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We present a simple continuum field theory in the continuum which imitates the confinement mechanism oftbe standard U ( 1 ) 
lattice gauge model by forming strings between opposite electric charges in a condensate of Dirac monopoles. The monopoles are 

i i described by a gauge field F ~  which under string deformation changes locally by OvA ~ -0~Au without changing physical ob- 
servables. These gauge fields are transformed into a Higgs field which gives rise to flux tubes of electric field lines. The theory 
explains the phenomenon observed in many Monte Carlo simulations, also of nonabelian lattice gauge models, that the thermal 
deconfinement transition apparently restores at the same time also the spontaneously broken chiral symmetry ofpion physics. 

It has long been known that compact QED on a 
lattice shows quark confinement for a sufficiently 
strong charge e [ 1 ]. The system contains a grand-ca- 
nonical ensemble of magnetic monopoles which con- 
dense at some critical value ec. The condensate 
squeezes the electric field lines emerging from any 
charge into a thin tube giving rise to a confining po- 
tential [ 2 ]. It is possible to transform the partition 
function to the dual version of a standard Higgs model 
coupled minimally to the dual vector potentialA, [ 3 ]. 
The Higgs field is the disorder field [ 4 ] of the mag- 
netic monopoles, i.e., its Feynman graphs are the di- 
rect pictures of the monopole worldlines in the 
ensemble. 

It is also well known that two electric charges in 
this model are connected by Abrikosov vortices pro- 
ducing the linearly rising potential between the 
charges and thus confinement. The system is a per- 
fect dia-electric. 

While there is no problem in taking the dual Higgs 
field description of quark confinement to the contin- 
uum limit [ 3 ], the same thing has apparently never 
been done in the original formulation in terms of the 
gauge field Az. The reason was the lack of an ade- 
quate continuum description of the integer-valued 

"~ Work supported in part by Deutsche Forschungsgemeinschaft 
under grant no. Kl. 256. 

jumps in the electromagnetic gauge field A~ across the 
worldsurfaces spanned by the worldlines of the mag- 
netic monopoles which in the compact lattice for- 
mulation is straightforward. Such a continuum de- 
scription has, however, recently been found. 
According to refs. [ 5,6 ] #~, a fixed set of  electric and 
magnetic charges is described by a euclidean action 

1 dax[Fa~(x) - F ~ ( x )  ]2 ~ =  ~-~ 

+i  f d4xja(x)Aa(x), ( 1 ) 

where Fz~ = 0gA~-0~Az is the usual field tensor, 

ju(x) - etSu(x; L) (2) 

is the charge distribution along closed worldlines L 
of the electric charges with ~u(x; L)  being d-func- 
tions singular on the lines L 

8u(x; L ) =  ~ dT ~-~e-z u ~ ( 4 ) ( X - - ) ~ ( ' ~ ) )  , (3) 

while F uM~ (x) is the gaugefield ofmonopoles. It is de- 
fined as follows: Let E be the worldline of a mono- 

#1 In refs. [5,6] I used the superscript P instead of M for the 
monopole gauge field F~ since there I wanted to emphasize 
the analogy with the plastic gauge field used in the theory of 
plastic deformations (described in Vol. II ofref. [4] ). 
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pole and S an arbitrary surface enclosed by L, then 
we take the 0-function on this surface, 

f Ou~(x ; S ) =  d d t r d z \  Oa Oz - 

X 0 ( 4 )  ( X - - . ~ ( O ' ,  T )  ) , (4) 

and define F u~ in terms of the dual of this 

M __ 1 F u,(x)  =4ng'~u~a~O~,(x, ~) . (5) 

This field has the property that its curl is singular on 
the boundary line/~: 

, M '/~) =4nj~ ( x ) ,  (6) ~ u ~ O  ,F  ~ ( x )  = 4r~gO~(x, 

this being a reformulation of Stokes' integral theo- 
rem in terms of distributions. The constant g is the 
magnetic charge of the monopoles which is assumed 
to satisfy Dirac' s charge quantization condition 

2eg= integer . (7) 

The euclidean quantum partition function of the 
system is found by summing, in a functional integral, 
the Boltzmann factor exp ( - ~¢) over all field config- 
urations Au, all line configurations L inj  u, and all sur- 
face configurations ~ in F~.  

It was pointed out in ref. [ 5 ] that the action ( 1 ) is 
invariant under two types of gauge transformations, 
the ordinary electromagnetic gauge transformations 

A~--,A~ + O~A , (8) 

and the completely independent monopole gauge 
transformations 

Au~Au+Ar~,  (9) 

M M i i F u~--*F u~ + OuA~ -O~A u , (10) 

which involves an arbitrary superposition of 0-func- 
tions on three-volumes V, 

A~u(x)=4ng ~ 0~(x; V),  (11) 
V 

with 

× f d t rdrd2 05. 0g~ 0ga 0 ( 4 ) ( X _ _ ) ~ ( O .  ' r , ~ ) )  
0o 0z 02 

(12) 

The invariance of the gradient term in the action ( 1 ) 

is obvious. The current term, on the other hand, 
changes under the two gauge transformations by i 
× f d 4 x j ~ O u A a n d b y i f  4 " M d xJuA u , respectively. The 
first change vanishes after a partial integration for 
closed worldlines 0u0 u (x; L)  = 0 ensuring the electric 
current conservation law 0uj~ = 0. The second change 
is irrelevant since f d4x0u(x; L)Ou(x; ~) is an inte- 
ger, counting the number of times by which the line 
L pierces the volume V. The exponential e x p ( -  ~¢) 
governing the fluctuations in the functional integral 
changes by exp ( - i. 4negn) which is a trivial unit fac- 
tor due to (7). 

Certainly, the functional integrals over A u and the 
surfaces ~require gauge fixing to remove infinite de- 
generaties. The options for gauge fixing A u are well 
known; for ~ one may fix the surface shapes in such 
a way that they are uniquely determined by their 
boundary lines/~. This was the key for constructing a 
field theory of magnetic monopoles in ref. [ 6 ]. 

It was also shown in refs. [ 5,6 ] that a duality trans- 
formation brings ~¢ to the completely equivalent form 

l 4 ~ ~ E  2 ~/= ~ f d x[F~u(x) - F u ~ ( x  ) ] 

+i  f d4x f~(x )Au(x) ,  (13) 

where f f ~ = 0 ~ - 0 ~ , 4 ~  is the dual field tensor 
Pu~ ---- ½eu~a~Fu~ and fu (x) =g0u(x; I7,) the dual cur- 
rent density singular on the magnetic monopole 
worldlines/S. Now the electric charges are described 
by a charge gauge fieM fiE which is singular on 
worldsurfaces S enclosed by the electric worldlines L: 

ff ~v (x)  = 4he. ~ ~u~a~Oa~(x; S)  . (14) 

This action is, of course, invariant under the magne- 
toelectric gauge transformations 

2~-~2~+o~2 (15) 

and under the discrete-valued charge gauge 
transformations 

E ~ E  ff u~--,F u~ + Ou.~ - O~2Eu . (16) 

In my 1982 Erice lectures I have shown how to 
transform the lattice action of a compact U( 1 ) lat- 
tice gauge model into a dual Higgs model which cor- 
responds to a Ginzburg-Landau theory of a four-di- 

169 



Volume 293, number 1,2 PHYSICS LETTERS B 22 October 1992 

mensional superconductor involving the dual vector 
potential Au. The same method can now be applied 
to the present continuum formulation. The crucial 
observation is that sums over grand-canonical en- 
sembles of fluctuating closed non-self backtracking 
worldlines of monopoles of any number and shape, 
to be denoted by 

~,exp{i~d4xf(x).4u(x)}, (17) 
{E} 

can be transformed into a disorder field theory [4] 
described by the functional integral 

f ~ t *  Nq/ 

Xexp{-~d4x(l[)~12+m2l~12+2lVI4)}, 

(18) 

where I)u---0u-g.4u is the covariant derivative in- 
volving the dual gauge field. When performing a per- 
turbation expansion of this functional integral in 
powers of the coupling constant 2, the Feynman loop 
diagrams of the ~ field provide direct pictures for the 
different ways in which the closed monopole world- 
lines interact in the ensemble. 

The mass parameter m 2 is proportional to g/g~- l 
where g~ is some critical value of the magnetic charge 
[3 ]. For g<g~, m 2 is negative and the disorder field 
~, develops the nonzero expectation I~ul whose abso- 
lute value is equal to x/[ m2l/22. From the deriva- 
tive term I ~ ~ ] 2, the dual field Au receives a mass 
term (th2/8n).~2 with th E equal to 81rg21rn21/22. 
For small enough g the penetration depth 1/thA of 
the vector potential is much larger than the coher- 
ence length 1/m of the disorder field and the system 
behaves like a dual superconductor of type II. Be- 
tween charges of opposite sign, the electric field lines 
are squeezed into the four-dimensional analogs of the 
Abrikosov flux tubes. Within the present functional 
integral, the initially irrelevant surfaces S enclosed by 
the charge worldlines L acquire, via the phase tran- 
sition, an energy proportional to their area which re- 
moves the charge gauge invariance of the action. They 
become physical fluctuating objects and generate the 
linearly rising static potential between the charges, 
thus causing charge confinement. 

This mechanism is particularly simple to describe 
in the London limit. Then the size of  the field ~ is 
frozen so it can be replaced by a constant ] V[ multi- 
plied by a spacetime-dependent phase factor 
exp[i0(x) ] and the functional integral (18) reduces 
to 

~0  e x p { -  th2  19) 

Thus the action (13) reads, in the London limit, 

l I (  
= (Fu~ - F u , )  ~LL ~ d4x ~ ~ ~E 2 

+ th___~ (o~O_gX,,)2~. (2o) 2g 2 ] 

Integrating out the 0 fluctuations in the functional in- 
tegral generates a transverse mass term 

~ 2  
m~ ~'T2 (21) 
8~Z "-u , 

~ T _ _  where A u = (gu~ - 0u0~/02)-4~ • This causes the cele- 
brated Meissner effect, now appearing in the dual su- 
perconductor. In the London limit the action be- 
comes, therefore, 

1 f 4 i ~ --E 2 1 ~2--T2 "4EL= ~ d X[a(Fu,-Fu, ) +~mAAu ] .  (22) 

Integrating out the .4u fields gives the interaction be- 
tween the worldlines of electric charges L and the 
surfaces S enclosed by them 

, d 4 2 ,  l_ d~LLint= f --\16~z 

~ E  2 ~ E  X [ (Fu.)  - 2  0uFu. ( - 02+th2)-~0affE.] 

..[_1 ~ E  2 OuFu, ( -  0 + ~ 2 ) - , j ,  

+ -~-ff ju( -O2 + th2 )-lju) . (23) 

The functional integral is now to be taken over all L 
and S fluctuations with no more gauge fixing re- 
quired. Using eu~a~ 0~ffE~ --E 2 --E 2 = 2(0~F~) -4(0uFu~)  
this becomes 
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.~LL, int= ~ d4x ~ d4x ' 

( 1 ~ 2 ~ E  r ~ E  t X~]-~n mAFu. (x )G~(x-x  )F, . (x  ) 

+½ ~E , • , OuFu~G.~A(x-x ) ju(x-x ) 

+ 4-ff~ju(x)G,~A(X--X')ju(x')) , (24) 

with the massive correlation function 

d4k . 1 (25) 
GmA(x) = J ~ e x p ( - l k x )  k2+rh2 . 

The last term is a short-range interaction between the 
electric charges. The first term gives the desired en- 
ergy to the previously irrelevant surfaces S enclosed 
by the L and thus the confining part of the potential. 
The second term is a short-range interaction between 
the surfaces and the boundary lines. 

We are now going to derive a completely equiva- 
lent formulation within the original A u field theory 
(1). The crucial observation is that in the London 
limit the monopo!es are so prolific that the discrete- 
valued monopole gauge field M Fu,(X) can be replaced 
by an ordinary continuum fieldfu~(x) [4]. The fluc- 
tuations are kept finite by the core energy of the mon- 
opole worldlines arising from the short-range part of 
the magnetoelectric interactions between the mo- 
nopoles (which is not screened as the long-range parts 
are, see the lattice derivation in my Erice lectures 
[ 4 ] ). This core energy is proportional to their length. 
It can therefore be written in the form 

1 
f d4x(½Euv,~x Ovf2r) 2 (26) 

8nm~ 

With the continuum limit of the monopole gauge field 
the action for the London limit of the dual theory be- 
comes then 

I f  ( ) ~¢= ~ d4 x i(Fu _fu.)2+ 1 2rh2A ( '  0 . f~)  2 

d4x ju(x)Au(x) . (27) + i  

Note that the monopole gauge transformations are 
now given by 

with an arbitrary vector function Au(x) [not re- 
stricted to the superpositions ( 11 ) ]. 

The equivalence with (22) is established by intro- 
ducing an auxiliary field fu, and replacing the first 
term in the brackets by 

1 2 1' ~ + ~iL.(Fu. -f~.) , 

integrating out the A u field in the functional integral 
to obtain the condition 0ufu~ = 0, solving it by the dual 
gauge field ansatz 

and integrating out thefu~ gauge field in the resulting 
action 

-(- '  ' ' 0 
4n 

(24) 

(after fixing the monopole gauge, of course). This 
renders precisely the transverse mass term Au xz in 
( 22 ) (dual Meissner effect ) which, in turn, gives rise 
to charge confinement. 

Note that while the new type of gauge invariance is 
still present for the monopoles, the irrelevance of the 
surfaces S enclosed by the charge worldlines L is de- 
stroyed in the confined phase. 

A continuum model can also be written down 
without going to the London limit. For this we take 
the action ( 1 ) and liberate the field Fu~ from its dis- 
creteness properties with the help of an arbitrary 
fluctuating auxiliary field Au by writing d as 

d =  lT~ ~ d4x(Fuv-fu,)2+i ~ d4xjuAu 

(31) 

In this expression, the fu~ fields are arbitrary fields 
but are forced by the.4u fluctuations to become proper 
monopole gauge fields. The sum over the grand-ca- 
nonical monopole worldlines turns the last term in 
this action into a Higgs model as in (18), (17) so 
that the general charge confining theory has the action 

Au~Au+Au, fu,~fu,+OuA~-O,Au, (28) 
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1 f d4x(Fa _fa~)2+ i f d4xjuA u d =  1-~n 

monopole worldlines described before by the Higgs 
field ~u. It is convenient to write 1~ (x) = (1/g)f~ (x) 
as in (6) so that (35) becomes 

"]- . - -  1 1 ~)exp[- fd4x(~f2(x)+i~(x)A~)]. (36) 

+ I ID~12+m2l ~12+21 ~14).  (32) 

This model is triple-gauge-invariant, under the two 
gauge transformations (8), (28) and under the dual 
gauge transformation 

¢- ,exp (ig,7/) ~u. (33) 

In the London limit, the Higgs partition function 
reduces again to (19) and produces a transverse mass 
term (21 ) for -4u which, together with the other Au 
term in (32), generates the gradient term o f f ~  in the 
action (27). 

It should be noted that before going to the London 
limit, the functional integral over the Higgs part of 
the partition function associated with (32) can also 
be replaced by a form more closely related to (19): 

f ~0  ~ exp ( -  r~2 f d4x[OuO(x) 

-gAu (x) - 2rcSu (x; V) ] 2) .  (34) 

The softening of the size fluctuations of the Higgs field 
Ct allows for jumps of the phase fluctuations by 2re. In 
(34) these are accounted for by the 8u-functions on 
all possible volume elements P. A quadratic comple- 
tion brings (34) to 

47rg f ~luf ~Oexp[-- fd4x\~-~m2Al2(X) 

Integrating out the O(x) field makes lu(x) satisfy 
0ul~ (x) - 0. The sum over all Penforces for l~ (x) the 
form lu = ~  (x; I2) (continuous version of Poisson's 
summation formula). The singular lines I2 are the 

Settingj u (x) = ( 1/4n)E~,~0~F~ (x) and integrating 
out the Au field we find the initial action ( 1 ), but with 
the additional core energy for the monopoles, the 
same that was introduced when deriving the Higgs 
action from the sum over all line configurations/S. 

In the London limit, the monopole lines/S are pro- 
lific so that the restriction of ju(x) to the form 
g ~  (x;/~) becomes irrelevant and F ~  (x) can be re- 
placed byf~, (x) thus establising contact with (2). 

It goes without saying that in order to apply the 
model to quarks, the electric current term in (27) has 
to be replaced by a Dirac action with the usual gauge- 
invariant coupling 

d D =  f d4x ~(Jp-~#)~u, (37) 

where J¢ is some small current mass matrix in flavor 
space: 

(38) 

The action (24) contains then a four-Fermi interac- 
tion of precisely the kind that has been transformed 
a long time ago [ 7 ] into an action of pseudoscalar, 
scalar, vector, and axial-vector mesons via a func- 
tional integral technique which we have called had- 
ronization. It reproduces successfully many of the low- 
energy properties of these hadrons, in particular their 
chiral symmetry, its spontaneous breakdown, and the 
relation between current and constituent masses of 
the quark fields. This technique has since then been 
the subject of numerous investigations and generali- 
zations (in particular by the color degree of free- 
dom). It has recently been used to describe the low- 
lying baryons and the restoration of chiral symmetry 
by thermal effects [ 8 ]. The inclusion of the surface 
energy will be an important task for the future. 

An interesting aspect of (24) is that the local part 
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o f  the four-Fermi  interact ion,  which is p ropor t iona l  
to 1 / th  2, arises by the same mechanism as the con- 
f ining potential ,  whose tension is p ropor t iona l  to 
rh 2 log(A2/r~ 2),  with A being some ul t raviolet  cut- 
off  parameter .  One would therefore predic t  that  at an 
increased tempera ture  of  the order  o f  rhA the sponta-  
neous symmet ry  breakdown,  which is caused by the 
four-Fermi  interact ion,  takes place at the same tem- 
perature  at which the potent ia l  loses its deconfine-  
ment  propert ies.  This  ini t ial ly surprising coincidence 
has long been observed in Monte  Carlo s imulat ions  
o f  lat t ice gauge theories.  

In a for thcoming publ ica t ion  [ 9 ] we shall investi-  
gate the static and  f luctuat ion proper t ies  o f  strings 
impl ied  by this te rm and  the resulting potent ia l  be- 
tween quarks. I t  is immedia te ly  obvious that  for short  
distances,  the 1 / r  t e rm in the Yukawa interact ion be- 
tween the quarks due to the second par t  in eq. (24)  
will be dominant .  As discussed in ref. [ 7 ], this ex- 
plains the success o f  the pure four-Fermi  theory as far 
as the low-lying mesons are concerned since they are 
bound  mainly  by the short-distance par t  o f  the poten-  
tial. At  larger distances,  the l inearly rising potent ia l  
due  to  the  first te rm will become most  impor tant .  
There exists, as yet, no efficient scheme for including 
it into the hadron ized  action. 

One f luctuat ion proper ty  o f  the surface S is ob- 
vious from earlier investigations o f  composi te  strings: 
The extrinsic curvature  stiffness which was intro- 
duced some t ime  ago by Polyakov  [ 10 ] and  the au- 
thor  [ 11 ] to smoothen  string f luctuat ions near  a crit-  
ical point  has, surprisingly, the opposi te  sign [12 ] 
f rom what  was expected f rom the analogy with mem- 
branes  in physical  chemistry [ 11 ]. 

It  is an impor t an t  open p rob lem to generalize the 
above London  l imi t  to the case of  colored gluons. In  
part icular ,  the existence of  three- and  four-str ing ver- 
tices must  be accounted for in a s imple way. A prom-  
ising possibi l i ty  may  open up v ia  the recently much 
discussed ' t  Hoof t  [ 13 ] hypothesis  o f  dominance  of  
abel ian monopoles  [ 14 ]. Alternat ively,  a clever as- 
s ignment  o f  color indices to the gluons and surfaces 
which in the London  l imit  avoids  in t roducing the 
complexi ty  o f  all gluonic self- interactions may  even- 
tually be found [ 15 ] #2. 

I thank M. Kiometz is  for discussions and V. 
Nesterenko for a communica t ion .  

a2 Attempts in this direction have been made by Ho~k [ 15 ]. 
This approach has, however, stability problems and does not 
possess the double-gauge invariance which is essential for the 
irrelevance of the surfaces S enclosed by the monopole world- 
lines/~. 
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