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Relations between Markov Processes via Local Time and Coordinate Transformations
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The Duru-Kleinert method of solving unknown path integrals of quantum mechanical systems by
relating them to known ones does not apply to Markov processes since the Duru-Kleinert transform
of a Fokker-Planck equation is, in general, not a Fokker-Planck equation. In this Letter, we present
a significant modification of the method, based again on a combination of path-dependent time and
coordinate transformations, to obtain such relations after all. As an application we express unknown
Green functions for a one-parameter family of Markov processes in terms of the known one for the
Schenzle-Brand process. [S0031-9007(96)02010-8]

PACS numbers: 02.50.Ga

The stochastic theory of Markov processes [1,2] ex-of this form invariance, different gquantum mechanical sys-
plains many phenomena where fluctuations play a sigtems can be related to each other.
nificant role. Prominent examples are provided by the Some years ago, the Duru-Kleinert (DK) method was
emergence of self-organization [3], the occurrence oklso applied to the stochastic theory of Markov processes
quantum dissipation [4], and the appearance of stochast[¢1,12], thereby relating the Fokker-Planck equation of
resonance [5]. In accordance with their wide range of apMarkov processes to other stochastic differential equa-
plicability there exist various powerful solution methodstions. The latter had, however, an important disadvan-
for Markov processes based either on the global charatage: They were no longer Fokker-Planck equations so
terization of the probability evolution by the Onsager-that the DK transformations did not link different Markov
Machlup path integral or on its local equivalent, theprocesses. This defect will be eliminated in the sequel by
Fokker-Planck equation. Examples for the former are the significant modification of the DK method.
small noise expansion and the adiabatic elimination proce- Consider a one-dimensional Markov process of a single
dure of fast random variables, for the latter the eigenfuncrandom variabler, whose conditional probability density
tion expansion and the continued-fraction method applied(x, xo; t) possesses the initial condition
to periodically driven systems [6]. Ly _

In this Letter we demonstrate the use of path-dependent P(x,x0;0) = 8(x = xo) (2)
time transformations, which have become a powerful tooknd obeys the Fokker-Planck equation for 0,
for solving quantum mechanical problems since Duru 9,P(x, x0: 1) = H(x)P(x,x0:1). 3)
and Kleinert's original work on the path integral of the R
hydrogen atom [7,8]. In one dimension with coordinateHere H(x) denotes the infinitesimal time evolution op-

g, the crucial time transformation has the form erator,
dt e — — 9 10 .
- = 1(q), (1) H(x)e = 8x[K(x).] +5 8x2[D(x) I, @

wheref(q) is some positive but otherwise arbitrary func- containing the drift coefficientk(x) and the diffusion
tion. Such a transformation does not change the standafpefficientD(x). Then the Laplace transform
formulations of quantum mechanics, a form invariance T

which has recently been emphasized in [9,10]. Because Gx,x0; E) = [0 dre "' P(x, x03 1) (5)
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represents a fixed-energy Green function solving the time- DP(¢) = f(¢)D"(q). (17)
independent equation

[AY(x) — EDGD(x,x0; ED) + 8(x — x0) = 0. (6)

We have added a superscri@) to emphasize that this X(q;EY) = f(q)[lD(l)(q)
equation describes the initial stochastic system from 2
which we depart.

It is well known [6] that the Fokker-Planck equation re-
mains form invariant under arbitrary invertible coordinate
transformations

and the additional term

F'(q; EV)

F(q; EW)
F'(g;EY)

F(q; EW)

+ E(q; EY) — Eﬂ, (18)

+ KV(g)

x = x(q), (7)  where
where the Green function transforms as

(1 @y = 4+ @) @)
¢ _(q’qO’E _) - (Q)G (x(9). x{qo): E7) . (8) ~ Equation (14) has the above-mentioned defect of not
The different signs take into account whether (7) ispeing a Fokker-Planck equation, due to the presence of
monotonously increasing or decreasing. In fact, wehe additional terrrv((q;E<i)). This term can, however,
conclude from (4) and (6) that'" (¢, qo; EV) satisfies pe removed by choosing any functior&?(E®) and
the Fokker-Planck equation F(g; EW) which solve the differential equation
[A"(q) — EY1G"(q, q0:EY) + 8(q — q0) =0, (9)

where the new infinitesimal time evolution operator

E(qg; EV) = EVED)/f(q). (19)

X(g:EY) = 0. (20)

Note that although this equation is of the same complexity

2
HY(g)e = _i[K(D(q).] + 18_2[D<1>(q).] (10) as the initial Fokker-Planck equation, onlyparticular
dq 2 dq solutionis required, so that labor will definitely be saved
contains the drift and diffusion coefficients by our method.

An alternative procedure which avoids solving the dif-
(1) L x"a) ferential equation (20) is by leaving the time transfor-
KV (q) = K"(x(q) = 575, 7 D"V (x(g)), (11) N y 9

x'(q) 2x3(q) mation function f(¢) open, choosing some trial func-
| tion F(g; EV), and calculatingE (¢; EV) from (18) with
pW(g) = ,Z—D(i)(x(q)). (12) (20). If this happens to be factorizable as in (19),
x"(q) the g-dependent prefactor may be chosen as the transfor-

i i (i)_
These coordinate transformations are of standard use {Ha“on functionf(q) and theE™-dependent one as the

i ®O (g
finding unknown solutions from known ones [13,14]. ehergy functions™ (E™). . N .
Let us now supplement these transformations by the n'?nfltgﬁ[;rr:{()rzi?#ggé;he If#r:ﬁgoﬁr(gfﬁ) l'sosiltﬂﬂzgt tt(?
path-dependent time transformation (1). First, we proceea b )

in analogy with Ref. [8], Chap. 12, and change the Greer?'atISfy
function according to lim F(g; EV) =1 (21)
. 0
~ F(q0; EV) "
GV(q, q0; EV) = flq) 22" o . .
(9. q0: E7) = f(a) F(q; EM) identically in ¢, so that the energy functio&™(E®)
x GD(q,q0; EP(ED)), (13) obeys
where F(¢; EV) and EO(EWV) are as yet unknown trial lim EDED) = 0. (22)
functions. Applying (9) with (10), we find the equation EV=0
for the final Green function Only under this condition do initial and final Green

[AD(g) — EDED) + X(g: EV)] x functions possess proper stationary limits

. (i) i . . .
G(q.q0: EVED)) + 8(g—gq0) = 0,  (14) p () = lim EVGY(x, x; EV), (23)

with the infinitesimal time evolution operator f) . ) (D) ®
pslg) = lim ETGT(q. q0: 7). (24)

R 2
A0(g)e = —-L[K(g)e] + 5 - [DO(g)e]. (15)
dq 2 dq From (8), (13), and (21)—(24), we read off a relation

containing the transformed drift and diffusion coefficientsPetween them

(e () . ) (p@iny7-1
KO) = @) K@) + TEET DY) | el = = D] LEE L0
566

(q(x)), (25)
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which guarantees the normalization of the pobability: F(g; EV) = "), (34)
if the parameterg@ andy are related according to
f
[pst (x)dx = f pi(q)dg = 1. (26) 2aB + vy =0. (35)

An interesting feature of the present method is that itThe fUﬂCUOﬂ S(EW) and the energy relationz® =
permits us in the stationary limit to relate the probability £”(E®") are determined by
distributions of twoarbitrary Markov processes to each

i)y — i)y ()
other. Given initial and final drift and diffusion coeffi- S(E™) = (B/a")E™, (36)
cients we satisfy (12) and (17) by choosing the time trans- 0 " @
formation function as O ein _ QY ap DY 0V )
EWEW) = —2a<i)2E + -0 + ) EY. (37)

f(q) = x*(q)D"(q)/DV(x(9)). (27)
Note that (34), (36), and (37) satisfy the correct limits (21)
Using this together with (11), (12), (16), (17), and (21), and (22).

we obtain the desired coordinate transformation from the The transformed drift and diffusion coefficients then

differential equation follow from (11), (12), (16), and (17) as
X(q 2K(‘ (%) q 2K(f)(Z])
! i () = 40, — pH, —2aB+1 () = o) 42
xl9) = CeXpU DOF) f 4q D(f)(q)i|’ KD(g) = ag — bWg72*F*1, DO(g) = 0V¢?,
(28) (38)
. . . ! . where
where C is an integration constant. The final stationary
solution @ Org® —
PN A [E - £-1 1}, (39)
" dg 2kD(g) - B BLaY 2B
pst (Q) D(f)( ) D(f)(q) ( )

b0 = —aV/p. Q" =0V/p  (40)

These relations supply us with solutions of the Fokker-

is then related to the |n|t|al one

‘ K0 (3
ps(i)(x) (1) ;{/ d~ ® Sx)} (30) Planck equation for a one-parameter family of Markov
D ( ) DY(x) processes (32) if we specialize
ggtigyS), (27), and (28), if the normalization constants B=—1/a. (41)
i) gp®pi Then the final Markov process (38) for a random variable
NY dEW(EW)
~NO  gE® . (31) 4 € (0,%) coincides with the well-understood Schenzle-

Brand process [14], which is a standard model in non-
In order to demonstrate the applicability of the newlinear optics and chemical reaction dynamics. It can be
transformation method, we consider a Markov processlerived as an approximation to a number of different pro-
with a multiplicative noise for a random variablke €  cesses by adiabatically eliminating fast random variables
(0, ), where the drift and the diffusion coefficient dependin the limit of large external fluctuations. For instance,
on an arbitrary parameter > 0 as follows: the Schenzle-Brand process describes the electrical field
KD(x) = aVyx — p0y2a+1 DO(x) = @i)x2a+2, near a Ia}ser threshpld, the multiplicative noise being due
to inversion fluctuations.
(32)  with standard methods [6], the Fokker-Planck equation
Performing a transformation of the random variable (7)of the Schenzle-Brand process with (38) and (41) can be

and the time (1) with transformed to the Schrddinger equation of the Morse
(@) = qf @) = q" (33) oscillator. As the quantum mechanical Green function
4 E Ha 1 of this system has been explicitly calculated from path

the associated differential equation (20) with (18) isintegrals [15,16], the Green function of the Schenzle-
solved by a function | Brand process is known:

k(f) 1
S+ 17— 5-1) () 70— b(f)(2—2)
() L)y — 2 4 2007 000 _5/5 —(@®/QP)—1/2 qgo — ¢
G40 BT = T ar( 1 xn) a0 TN 200
b g2 b0 gd
X {@)(6] = q0)Wi/a+a0/200 k1) ( 00 >M1/4+a /200, k<f>/2< 00 ) + (g < 6]0)} (42)

567



VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

wherek®) denotes the abbreviation With the help of the transformation formulas (8) and (13),
® - - and taking into account (33)—(41), we find from this the
kY = \/(a“)/Q(” = 1/2)?2 + 2EW/Q® . (43)  unknown Green function of the initial Markov processes

(32):
|
T(ers) a1 1
(i) ey — " M2aaW) —akV—a—1_akD+a R
G (x,xo; EV) ZOT(1 + k(i))x X0 eX[{ 2aQ(i)<x3a x2a>:|
a a®
X {(9(360 - X)ka/zﬂ/zE<i>/2aa<i>,k<i)/2(W)Mk<i)/2+1/2E(i)/zaaﬁ),k(i)/z(W> + (x < xo)},
(44)
I .
with E) = EO(ED), (50)
kD = b0 /aQW + 1/2a. (45)  as long as: is bounded by
Furt'hermore, we obtain from (24), (42), and (43) the n=a"/200 - 1/4. (51)
stationary solution of the Schenzle-Brand process (38) and
(42) 2(ﬂ>)a'r>/Qm,l/2 ® The evaluation of (51) requires the use of relations (37)
20y = 227 002 exp[_ b q2i| and (39)—(41).
; r(% - %) om ’ In summary, we have shown that a combination of local

(46) time and coordinate transformations opens new possibili-
which is mapped via (25) and (33)—(41) to the initial _ties of relating different Markov processes. By extend-
Markov process (32), yielding ing the method to several random variables, we expect

many useful applications. Furthermore, we hope that this

0 zcv(%z“)”“)/C“Qm“/zo‘+1 method might help to solve non-Markov processes [19].
psi (x) = ) 1 Let us finally mention that the local time transformation
F(W tat D (1) is nonholonomic in space-time, i.e., it carries a

@) flat space-time into a space-time with nonzero torsion
W] (47)  and curvature [9,10]. If we allow for purely spatial
The analytic properties of the Green functionsnonholqnomic changes of coordipates, we can also rgach
GD(x,x0: EV) and G¥(g,q0;E®) in the energies spgce-t!me geometries with spa_tlal curvat_ure and torsion.
E® and E® determine the spectra of the infinitesimal Thls 'WI|| enable us to descn!oe technically relevant
time evolution operatorslfl(i)(x) and ﬁ(f)(q) (Ref. [8], diffusion processes in crystals with defects [20—23].

Chap. 9). From (42)—(45) we deduce that the initial
multiplicative process (32) has only a discrete spectrum,
whereas the final one, (38) and (41), contains both a *Electronic address: pelster@physik.fu-berlin.de
discrete and a continuous branch. Such differences be- 'Electronic address: kleinert@physik.fu-berlin.de
tween spectral types were encountered before in quantum  URL: http://www.physik.fu-berlin.dékleinert
mechanical DK transformations: The hydrogen atom has[1] R.L. Stratonovich;Topics in the Theory of Random Naise
discrete and continuous states, whereas the DK-equivalent General Theory of Random Processes, Nonlinear Trans-
oscillator has only discrete states [7,8]. The spectra are ~formations of Signals and Noise (Gordon and Breach,
usually related by a Sommerfeld-Watson transformation ., NeW York, 1967), Vol. 1, 2nd printing. .
of the Green functions (see [17] and Ref. [8], Chap. 14). [2] N.G. van Kampen Stochastic Processes in Physics and
. . Chemistry(North-Holland, Amsterdam, 1981).
The discrete levels closest to zero are in a one-to-r5

. ] H. Haken, Synergetics—An Introduction, Nonequilib-
one correspondence [9,18]. For stochastic systems, these” jym phase Transitions and Self-Organization in Physics,

levels rule the approach of the conditional probability Chemistry and BiologySpringer, New York, 1983), 3rd

— () N_2qp—
w x—200/0)-2a 2exp[_

density to its stationary limit. In our example, the revised and enlarged edition.
associated poles of the initial Green function (44) and (45)[4] U. Weiss,Quantum Dissipative Systeneries in Modern
E,(j) _ —2aa(i)n, n=01,... (48) fggzd)erlfsdzMatter Physics (World Scientific, Singapore,
are mapped to the corresponding final ones of (42) and[5] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni,
(43) Rev. Mod. Phys. (to be published).
Eff) _ 2Q(f)n2 n (Q(f) _ 2a(f))n (49) [6] H. Risken, The Fokker-Planck Equation—Methods of

Solution and ApplicationgSpringer, New York, 1988),
by 2nd ed.

568



VOLUME 78, NUMBER 4 PHYSICAL REVIEW LETTERS 27 ANUARY 1997

[7] I.H. Duru and H. Kleinert, Phys. Let84B, 185 (1979); [16] I.H. Duru, Phys. Rev. 28, 2689 (1983).

Fortschr. Phys30, 401 (1982). [17] H. Kleinert and I. Mustapic, J. Math. Phy33, 643 (1992).
[8] H. Kleinert, Path Integrals in Quantum Mechanics, Sta- [18] K. Zeile, A. Pelster, and A. Wunderlin, Phys. Lett.1X9,

tistics and Polymer Physic@Vorld Scientific, Singapore, 161 (1993).

1995), 2nd ed. [19] P. Hanggi, Z. Phys. B0, 85 (1978).

[9] A. Pelster,Zur Theorie und Anwendung nichtintegrabler [20] H. Kleinert, Gauge Fields in Condensed MattebDiffer-
Raum-Zeit-Transformationen in der klassischen Mechanik ential Geometry of Defects and Gravity (World Scientific,

und in der Quantenmechan({shaker, Aachen, 1996). Singapore, 1989), Vol. Il, part IV.
[10] A. Pelster and H. Kleinert, Proceedings of the 5th[21] R. Bausch, R. Schmitz, and L. A. Turski, Phys. Rev. Lett.
International Conference on Path Integrals from meV to 73, 2382 (1994).
MeV, Dubna, 1996 (to be published). [22] H. Kleinert and S.V. Shabanov, “Theory of Brownian
[11] Ph. Blanchard and M. Sirugue, J. Math. Phg8, 1372 Motion of Massive Particle in a Space with Curva-
(1981). ture and Torsion and Crystals with Defect,” (to be
[12] A. Young and C. DeWitt-Morette, Ann. Phys. (N.Y1B9, published); http//www.physik.fu-berlin.d¢ ~kleinert/
140 (1984). kleiner_re234 brcurtor.html.
[13] H. Haken, Z. Phys. B4, 321 (1976). [23] R. Bausch, R. Schmitz, and t.A. Turski, Z. Phys.9B,
[14] A. Schenzle and H. Brand, Phys. Rev28, 1628 (1979). 171 (1995).
[15] P.Y. Cai, A. Inomata, and R. Wilson, Phys. LeB6A,
117 (1983).

569



