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Abstract. With the motivation of studying the diffusive propagation of massive particles in
crystals with defects, we develop a theory of Brownian motion of a massive particle, including
the effects of inertia, in spaces with curvature and torsion. This is done with the help of a
recently discoverednonholonomic mapping principle, which carries known classical equations
of motion in Euclidean space into non-Euclidean space. In particular, the known Langevin
equation in Euclidean space goes over into a Langevin equation in spaces with curvature and
torsion from which we derive, in this note, the Kubo and Fokker–Planck equations satisfied by
the particle distribution as a function of time in such spaces. The possible relevance of these
equations to particle propagation in crystals with defects is discussed.

Since defects in crystals can be described geometrically by a nonvanishing curvature and
torsion [1, 2], there is a definite need to find the correct Fokker–Planck equation for the
distribution of particles moving through such spaces. In flat space, the classical equation of
a massive point particle in a thermal environment reads

mẍit = f it + f̄ it (1)

wheref it is an arbitrary time-dependent external force andf̄ it is a stochastic force caused
by the thermal fluctuations (we use subscripts for the time variable). The stochastic force
may be modelled by a bath of harmonic oscillators of all frequenciesω as

f̄ it =
∫ ∞

0
dω λωẊ

i
ωt . (2)

The oscillator coordinates satisfy the equations of motion

Ẍiωt + ω2Xiωt = λωẋit (3)

the right-hand side arising from the back-reaction of the particle.
Solving (3) with respect toXiωt we find (2) as a functional oḟxi . Assuming an equal

couplingλω ≡
√

2γ /π for all oscillators, we obtain the stochastic differential equation

mẍit + γ ẋit − f it = ηit (4)
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whereηit is called thenoise variable. It has the Fourier decomposition

ηit = (2γ /π)1/2
∫ ∞

0
dω [Ẋiω cosωt −Xiω sinωt ]. (5)

For any given phase-space distributionρB = ρB(Ẋ,X) of Ẋiω andXiω, equation (4) becomes
a classical Langevin equation with noise averages being defined as mean values with
respect to the distributionρB . In thermal equilibrium,ρB follows the Boltzmann law
∼ exp(−HB/kT ), where the bath Hamiltonian is a sum of the oscillator Hamiltonians:
HB = ∫ dω (Ẋ2

ω + ω2X2
ω)/2. The associated noisei is Gaussian, and completely specified

by its vanishing expectation and its two-point correlation function:

〈ηit 〉 = 0 〈ηit ηjt ′ 〉 = 6γ kT δij δ(t − t ′). (6)

According to the nonholonomic mapping principle proposed in [3, 4], the infinitesimal
coordinate transformation dxi = eiµ(q)dqµ carries classical Euclidean equations of motion
correctly into spaces with curvature and torsion [5]. The geometry in this space is defined
by the metricgµν = eiµeiν and the affine connection0µνλ = eiλ∂µeiν . The torsion resides
in the antisymmetric part of the affine connection,Sµν

λ = (0µνλ−0νµλ)/2, and is a tensor
[6]. Curvature is signalled by noncommuting derivatives of the nonholonomic quantities
eiλ, the curvature tensor being given byRµνλκ = eiκ(∂µ∂ν − ∂µ∂ν)eiλ. Thus, in a curved
space,eiµ(qt ) are no proper functions, failing to satisfy Schwarz’ criterion.

Since the Langevin equation (4) is a classical equation of motion, its image under the
nonholonomic mapping dxi = eiµ(q)dqµ should be the correct Langevin equation in spaces
with curvature and torsion. The result is

m(q̈
µ
t + 0σνµq̇σt q̇νt )+ γ q̇µt − f µt = eiµ(qt )ηit . (7)

To obtain physical consequences we must find equations in which the nonholonomic
quantitieseiµ(qt ) are eliminated in favour of the well-defined geometrical quantitiesgµν(q)

and0µνλ(q). This is possible by deriving from (7) Kubo’s stochastic Liouville equation
and the Fokker–Planck equation with inertia.

For this we rewrite the Langevin equation as a system of two first-order differential
equations

q̇
µ
t =

1

m
gµν(qt )p

t
ν (8)

ṗtµ = −
1

m
(0σνµ − gσλgνα∂λgµα)ptσptν −

γ

m
ptµ + f µt + eµi ηit

≡ −F tµ + eiµηit (9)

the last equation defining a total apparent forceF tµ. This force is not obviously a vector
under general coordinate transformations, due to the presence of the connection. However,
the covariance of the Langevin equation (7) ensures the covariance of equation (9).

At each timet , the system following equations (8) and (9) is in a microscopic state
with the distribution functionδ(p − pt)δ(q − qt ). This can be thought of as a conditional
distribution function determining the distribution ofpµ andqµ for a given initial distribution
function δ(p − p0)δ(q − q0). If the initial values ofptµ and qµt are distributed with the
probability densityρ = ρ(p0, q0), the distribution function at any later timet can be found
by an average over the initial distribution

ρ
η
t (p, q) =

∫
dp0 dq0 ρ(p

0, q0)δ(p − pt)δ(q − qt ) (10)
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whereqµt = qµt (p0, q0) andptµ = ptµ(p0, q0) are solutions of the system (8), (9) with the
initial conditionspt=0

µ = p0
µ andqµt=0 = qµ0 . By taking a time derivative of (10) and making

use of both (8) and (9), we find Kubo’s stochastic Liouville equation

∂tρ
η
t = L̂(ηt )ρηt (11)

with L̂(ηt ) being the noise-dependent Liouville operator

L̂(ηt ) = − ∂

∂qµ
◦ gµν pν

m
+ ∂

∂pµ
◦ [Fµ(p, q)− eiµηit ] (12)

where the symbol◦ stands for composition of operators. It is straightforward to verify the
invariance of the Liouville operator and, hence, of Kubo’s equation with respect to general
coordinate transformations.

A solution of Kubo’s stochastic equation (11) is a noise-dependent distribution function
which determines the probability of finding a particle in an infinitesimal volume dq by

dPt(q) = dq
∫

dp 〈ρηt (p, q)〉 ≡ dq
∫

dp ρt(p, q). (13)

It follows then from (10) that
∫

dPt (q) =
∫

dP0 (q) = 1, i.e. the temporal evolution of the
probability distribution described by Kubo’s equation (11) is unitary.

Due to the locality of the noise correlation function in (6), it is possible to
derive a Fokker–Planck equation which governs the temporal evolution of the noise-
averaged distributionρt (p, q). For this purpose let us first calculate the averageϕit =
〈ηit δ(p − pt)δ(q − qt )〉. Generalizing the partial integration formula

∫
e−aη

2/2ηf (η) dη =
a−1

∫
e−aη

2/2f ′(η) = −a−1
∫
∂ηe−aη

2/2f (η) to any Gaussian noise, we find

ϕit =
∫ ∞
−∞

dt ′〈ηit ηjt ′ 〉
〈
δ

δη
j

t ′
δ(p − pt)δ(q − qt )

〉

= − 6γ kT

〈(
∂

∂pµ
◦ δp

t
µ

δηit
+ ∂

∂qµ
◦ δq

µ
t

δηit

)
δ(p − pt)δ(q − qt )

〉
(14)

where we have used the explicit form of the two-point noise correlation function (6). To
calculate the variational derivatives of dynamical variables with respect to noise in (14), we
formally integrate (8) and (9):

ptµ = p0
µ +

∫ t

0
dt ′ (−F t ′µ + eiµηit ′) (15)

q
µ
t = qµ0 +

1

m

∫ t

0
dt ′ gµν(qt ′)pt

′
ν . (16)

Taking the variational derivative of (15) we obtain

δptµ

δηit ′
= −

∫ t

t ′
dt ′′

[
δF t

′′
µ

δηit ′
− ηjt ′′

δe
j
µ(qt ′′)

δηit ′

]
+
∫ t

t ′
dt ′′eµi (qt ′′)δ(t

′′ − t ′). (17)

The Langevin equation (9) is causal which implies thatp
µ

t ′′ or qµt ′′ depend onηit ′ only for
t ′′ > t ′. This has been used to restrict the integration range in (17). The first integral on the
right-hand side of (17) tends to zero ast ′ approachest , whereas the second integral is not
uniquely determined att = t ′, since it contains a Heaviside function at zero argument. The
calculation of the contribution ofδptµ/δη

i
t to (θ) requires therefore a regularization. We

replace the delta-function in the correlator (6) by a smooth would-be delta-function function
δε(t − t ′), of width ε, satisfying

∫∞
−∞ dt δε(t) = 1 andδε(t) = δε(−t). Such a regularization
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can be achieved by retaining a weak dependence onω in the coupling constantλω. With
this regularization, we have to replaceδptµ/δη

i
t in (14) by∫ ∞

−∞
dt ′ δε(t − t ′)

δptµ

δηit ′
= eiµ(qt )

∫ ∞
−∞

dt ′ δε(t − t ′)θ(t − t ′) = 1
2e
i
µ(qt ) (18)

where we have dropped the contribution of the first integral of (17) since it vanishes for
ε → 0.

Considering analogouslyδqµt /δη
i
t ′ , we conclude that the latter variational derivative

vanishes ast ′ approachest . Averagingϕit with respect to the initial distributionρ(p0, q0)

we find the following relation∫
dp0 dq0 ρ(p0, q0)ϕ

i
t = 〈ηit ρηt 〉 = −3γ kT eiµ

∂

∂pµ
ρt . (19)

Taking the noise average of Kubo’s stochastic equation (11) and making use of (19), we end
up with the Fokker–Planck equation with inertia associated with the Langevin equation (7):

∂tρt = L̂T ρt (20)

L̂T = − ∂

∂qµ
◦ gµν pν

m
+ ∂

∂pµ
◦
[
Fµ(p, q)+ 3γ kT gµν

∂

∂pν

]
. (21)

Thus, we have eliminated the nonholonomic mapping functions in favour of the well-defined
affine connection and metric. Integrating (20) over the whole phase space we verify at the
probability conservation law: d/dt

∫
dp dq ρt = 0, where we have used the fact of vanishing

surface integrals occurring upon the integration of the right-hand side of (20).
An application of equations (20), (21) to the diffusion of particles in crystals with defects

is, unfortunately, not straightforward. The motion of a particle is sensitive to the geometry
of defects only if this particle measures distances by counting steps when hopping through
the crystal. Electrons qualify for this only in the tight-binding approximation. In this
approximation, the hopping probability which is the result of quantum tunnelling depends
very strongly on the elastic distortions of the crystal. In the above geometrical description
of the system, elastic distortions play the role of general coordinate transformations. The
Langevin equation (7) is invariant under such transformations by construction, while the
physical hopping probability is not. In order to apply the equation, such a dependence must
be included, and averaged at the end over the phonon bath. An additional problem is the
calculation of the classical limit within the tight-binding approximation. Initial attempts to
study the Brownian motion of a particle in a crystal with defects have not addressed these
issues [8].
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