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Relations between Markov Processes via Local Time and Coordinate Transformation
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The Duru-Kleinert method of solving unknown path integrals of quantum mechanical systems by
relating them to known ones does not apply to Markov processes since the Duru-Kleinert transform
of a Fokker-Planck equation is, in general, not a Fokker-Planck equation. In this Letter, we present
a significant modification of the method, based again on a combination of path-dependent time and
coordinate transformations, to obtain such relations after all. As an application we express unknown
Green functions for a one-parameter family of Markov processes in terms of the known one for the
Schenzle-Brand process. [S0031-9007(96)02010-8]
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The stochastic theory of Markov processes [1,2] ex
plains many phenomena where fluctuations play a si
nificant role. Prominent examples are provided by th
emergence of self-organization [3], the occurrence
quantum dissipation [4], and the appearance of stochas
resonance [5]. In accordance with their wide range of a
plicability there exist various powerful solution method
for Markov processes based either on the global chara
terization of the probability evolution by the Onsager
Machlup path integral or on its local equivalent, the
Fokker-Planck equation. Examples for the former are th
small noise expansion and the adiabatic elimination proc
dure of fast random variables, for the latter the eigenfun
tion expansion and the continued-fraction method applie
to periodically driven systems [6].

In this Letter we demonstrate the use of path-depende
time transformations, which have become a powerful to
for solving quantum mechanical problems since Dur
and Kleinert’s original work on the path integral of the
hydrogen atom [7,8]. In one dimension with coordinat
q, the crucial time transformation has the form

dt
ds

­ fsqd , (1)

wherefsqd is some positive but otherwise arbitrary func
tion. Such a transformation does not change the stand
formulations of quantum mechanics, a form invarianc
which has recently been emphasized in [9,10]. Becau
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of this form invariance, different quantum mechanical sy
tems can be related to each other.

Some years ago, the Duru-Kleinert (DK) method wa
also applied to the stochastic theory of Markov process
[11,12], thereby relating the Fokker-Planck equation
Markov processes to other stochastic differential equ
tions. The latter had, however, an important disadva
tage: They were no longer Fokker-Planck equations
that the DK transformations did not link different Markov
processes. This defect will be eliminated in the sequel
a significant modification of the DK method.

Consider a one-dimensional Markov process of a sing
random variablex, whose conditional probability density
Psx, x0; td possesses the initial condition

Psx, x0; 0d ­ dsx 2 x0d (2)

and obeys the Fokker-Planck equation fort . 0,

≠tPsx, x0; td ­ ĤsxdPsx, x0; td . (3)

Here Ĥsxd denotes the infinitesimal time evolution op
erator,

Ĥsxd≤ ­ 2
≠

≠x
fKsxd≤g 1

1
2

≠2

≠x2 fDsxd≤g , (4)

containing the drift coefficientKsxd and the diffusion
coefficientDsxd. Then the Laplace transform

Gsx, x0; Ed ­
Z `

0
dt e2EtPsx, x0; td (5)
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represents a fixed-energy Green function solving the tim
independent equation

fĤ sidsxd 2 EsidgGsidsx, x0; Esidd 1 dsx 2 x0d ­ 0 . (6)

We have added a superscriptsid to emphasize that this
equation describes the initial stochastic system fro
which we depart.

It is well known [6] that the Fokker-Planck equation re
mains form invariant under arbitrary invertible coordinat
transformations

x ­ xsqd , (7)

where the Green function transforms as

Gs1dsq, q0; Esidd ­ 6x0sqdGsidsssxsqd, xsq0d; Esidddd . (8)

The different signs take into account whether (7)
monotonously increasing or decreasing. In fact, w
conclude from (4) and (6) thatGs1dsq, q0; Esidd satisfies
the Fokker-Planck equation

fĤs1dsqd 2 EsidgGs1dsq, q0; Esidd 1 dsq 2 q0d ­ 0 , (9)

where the new infinitesimal time evolution operator

Ĥs1dsqd≤ ­ 2
≠

≠q
fK s1dsqd≤g 1

1
2

≠2

≠q2 fDs1dsqd≤g (10)

contains the drift and diffusion coefficients

K s1dsqd ­
1

x0sqd
K sidsssxsqdddd 2

x00sqd
2x03sqd

Dsidsssxsqdddd , (11)

Ds1dsqd ­
1

x02sqd
Dsidsssxsqdddd . (12)

These coordinate transformations are of standard use
finding unknown solutions from known ones [13,14].

Let us now supplement these transformations by t
path-dependent time transformation (1). First, we proce
in analogy with Ref. [8], Chap. 12, and change the Gre
function according to

Gs1dsq, q0; Esidd ­ fsqd
Fsq0; Esidd
Fsq; Esidd

3 Gsfdsssq, q0; EsfdsEsiddddd , (13)

where Fsq; Esidd and EsfdsEsidd are as yet unknown trial
functions. Applying (9) with (10), we find the equation
for the final Green function

fĤsfdsqd 2 EsfdsEsidd 1 Xsq; Esiddg 3

Gsfdsssq, q0; EsfdsEsiddddd 1 dsq2q0d ­ 0 , (14)

with the infinitesimal time evolution operator

Ĥsfdsqd≤ ­ 2
≠

≠q
fK sfdsqd≤g 1

1
2

≠2

≠q2
fDsfdsqd≤g , (15)

containing the transformed drift and diffusion coefficient

K sfdsqd ­ fsqd
∑

K s1dsqd 1
F0sq; Esidd
Fsq; Esidd

Ds1dsqd
∏

, (16)
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Dsfdsqd ­ fsqdDs1dsqd , (17)

and the additional term

Xsq; Esidd ­ fsqd
∑

1
2

Ds1dsqd
F00sq; Esidd
Fsq; Esidd

1 K s1dsqd
F0sq; Esidd
Fsq; Esidd

1 E sq; Esidd 2 Esid
∏

, (18)

where

E sq; Esidd ­ EsfdsEsiddyfsqd . (19)

Equation (14) has the above-mentioned defect of n
being a Fokker-Planck equation, due to the presence
the additional termXsq; Esidd. This term can, however,
be removed by choosing any functionsEsfdsEsidd and
Fsq; Esidd which solve the differential equation

Xsq; Esidd ; 0 . (20)

Note that although this equation is of the same complexi
as the initial Fokker-Planck equation, only aparticular
solution is required, so that labor will definitely be saved
by our method.

An alternative procedure which avoids solving the dif
ferential equation (20) is by leaving the time transfor
mation function fsqd open, choosing some trial func-
tion Fsq; Esidd, and calculatingE sq; Esidd from (18) with
(20). If this happens to be factorizable as in (19
the q-dependent prefactor may be chosen as the transf
mation functionfsqd and theEsid-dependent one as the
energy functionEsfdsEsidd.

In either procedure, the functionFsq; Esidd is subject to
an important restriction. In the limitEsid ! 0 it has to
satisfy

lim
Esid!0

Fsq; Esidd ­ 1 (21)

identically in q, so that the energy functionEsfdsEsidd
obeys

lim
Esid!0

EsfdsEsidd ­ 0 . (22)

Only under this condition do initial and final Green
functions possess proper stationary limits

p
sid
st sxd ­ lim

Esid!0
EsidGsidsx, x0; Esidd , (23)

p
sfd
st sqd ­ lim

Esfd!0
EsfdGsfdsq, q0; Esfdd . (24)

From (8), (13), and (21)–(24), we read off a relation
between them

p
sid
st sxd ­ 6

∑
dEsfdsEsidd

dEsid

∏21

Esid­0

fsssqsxdddd
x0sssqsxdddd

p
sfd
st sssqsxdddd , (25)
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Z
p

sid
st sxd dx ­

Z
p

sfd
st sqd dq ­ 1 . (26)

An interesting feature of the present method is tha
permits us in the stationary limit to relate the probabil
distributions of twoarbitrary Markov processes to eac
other. Given initial and final drift and diffusion coeffi
cients we satisfy (12) and (17) by choosing the time tra
formation function as

fsqd ­ x02sqdDsfdsqdyDsidsssxsqdddd . (27)

Using this together with (11), (12), (16), (17), and (21
we obtain the desired coordinate transformation from
differential equation

x0sqd ­ C exp

∑Z xsqd
dx̃

2K sidsx̃d
Dsidsx̃d

2
Z q

dq̃
2K sfdsq̃d
Dsfdsq̃d

∏
,

(28)

whereC is an integration constant. The final stationa
solution

p
sfd
st sqd ­

N sfd

Dsfdsqd
exp

∑Z q

dq̃
2K sfdsqd
Dsfdsq̃d

∏
(29)

is then related to the initial one

p
sid
st sxd ­

N sid

Dsidsxd
exp

∑Z x

dx̃
2K sidsx̃d
Dsidsx̃d

∏
(30)

by (25), (27), and (28), if the normalization constan
satisfy

C ­
N sid

N sfd
dEsfdsEsidd

dEsid

Ç
Esid­0

. (31)

In order to demonstrate the applicability of the ne
transformation method, we consider a Markov proc
with a multiplicative noise for a random variablex [
s0, `d, where the drift and the diffusion coefficient depe
on an arbitrary parametera . 0 as follows:

K sidsxd ­ asidx 2 bsidx2a11 , Dsidsxd ­ Qsidx2a12.
(32)

Performing a transformation of the random variable
and the time (1) with

xsqd ­ qb , fsqd ­ qg , (33)

the associated differential equation (20) with (18)
solved by a function
it
y

s-

),
he

y

ts

w
ss

d

7)

is

Fsq; Esidd ­ qdsEsidd, (34)

if the parametersb andg are related according to

2ab 1 g ­ 0 . (35)

The function dsEsidd and the energy relationEsfd ­
EsfdsEsidd are determined by

dsEsidd ­ sbyasiddEsid, (36)

EsfdsEsidd ­ 2
Qsid

2asid2 Esid2 1

∑
bsid

asid 1
Qsid

2asid

∏
Esid. (37)

Note that (34), (36), and (37) satisfy the correct limits (21
and (22).

The transformed drift and diffusion coefficients the
follow from (11), (12), (16), and (17) as

K sfdsqd ­ asfdq 2 bsfdq22ab11, Dsfdsqd ­ Qsfdq2,

(38)
where

asfd ­ 2
bsid

b
1

Qsid

b

∑
Esid

asid 2
b 2 1

2b

∏
, (39)

bsfd ­ 2asidyb, Qsfd ­ Qsidyb2. (40)

These relations supply us with solutions of the Fokke
Planck equation for a one-parameter family of Marko
processes (32) if we specialize

b ­ 21ya . (41)

Then the final Markov process (38) for a random variab
q [ s0, `d coincides with the well-understood Schenzle
Brand process [14], which is a standard model in no
linear optics and chemical reaction dynamics. It can
derived as an approximation to a number of different pr
cesses by adiabatically eliminating fast random variab
in the limit of large external fluctuations. For instance
the Schenzle-Brand process describes the electrical fi
near a laser threshold, the multiplicative noise being d
to inversion fluctuations.

With standard methods [6], the Fokker-Planck equati
of the Schenzle-Brand process with (38) and (41) can
transformed to the Schrödinger equation of the Mor
oscillator. As the quantum mechanical Green functio
of this system has been explicitly calculated from pa
integrals [15,16], the Green function of the Schenzl
Brand process is known:
Gsfdsq, q0; Esfdd ­
Gs ksfd

2 1
1
4 2

asfd

2Qsfd d

bsfdGs1 1 ksfdd
qasfdyQsfd25y2q

2sasfdyQsfdd21y2
0 exp

∑
bsfdsq2

0 2 q2d
2Qsfd

∏
3

Ω
Qsq 2 q0dW1y41asfdy2Qsfd,ksfdy2

µ
bsfdq2

Qsfd

∂
M1y41asfdy2Qsfd,ksfdy2

µ
bsfdq2

0

Qsfd

∂
1 sq $ q0d

æ
, (42)
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ksfd ­
q

sasfdyQsfd 2 1y2d2 1 2EsfdyQsfd . (43)
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With the help of the transformation formulas (8) and (13
and taking into account (33)–(41), we find from this th
unknown Green function of the initial Markov processe
(32):
Gsidsx, x0; Esidd ­
Gs Esid

2aasid d
asidGs1 1 ksidd

x2aksid2a21xaksid1a
0 exp

∑
asid

2aQsid

µ
1

x2a
0

2
1

x2a

∂∏
3

Ω
Qsx0 2 xdWksidy211y22Esidy2aasid,ksidy2

µ
asid

aQsidx2a

∂
Mksidy211y22Esidy2aasid,ksidy2

µ
asid

aQsidx2a
0

∂
1 sx $ x0d

æ
,

(44)
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ksid ­ bsidyaQsid 1 1y2a . (45)

Furthermore, we obtain from (24), (42), and (43) th
stationary solution of the Schenzle-Brand process (38) a
(41)

p
sfd
st sqd ­

2s bsfd

Qsfd dasfdyQsfd21y2

Gs asfd

Qsfd 2
1
2 d

q2asfdyQsfd22 exp

∑
2

bsfd

Qsfd q2

∏
,

(46)

which is mapped via (25) and (33)–(41) to the initia
Markov process (32), yielding

p
sid
st sxd ­

2as asid

aQsid dbsidyaQsid11y2a11

Gs bsid

aQsid 1
1

2a 1 1d

3 x22sbsidyQsidd22a22 exp

∑
2

asid

aQsidx2a

∏
. (47)

The analytic properties of the Green function
Gsidsx, x0; Esidd and Gsfdsq, q0; Esfdd in the energies
Esid and Esfd determine the spectra of the infinitesima
time evolution operatorsĤsidsxd and Ĥsfdsqd (Ref. [8],
Chap. 9). From (42)–(45) we deduce that the initia
multiplicative process (32) has only a discrete spectrum
whereas the final one, (38) and (41), contains both
discrete and a continuous branch. Such differences b
tween spectral types were encountered before in quant
mechanical DK transformations: The hydrogen atom h
discrete and continuous states, whereas the DK-equival
oscillator has only discrete states [7,8]. The spectra a
usually related by a Sommerfeld-Watson transformatio
of the Green functions (see [17] and Ref. [8], Chap. 14)

The discrete levels closest to zero are in a one-t
one correspondence [9,18]. For stochastic systems, th
levels rule the approach of the conditional probabilit
density to its stationary limit. In our example, the
associated poles of the initial Green function (44) and (4

Esid
n ­ 22aasidn, n ­ 0, 1, . . . (48)

are mapped to the corresponding final ones of (42) a
(43)

Esfd
n ­ 2Qsfdn2 1 sQsfd 2 2asfddn (49)

by
d

l
,
a
e-
m
s
nt
e

n

-
se

)

d

Esfd
n ­ EsfdsEsid

n d , (50)

as long asn is bounded by

n # asfdy2Qsfd 2 1y4 . (51)

The evaluation of (51) requires the use of relations (3
and (39)–(41).

In summary, we have shown that a combination of loc
time and coordinate transformations opens new possib
ties of relating different Markov processes. By exten
ing the method to several random variables, we exp
many useful applications. Furthermore, we hope that t
method might help to solve non-Markov processes [19]

Let us finally mention that the local time transformatio
(1) is nonholonomic in space-time, i.e., it carries
flat space-time into a space-time with nonzero torsi
and curvature [9,10]. If we allow for purely spatia
nonholonomic changes of coordinates, we can also re
space-time geometries with spatial curvature and torsi
This will enable us to describe technically releva
diffusion processes in crystals with defects [20–23].
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