �rst of these

is introduced by going over from the action (15) to a �rst-order formalism,

using an independent 
uctuating �eld f�� and replacing the action (15) by
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the equivalent one

~A0;mg =
1

4�

Z
d4x

�
1

4
f2
�� +

i

2
f��

�
F�� � F P

��

��
; (27)

with the two independent �elds A� and f�� . Since F�� � @�A��@�A� we can

integrate out the �eld A� in the associated path integral (which is equivalent

here to extremizing ~A0;mg in A�). This gives the constraint

@�f�� = 0: (28)

It can be satis�ed by introducing a dual magnetoelectric vector potential ~A�

and writing

f�� � �����@� ~A�: (29)

If we also introduce a dual �eld tensor

~F�� � @� ~A� � @� ~A�; (30)

the action (27) takes the dual form

~A0;mg �
~A0 + ~Amg =

Z
d4x

�
1

16�
~F 2
�� + i ~A�~|�

�
; (31)

with the magnetoelectric source

~|� �
1

2
�����@�F

P
��: (32)

This is the current density of the magnetic monopole, as we see from (7),

(9), and (12). This current density satis�es the conservation law

@�~|� = 0; (33)

expressing the fact that monopole world lines are closed so that @���(x;L)=

0. As a consequence, the action (31) allows for an additional set of gauge

transformations which are the magnetoelectric ones

~A� ! ~A� + @�~� (34)
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with arbitrary integrable functions ~�,

(@�@� � @�@�)~� = 0: (35)

If we include the electric current (22) into the dual form of the action

(31) it becomes

~Atot =
Z
d4x

�
1

4�

�
1

4
f2
�� +

i

2
f��

�
F�� � F P

��

��
+ ij�A�

�
: (36)

Integrating out the �eld A� gives now

@�f�� = 4�ij� ; (37)

rather than (28). The solution of this requires the introduction of a gauge

�eld analog to (9), the charge gauge �eld

~F P
�� = 4�e~���(x;S): (38)

Then (37) is solved by

f�� �
1

2
�����( ~F�� �

~F P
��): (39)

The identity (12) ensures (37).

Note that when inserting (39) into (36) there appears at �rst also a term

�A =
i

8�

Z
d4x����� ~F

P
��F

P
�� (40)

When remembering the explicit forms (9) and (38) this is seen to be equal

to

�A = 4�eg
i

2

Z
d4x��������(x;S)���(x;S

0): (41)

Now, the integral is an integer as follows most easily by going to a lattice and

writing ���(x;S) in terms of the above introduced integer-valued tensor �eld

N��(x) de�ned on the plaquettes of the lattice as ���(x;S) � N��(x)=�2.
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Invoking Dirac's quantization condition (8) [which was required after Eq.

(26)] the resulting e��A=�h is obviously equal to unity and can be ignored.

The dual version of the total action (24) of monopoles and charges is

therefore

~Atot �
~A0 + ~Ael + ~Amg =

Z
d4x

�
1

16�
( ~F�� �

~F P
��)

2 + i ~A�~|�

�
: (42)

It is the same as Eq. (29) extended by the charge gauge �eld F P
��.

With the (apparently absolute) predominance of electric charges in na-

ture, however, this dual action is only of academic interest.

5 Independent Nature of New

Gauge Invariance

We now turn to demonstrating that the new monopole gauge invariance

is completely independent of the original electromagnetic gauge invariance.

The same thing will be seen to be true for the dual magnetoelectric and

charge gauge invariances. The demonstration is given by presenting two

counterexamples of systems which do not possess an original gauge invariance

at all while possesing the new gauge invariances.

Crytalline Solids First there is the three-dimensional crytalline solid with

defects. Its elastic plus plastic energy is completely analogous to (15) and

reads [3, 6]

E0;pl � E0 + Epl =
Z
d3x�

�
uij � uPij

�2
; (43)

where � is the modulus of shear (we have omitted the second elastic modulus,

for simplicity), uij is the elastic strain

uij �
1

2
(@iuj + @jui) (44)
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of the displacement �elds ui(x), and uPij is the plastic strain (this name ex-

plains the superscript P here and in (9)] which is the defect gauge �eld of

the crystal. The energy (43) is a symmetric version of the electromagnetic

action (15). It does not possess any initial gauge invariance. It is, however,

invariant under plastic or defect gauge transformations, which are analogous

to the monopole gauge transformations (16), (18),

uPij ! uPij + @i�
P
j + @j�

P
i

ui ! ui + �P
i : (45)

The physical meaning of the �rst line is to move around the irrelevant Volterra

sheets in the solid whose boundaries are the defect lines [6]. The second line

expresses the fact that the displacement �eld is a cyclic variable. On a simple

cubic lattice with a spacing normalized to 2� the displacements ui can not

be distinguished from ui + 2n� for any integer n since the identity of the

lattice constituents makes it impossible to tell where the displaced atom has

come from. In fact, after a long time self-di�usion will carry each particle

through the entire crystal so that all such memories are lost.

Also the dual gauge invariance, corresponding to the magnetoelectric one

in (34), can be exhibited in this system. One merely has to go to the �rst-

order formalism via a symmetric stress �eld �ij [analogous to f�� in (27)]

Eeq
0;pl =

Z
d3x

"
1

4�
�2
ij + i�ij(uij � uPij)

#
(46)

and �nds by integrating the path integral for the partition function over the

displacement �elds ui, the stress conservation law [3] [compare Eq. (28)]

@i�ij = 0: (47)

This is true in the absence of external body forces. The stress conservation

calls for the introduction of a stress gauge �eld �ij [compare (29)]

�ij � �ikl�jmn@k@m�ln; (48)
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which is coupled locally to the defect density [analogous to (32)]

�ij = �ikl�jmn@n@mu
P
ln; (49)

with an energy [compare (31)],

~E0;pl �
~E0 + ~Epl =

Z
d3x

"
1

4�
�2
ij + i�ij�ij

#
: (50)

Due to defect conservation [analogous to (33)]

@i�ij = 0; (51)

there is stress gauge invariance

�ij ! �ij + @i~�j + @j ~�i; (52)

[as in (34)].

Super
uids The second example is super
uid 4He. Here the fundamental

�eld is the phase of the complex order parameter 	(x) = eiux), the scalar

�eld u(x) with u and u+ 2n� being identical for any integer n. The energy

of the super
uid part of the liquid is completely analogous to (15) and (43)

[3, 7]:

E0;pl � E0 + Epl =
Z
d3x�

�
ui � uPi

�2
; (53)

where uPi corresponds to the plastic strain. It is the gauge �eld of vortex lines.

The energy (43) is a symmetric version of the electromagnetic action (15).

As (43) it does not possess any initial gauge invariance, but it is invariant

under vortex gauge transformations, which are the analogs of the monopole

gauge transformations (16), (18), (45):

uPi ! uPi + @i�
P

u ! u+ �P : (54)
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The physical meaning of the �rst line is to move around surfaces in space

across which the phase u jumps by integer multiples of 2� and whose bound-

aries are vortex lines [7]. The second line expresses the cyclic nature of the

phase �eld u.

The dual gauge invariance, corresponding to the magnetoelectric one in (34)

and (52) is found as before by going to the �rst-order formalism via a vector

�eld bi [analogous to f�� in (27) and to �ij in (46)]

Eeq
0;pl =

Z
d3x

"
1

4�
b2i + ibi(ui � uPi )

#
: (55)

The �eld bi is, in fact, the supercurrent. By integrating the path integral for

the partition function over the displacement �elds ui one �nds the conserva-

tion law of the supercurrent [3] [compare Eq. (28) and (47)]

@ibi = 0: (56)

This calls for the introduction of a gauge �eld of super
ow ai [compare (29)

and (48)] so that

bi � �ijk@jak; (57)

which is coupled locally to the vortex density [analogous to (32) and (49)]

li = �ijk@ju
P
k ; (58)

with an energy [compare (31), (50)],

~E0;pl �
~E0 + ~Epl =

Z
d3x

"
1

4�
b2i + iaili

#
: (59)

since vortex lines are closed there is vortex conservation [analogous to (33),

(51)]

@ili = 0; (60)
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which implies the stress gauge invariance

ai ! ai + @i~�; (61)

[as in (34), (52)].

Thus crystalline solids and super
uids possess the analogs of monopole

and magnetoelectric gauge invariances, the plastic and stress gauge invari-

ances, without any initial gauge symmetry which happened to be present in

the electromagnetic case. Note that the stress gauge transformations in ther

latter case have precisely the same form as the original gauge transformations

in three-dimensional electromagnetism.

6 Outlook

It is amusing that, from the observations in this paper, the initial gauge

symmetry is of a more \accidental" feature of electromagnetism than the

other two, the monopole and magnetoelectic gauge structures (i.e., the defect

(vortex) and the stress gauge structures (gauge �eld of super
ow). The latter

are of a much more universal nature appearing in many systems containing

massless and defect-like excitations. Further examples are solids with higher

gradient elasticity [6] and gravity [6, 8].

An important application of the new type of gauge invariance will be the

derivation of a simple quantum �eld theory of charges and Dirac monopoles.
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