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Abstract 

Recently-developed variational perturbation expansions converge exponentially fast for positive coupling constants. They 
do not, however, possess the proper left-hand cut in the complex coupling constant plane, implying a wrong large-order 
behavior of their Taylor expansion coefficients. We correct this deficiency and present a method for resumming divergent 
series in which the leading large-order behavior is incorporated. For a given set of expansion coefficients, knowledge of the 
large-order behavior considerably improves the quality of the approximation. 

PACS: 03.2O.+i; 04.2O.F~; 02.40.+m 

1. There exist various resummation procedures 
which turn divergent perturbation expansions for 

quantum mechanical energy eigenvalues into conver- 
gent approximation schemes [ 11. These procedures 
involve some variational resealing parameter to be 

optimized at each order of the expansion. The order- 
dependent resealing reduces the factorial growth of 

the expansion coefficients to an algebraic growth suf- 
ficient for convergence. The convergence was initially 

observed empirically, and proved rigorously for finite 
coupling strengths and temperatures [ 21. 

Independently of this development, Feynman and 
the author [ 31 proposed a variational approximation 

to path integrals at any temperature on the basis of a 
quasiharmonic local trial path integral. This approxi- 
mation contains an arbitrary frequency function to be 
optimized at the end, leading to very accurate results 
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for partition functions, magnetization curves, and par- 
ticle distributions [ 41. In the past years, this approx- 
imation was systematically extended to a fast conver- 
gent variationalperturbation theory for path integrals 

[ $41. In this theory, the convergence of the approxi- 
mants to the partition function is at any T better that 
at T = 0, where only the ground state energy is in- 
volved, At this point the convergence properties of the 

two approaches turned out to coincide. 
Recently, the variational perturbation theory of path 

integrals was also extended to amplitudes with an un- 
stable potential [ 7-91. One distinguishes sliding and 
a tunneling regimes. The first is accessible by the 

above resealing manipulations of the perturbation ex- 
pansions, the second requires an additional calculation 
of classical tunneling solutions. Also here the result 
is improved beyond the semiclassical limit by a sub- 
sequent optimization of a trial frequency. Related to 
this is an approximation developed for quantum parti- 
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tion functions of potentials with level splitting due to sions of the type E(g) = d’ c En x (g/d)“, with 
tunneling [ lo] (non-Bore1 summable systems). coefficents behaving for large orders like 

In the quantum mechanical systems where varia- 

tional perturbation expansions were carried to high or- 
ders, the approximations turned out to converge uni- 

formly in the coupling strength [4]. This has made it 
possible to take the formalism directly to the limit of 

infinite couling strength and find a simple direct ap- 
proximation scheme for the expansion coefficients of 

strong-coupling series [ 11,121. It was found that even 
in this limit, the approximations converge exponen- 

tially fast, with interesting superimposed oscillations, 
a result unforseen by the theoretical work in Refs. [ 21. 

This oscillatory behavior was explained only recently 

[ 131; the convergence was proved rigorously in [ 141. 

Ek=ySkP(-U)k~(Sk+@+ 1) 

c2 

+ (sk+p)(sk+p- 1) 
+... , 1 (1) 

where s is some parameter. A behavior of the type 

( 1) arises from a cut in the complex coupling constant 
plane, across which E(g) has a discontinuity 

Making use of the pleasant properties of the reex- 
pansions in the strong-coupling limit, a convergent 
approximation scheme was set up for functions with a 

known limited number of weak- and strong-coupling 

expansion coefficients [ 151. This scheme should 

prove useful in studying phase transitions in models 
of statistical mechanics, for which one often knows 
many terms of their high- and low-temperature ex- 

pansions (see, for example, the textbook [ 161 and 
the references therein). 

disc E( -/gl) G E( -lgl - iv) - E( -(g( + iv) 

= 2iIm E( -(g( - iq) (2) 

= 2~iywP(alg’l)-(P+‘)/s,-l/(ale’l)” 

x [ 1 + cl(alg’ly’“+ c*(alg’lp+. . .]. (3) 

Here a frequency scale w is introduced so that g’ = 

g/w4 becomes a dimensionless coupling constant. 
A typical example is the ground state energy E(g) 

of the anharmonic oscillator which has p = 1, q = 

3, s = 1 and a large-order behavior 

+ l/2) 

The purpose of this note is to adress another im- 

portant resummation problem which arises in the field 
theory of critical phenomena. For a $4 field theory 
near zero mass, one possesses divergent series for crit- 

ical exponents, with maximally 5 or 6 expansion co- 
efficients in 4 - E [ 171 or three dimensions [ 181, re- 

spectively. To extract from these accurate results, ad- 
ditional information is needed. This is provided by 
the large-order behavior of the expansions which is 
available from semiclassical tunneling theory [4,19]. 
There exist well-developed and sophisticated methods 
for combining power series with large-order informa- 

tion via Borel-Pad&Leroy and analytic mapping tech- 
niques [ 20,21,19]. In this note we present an alter- 
native method which combines the exponentially-fast 
convergence of variational perturbation theory with 
the information on the large-order behavior, thus lay- 
ing the grounds for a further efficient resummation of 
perturbative expressions in the quantum field theory 
of critical phenomena. 

x [l -95/72k+...], (4) 

corresponding to a discontinuity [ 221 

2iImE(-lgl -iv) = -2iw 

x [ 1 - (95/72)(3jgj/w3) + . . .]. (5) 

We shall explain the method for this particular exam- 
ple and illustrate how the information on the large- 
order behavior accelerates the convergence of varia- 
tional perturbation expansions. 

2. Following the procedure explained in [ 41, we 

take the weak coupling expansion of order IV, 

(6) 

The method is completely general and holds for any 
physical system whose quantities, for instance energy 
eigenvalues E, possess divergent power series expan- 

replace o by the identical expression involving an ar- 

bitrary trial frequency a, 

6J+ &P+w*-cl*, (7) 
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and reexpand EN in powers of g treating w2 - Cl2 as a 
quantity of order g. The reexpanded series is truncating 

alter the order n > N. The resulting expansion has the 

form 

(8) 

with 

f,,(n) =F ((p -qn)i2) (_)j (I- EJ. 
j=O 

(9) 

Forming the first and second derivatives of W,v( g, Cl) 

with respect to a, we find the positions of the ex- 
trema. The one with the smallest curvature is denoted 

by Cl,+.,. If there are no extrema, the smoothest turning 
point defines the optimal trial frequency CL,. The re- 
sulting W,(g) = W,(g, a,) constitutes the desired 

approximation to the energy. 

3. The perturbation expansion of the anharmonic 
oscillator looks like (6) with E,, = l/2,3/4, -21/8, 
333/16, -30885/128,916731/256.. . . The lowest- 

order approximation to the energy reads 

WI (g,Q) = 

Extremizing this yields 

2 ocosh [$.rccosh(g/gi)] for g > gr, 

11, = 

i 

f 

Z 
wcos [#arccos(g/gi)] forg <gi, 

(11) 

with gi = 2w3Eo/3fiE1. The result is shown in 

Fig. 1, where the approximation is seen to have a max- 
imal error of 2% for large couplings. 

For sufficiently negative couplings g < 0, the imag- 
inary part of the energy is reproduced with the same 
type of error, as shown in Fig. 2. This is the slid- 
kg regime discussed in Ref. [7]. In the tunneling 
t-egime g 5 0, however, the approximation WI (g) has 
an important qualitative deficiency: In contradiction 
to the semiclassical expression (5), it does not have 
any imaginary part in the interval g E ( -gi , 0) where 

1(1 z 0.2566. 
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Fig. 1. Plot of the ratio of the resummed ground-state energy of 
the anharmonic oscillator Wi (g) (solid curve) with respect to the 
exact energy &.(g) as a function of the dimensionless coupling 
constant g’ = g/w3 for the anharmonic oscillator. The dashed 
curve shows the old approximation WI (g) The short-dashed curve 
indicates the approximation W,(g). The dotted curve indicates 
the approximation derived in Ref. [ 151 making use of the known 
strong-coupling behavior (which is not done here) 
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Fig. 2. The reduced approximate imaginary part Im Wi (g) (solid 
curve) of the ground-state energy in comparison with the exact 
one (dotted). The curve vanishes for g E (-0.26459,0), where 
it is replaced by the semiclassical imaginary part. The dashed 
curve shows the approximation Im WI (g). The short-dashed curve 
indicates the approximation Im W3 (g) . 

By going on to the approximation Ws (g) , the energy 
at positive g is found correctly to within 0.05% (see 

Figs. 1 and 3). The same is true for the imaginary part 
at sufficiently negative g (see Figs. 2,4, and 5). Again, 
however, the imaginary part at g 5 0 is being missed, 
although the interval is now smaller: g E ( --gs, 0) 
with g3 M 0.16 

4. Let us now extend the variational perturbation 
expansion by the information on the imaginary part 
(5) derived from tunneling theory for g 5 0. First we 
consider the approximation WI (g) where the missing 
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lOOO5~ 1.0015 
I 

Fig. 3. The ratio of the approximation W<(g) to the ground-state 

energy of the anharmonic oscillator with respect to the exact 

ground-state energy E,,(g) of the anharmonic oscillator (solid 

curve). The short-dashed curve shows the old approximation 

Wj(g), the long-dashed curve the approximation obtained for 

,gs = 0.16 rather than the proper value g3 = 0.166. 
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Fig. 4. The imaginary part of the approximation W.{(g) (solid 

curve) to the ground-state energy of the anharmonic oscillator. It 

vanishes for g E (-0.166.0). where it is replaced by the semi- 

classical imaginary part. The dotted curve is the exact imaginary 

pan. The dashed curve is obtained for gs = 0.16. The short-dashed 

curve shows the old approximation W-,(g). 

interval is (-gt ,0) with gt = 4/9& M 0.2566. The 
dispersion relation for E(g) reads (with one subtrac- 
tion to ensure convergence and setting w = 1) 

E(g) = ; + 2wg 
OCidA 1 s G-th + g) 
0 

(12) 

where ei (g) is a reduced imaginary part starting out 
like 1 - (95/72) (3lgl) f. . . . Its full behavior is shown 
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Fig. 5. Plot of the ratio of the approximate imaginary part Im 

W;(g) of the ground-state energy of the anharmonic oscillator 

with respect to the exact Im &x(g) as a function of g’ = g/w3 

(solid curve). The dashed curve shows the old approximation 

W3 (g), the short-dashed curve is obtained for g3 = 0.16 rather 

than the proper value g3 = 0.166. 

in Fig. 2, (taken from [4] ). By expanding l/( A + 

g) in a power series in g, we obtain the expansion 

coefficients as the moment integrals of the imaginary 

part as a function of l/g: 

Ek = (-1)k-12w 
aSdg 1 J -- 27r gk+’ 
0 

(13) 

We now assume only the knowledge of the leading 
semiclassical imaginary part (5)) which corresponds 
to ai E 1. This is used to approximate the imagi- 

nary part in the entire regime where Wt (g) is real for 
negative g, i.e., in the interval g E (-gt ,O). There it 

contributes to the expansion coefficients 

a 

A1.o.Ek = (-l)k-Qw I & 1 
61 

_- 
2?r gk+l 

0 

(14) 

These numbers are subtracted from the full expan- 
sion coefficients Ek forming EL. For the new co- 
efficients EL, the imaginary part of WI (g) starts 

out at another value of gt - 2w3Eh/3&E;, 
for which we calculate from (14) new coeffi- 
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Table I 
Comparison between the exact perturbation coefficients, the semi- 

classical ones, and those from our variational approximation !I’; (g) 

and w:(g) by forming the moment integrals over the imaginary 

parts. An alternating sign ( - 1) ‘-’ has been omitted and w is set 

equal to I 

k En EY 

I 0.75 I. 16954520 

2 2.625 5.26295341 

3 20.8125 39.4722 

4 241.289063 414.457581 

5 3580.98047 5595.17734 

6 63982.8 I35 92320.426 1 
7 1329733.73 1800248.43 

8 31448214.7 40505587.0 

9 833541603 1032892468 

10 24478940700 29437435332 

Edisp 
k.3 

0.75 0.75 

2.505524433 2.625 

19.6119 20.8308 

236.904087 241.882 

3763.97503 3605.37152 

7 1620.4682 65010.3990 

1551691.33 137 1000.52 

33031401.4 33031401.4 

992802856 892574746 

28909365063 26655844721 

Cents EL, and so on. The iteration converges at 

g1 M 0.166. For the associated coefficients Ei M 
0.50117,0.72905, -2.24059,13.54295, -98.64571, 

we now evaluate the variational perturbation ex- 

&nsion W,l (g) . To this we add the energy associated 
with the coefficients ( 14), which is determined by 
the dispersion integral 

A;;;.E( g) = -20 
a dA 1 s - - 

2rA+g 
Cl 

6 JJ W3 
x - 

Ii- 3Ae 

-J/U&(h). 
(15) 

No subtraction is necessary. For positive g, the new 
approximation Wi (g) 3 Wi (g) + Akp,E(g) is shown 
in Fig. 1. It is seen to be better roughly by about 30% 
than the previous approximation WI (g) . 

The important qualitative advantage of the approx- 
imation W[ (g) is displayed in Fig. 2. Now the imagi- 
nary part starts out at g = 0, as it should, remains con- 
stant until g = -gt , and is approximated by Im Wi (g) 
for g < -gt . Inserting the entire imaginary part into 

the dispersion relation ( 13)) we find the expansion co- 
efficients shown in the third column of Table 1. They 
have the leading growth behavior of Eq. (4) and agree 
reasonably well with the exact expansion coefficients 
in the first column. They approach the exact coeffi- 
cients from above, since the constant imaginary parts 
at g 5 0 ignores the falloff in the true .si (g) . 

We now proceed to extend the approximation 

W3 (g), which for g > 0 and sufficiently negative 
g was accurate to within 0.02%, but which failed 

to produce any imaginary part for g E ( -gs, 0) 
with gs M -0.16. For this gs we calculate AkFEk 
from the dispersion relation ( 14), and form the sub- 
tracted expansion coefficients Ei = Ek - Akp.Ek. 

For these, W( (g) renders a new value of gs, 
etc., until the method converges at g3 z 0.166. 

The resulting subtracted expansion coefficients are 
E; FZ 0.5000477,0.74871, -2.58993,19.84402, 
-214.12062,. . . . To the associated W;(g) we add 
the contribution Aky.E(g) from the dispersion inte- 

gral ( 15), and obtain the final result W;(g). In Fig. 3 
we see that for g > 0 the new approximation is better 

than the previous one W,(g) by roughly a factor 5. 

To judge the convergence of the iteration in gs, we 
also plot W;(g) for the initial value gs z 0.16. 

The important qualitative advantage of the new ap- 

proximation is shown in Figs. 4 and 5. There is now an 

imaginary part for all negative g which ensures the cor- 
rect leading large-order behavior of the new approxi- 

mation (4). The cut in the interval g E ( -0.166,O) 
is approximated by leading term in the semiclassical 

expression (5). 
Inserting the entire imaginary part into the disper- 

sion relation ( 13)) we find the expansion coefficients 

shown in the fourth column of Table 1. They have 
again the leading growth behavior of Eq. (4)) and 
agree better with the true expansion coefficients than 

those obtained from the approximation Wi (g) . 
In the special case of the anharmonic oscillator, the 

convergence could of course be accelerated by using 
our knowledge of the correction factor for the imagi- 
nary part in the brackets of Eq. (5). In fact, if only the 
slope is known, a variational treatment allows us to 

calculate very well the entire initial tunneling portion 
of the imaginary part [ 71 (see also [ 81) . In field the- 
ories, however, the slope is usually hard to find. Since 
we want to develop methods applicable to field theo- 
ries we shall not make use of the slope information. 

Remarkably, one may deduce phenomenologically 
an initial section of the imaginary part from an eyeball 
fit to the sliding branch in Fig. 4. This could obviously 
be quite accurate and used to improve the approxima- 
tion procedure in the absence of slope information. 
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5. Since the new resummation method incorporates 
into the variational perturbation expansion the initial 
tunneling section of the left-hand cut, it correctly ac- 

counts for the leading large-order behavior of the ex- 

pansion coefficients. This should prove useful in cal- 

culations of critical exponents in quantum field the- 
ory, where the tip of the cut is accessible by tunneling 

theory. It will be interesting to see whether the new 
resummation method will help improving upon the re- 

sults of traditional resummation theory [ 20,2 1,191. 
Certainly, any available knowledge of the strong- 

coupling behavior can be used to obtain better approx- 
imations with the help of the procedure developed in 
Ref. [15]. 

The present method can also be used to improve 

upon our earlier results [lo] on the non-Bore1 
summable double-well potential. The connections 
with the present problem is a consequence of the 

scaling relation 

E(g, 0) = wE(g/w3, 1) (16) 

first noted by Symanzik, which links the double well 
with the anharmonic oscillator at imaginary coupling 

constant. 

References 

[I] R. Seznec and J. Zinn-Justin, J. Math. Phys. 20 ( 1979) 1398; 

T. Barnes and G.I. Ghandour, Phys. Rev. D 22 ( 1980) 924; 

J. Killingbeck, J. Phys. A 14 (1981) 1005; 

B.S. Shaverdyan and A.G. Ushervetidze, Phys. Lett. B 123 

(1983) 316; 

H. Mitter and K. Yamazaki, J. Phys. A 17 (1984) 1215; 

PM. Stevenson and R. Tarrach, Phys. Lett. B 176 (1986) 

436; 

PM. Stevenson, Phys. Rev. D 30 (1985) 1712; D 32 (1985) 

A. Okopinska, Phys. Rev. D 35 (1987) 1835; D 36 ( 1987) 

2415; 

W. Namgung, PM. Stevenson and J.F. Reed, Z. Phys. C 45 

1389; 

(1989) 47; 

U. Ritschel, Phys. Len. B 227 (1989) 44; Z. Phys. C 51 
(1991) 469; 

M.H. Thoma, Z. Phys. C 44 (1991) 343; 
1. Stancu and PM. Stevenson, Phys. Rev. D 42 (1991) 2710; 

R. Tarrach, Phys. Len. B 262 (1991) 294; 

H. Haugerud and F. Raunda, Phys. Rev. D 43 ( 1991) 2736; 

A.N. Sissakian, I.L. Solivtosv and O.Y. Sheychenko, Phys. 

Lett. B 313 (1993) 367. 
[2] I.R.C. Buckley, A. Duncan and H.F. Jones, Phys. Rev. D 47 

( 1993) 2554; 

[31 

[41 

[51 

161 

171 

[81 
[91 

1101 

IllI 

(121 

[I31 

[I41 

[I51 

[I61 

[I71 

[I81 

[I91 

[201 

[211 

[221 

C.M. Bender, A. Duncan and HF. Jones, Phys. Rev. D 49 

see also B.G. Nickel, in: Phase Transitions: Cat&se, 1980, 

(1994) 4219; 

A. Duncan and HF. Jones, Phys. Rev. D 47 (1993) 2560; 

ed. by M. Levy, J.-C. Le Guillou and J. Zinn-Justin, Plenum, 

R. Guida, K. Konishi and H. Suzuki, Genova preprint GEF- 

Th-711994, hep-th/9407027; 

N.Y., 1980. 

C. Arvanitis, HF. Jones and C.S. Parker, Imperial College 

London preprint, 1995 (hep-th/9502386). 

R.P Feynman and H. Kleinert, Phys. Rev. A 34 ( 1986) 5080. 

See Chapters 5 and 17 in the textbook: H. Kleinert, Path 

Integrals in Quantum Mechanics, Statistics and Polymer 

Physics, World Scientific, Singapore, 1995. 

H. Kleinert, Phys. Lett. A 173 (1993) 332. 
H. Kleinett and H. Meyer, Phys. Lett. A 184 (1994) 319. 

H. KIeinert, Phys. I&t. B 300 ( 1993) 261. 

R. Karrlein and H. Kleinert, Phys. Len. A 187 (1994) 133. 
H. Kleinert and I. Mustapic, Berlin Preprint February 1995 

(quant-ph/95MO27). 

H. Kleinert, Phys. Lett. A 190 ( 1994) 131. 
W. Janke and H. KIeinert, Phys. Rev. Len. (in press), (quant- 

ph/9502019). 

W. Janke and H. Kleinert, Phys. Lett. A 199 (1995) 287. 

H. Kleinert and W. Janke, Phys. Lett. A 206 (1995) 283. 

R. Guida, K. Konishi and H. Suzuki, University of Genoa 

preprint, 1995 (hep-th/9505084). 
H. Kleinert, Variational Interpolation between Weak- and 

Strong-Coupling Expansions, Berlin preprint, 1995 (quant- 

phys/9507007), Phys. I&t. A (in press). 

H. Kleinert, Gauge Fields in Condensed Matter, Vol. I 

Superflow and Vortex Lines, pp. l-744; Vol. II Stresses and 

Defects, pp. 744-1443; World Scientific, Singapore, 1989. 
H. Kleinert, J. Neu, V. Schulte-Frohlinde, K.G. Chetyrkin. 

and S.A. Larin, Phys. Lett. B 272 (1991) 39; 

H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. B 342 

( 1995) 284. 

B.C. Nickel, D.I. Metion and G.A. Baker, Compilation of 

2-pt. and 4-pt. graphs for continuous spin models, Univ. of 

Guelph report, 1977; 

G.A. Baker, Jr., B.G. Nickel and D.I. Merion, Phys. Rev. B 

17 (1978) 1365; 

J. Zinn-Justin, Quantum Field Theory and Critical 

Phenomena, Clarendon Press, Oxford, 1990. 

S. Graffi, V. Grecchi and B. Simon, Phys. Lett. B 32 (1970) 

631; 
S. Graffi, J. Math. Phys. 14 (1973) 1184; 

S. Graffi and V. Grecchi, Commun. Math. Phys. 35 ( 1974) 

235; J. Math. Phys. 19 (1978) 1002. 
E. LeRoy, Ann. Fat. Sci. Univer. Toulouse 2 (1900) 317; 

G.A. Baker, Jr., B.G. Nickel and D.I. Merion, Phys. Rev. B 

17 (1978) 1365. 
J. Zinn-Justin, J. Math. Phys. 22 (1981) 511. 

This paper gives a correction factor to the imaginary 

part [I - (96/72)(31gj) - (13259/10368)(3jg1)’ - 
(8956043/2239488)(31gl)3 - 17.80162255(3jgl)4 - 

98.64510840(31g1)5 - 643.7460486(31g1)6 - 1. 


