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Abstract

With nonabelian Gauge Theories apparently possessing an abelian projection, the first-order phase transitions in the early
Ž .universe should proceed similarly to those in U 1 -symmetric field systems, where they are known to be nucleated by vortex

lines, not bubbles, as often assumed. q 1999 Published by Elsevier Science B.V. All rights reserved.

1. Since Langer’s historic paper on bubble nucle-
w xation 1,2 of first-order transition in a real scalar

field system, field theorists have assumed this mech-
anism to cause transitions in a large variety of
physical systems. This belief was enhanced a rigor-
ous proof of Coleman at al., that the dominant
classical solutions of rotationally-invariant field
equations in instanton calculations are bubble-like
w x3 . Most importantly for our very existence, the
first-order transitions in the early universe is com-

w xmonly supposed to be nucleated by bubbles 4–6 .
To an unbiased observer, this assumption comes

as a surprise, since the evolution of the early uni-
verse is described by a nonabelian generalization of
the Ginzburg-Landau theory of superconductivity
which, moreover, contains an ordinary Ginzburg-
Landau substructure of fields.

In addition, work on strong-interaction physics
suggests, that also the nonabelian color gauge theory
of the strong forces between quarks can be approxi-

w xmated, via a technique called abelian projection 7,8 ,
by a simple modification of a Ginzburg-Landau the-
ory which is similar to that of an ordinary supercon-

ductor, except for the exchange of electric and mag-
netic fields.

For a superconductor, however, bubbles play no
role in the phase transition. This holds in both the
type-II and the type-I regime which are distinguished
by the ratio of the two length scales ksmagnetic
penetration depthrcoherence length. In the second-
order regime, where k is large and the transition is
of second order, the transition can be understood
completely as a proliferation of magnetic vortex
lines. This can shown convincingly in a lattice field

w xtheory of the system 12 . There exists a dual de-
scription of the theory which is a simple XY-model.
The high-temperature expansion of the partition
function of this model can be rewritten as a sum of
closed lines which are direct pictures of the magnetic
vortex lines in the superconductor at low tempera-
tures. In this grand-canonical line ensemble one can

w xeasily calculate the temperature of proliferation 12 .
In the continuous limit, this XY-model can be

< < 4transformed via functional techniques into a c -
w xfield theory with a complex disorder field 12 . In

this formulation, the Feynman diagrams in the per-
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turbation expansion of the vacuum energy are the
direct pictures of the magnetic vortex lines, which
proliferation as the mass term becomes negative.

When lowering the parameter k into the regime
of weak first-order transitions, there still exists a
generalization of the XY-model describing this sys-
tem, which has the same type of high-temperature
expansion in terms of closed loops, thus showing
again that only vortex lines can be relevant for

w xunderstanding the transition 9 . Thus we conclude
that in a superconductor and related field theories
which possess vortex lines as topological excitation,
these drive both second and first-order phase transi-
tions.

It the sequel we give some simple arguments for
the superior efficiency of vortex line over bubble
nucleation, thus casting doubts on all studies of
first-order phase transition in the early universe based
on bubble nucleation.

2. The generalized XY-model which provides us
with a disorder description of a superconductor on a
lattice has the partition function

DDu
w xb cos= uqd cos2= ui iÝZs e , 1Ž .H

x , i2p

where = are lattice gradients, and b ,d model pa-i

rameters. The phase structure of this model has been
w xstudied in detail in the literature 10–12 . For ds0

the model is known to describe the critical behavior
of superfluid helium near the l-transition. The same
thing is true for a small interval around zero dg
Ž .0.1,0.2 . In addition, there exists a regime of d

where the transition is of first order. In the disor-
Ž .dered phase, the partition function 1 can be rewrit-

ten as a sum over non-self-backtracking loops of
superflow. Under a duality transformation, these go
over into the magnetic vortex lines of the supercon-
ductor. The parameter b which is the inverse tem-
perature in the XY-model grows with the tempera-
ture in the superconductor. The loops of superflow
can have strengths 1,2,3, . . . on the lattice. They are
dual representation of the quantized flux strengths of
the magnetic vortex lines in the superconductor. In
the second-order regime, the critical properties of the
model have been shown to be the same as for a
simplified model which can contain only loops of

w xunit strength 14,12 .

For a single loop, the partition function of this
simplified model can easily be written down. If n is
the length of the loop in lattice units, we have

Zs N eyb V ´ n , 2Ž .Ý n
n

where b is a function b ,d which plays the role ofV

an inverse temperature for this one-loop model, ´ isn

the loop energy, and N is the number of differentn

loops of length n. For large n, the energy ´ isn

proportional to n, say ´ f´ n. The notation e isn n

really an approximation, since it neglects a slight
dependence on the loop shape. This, however, is
very weak for lines which are much longer than the
length scale nst over which the lines show stiffness.
This stiffness is a result of the non-self-backtracking

Ž .property and the fact that if two or more portions
Žof a loop merge into a line of strength two or

.larger , the energy of this portion is much larger than
the sum of the energies of the constituent lines,
causing a strong Boltzmann suppression. Writing the
number N as e sn, we define the configurationaln

entropy s of loops of length n. Also s growsn n

linearly for large n, say like s n. As b becomesV

smaller than a critical value b c 'sre , the freeV

energy of the loops

f s´ yby1s 3Ž .n n V n

goes to negative infinity for large n, so that the sum
Ž .over n in 2 diverges. The loop length diverges and

the loop fills the entire system with superflow, a
characteristic feature of the phase transition into the
superfluid state. A large energy of a loop will always
be canceled by the configurational entropy if the
temperature is sufficiently large.

Ž .A decrease of the parameter d in 2 brings the
phase transition into the first-order regime. In the
loop picture, this change the n-dependence of the

Ž .energy e . In the partition function 2 , The entropyn
Ž .s of the loops in the small-b expansion of 2n

w xdepends on n as shown in Fig. 1 13 . After an initial
rise it flattens out somewhat around nf10, where it
merges into the asymptotic linear behavior s n. The
energy may depend on n in different characteristic
ways, also indicated in Fig. 1. The region nf10
where the linear behavior is reached is determined
by the effective stiffness of the vortex lines.
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Fig. 1. Dependence of the entropy of lines of length n in the
Ž .partition function 2 on the length n of the loops. The curves

above and below are possible energies ´ leading to second- orn

first-order phase transitions.

The associated free energies f have the typicaln

shapes displayed in Fig. 2. The left-hand plot shows
the free energy for ´ 2 nd in an ordinary XY-model.
For sufficiently large temperatures, it possesses a
minimum at a nonzero value of n, say at nm. This
value moves continuously from zero to infinity as
b is raised above the critical value b c . The transi-V V

tion is of second order. Even before the critical value
is reached, there are loops of size nm in the system.
Such precritical loops are found in Monte Carlo

Ž .simulations of the model 2 . They are plotted as
w x3D-figures in Ref. 16 .

The free energy in the right-hand plot of Fig. 2
corresponds to the energy ´ 1st, and shows a com-
pletely different behavior. As the critical value b c isV

reached, the free energy has a barrier at nm which
prevents the lines from growing infinitely long.
Thermal fluctuations have to create a loop of length
nm, which can then expand and fill the entire system
with superflow, thereby converting the normal state
of the XY-model into a superfluid one, or the or-
dered state of a superconductor with magnetic vortex
lines into the normal state. The size of nm is of the
order of the length scale of stiffness nst.

Since the superconductor on a lattice can be
represented exactly in terms of loops, there is no
place for bubble nucleation in such a system. But
there are also simple energy-entropy arguments to
justify this conclusion.

3. Consider now, in contrast, a hypothetical bub-
w xble nucleation of the transition 1,2,17 . Such bub-

bles may be calculated in a continuous approxima-
Ž .tion to the partition function 2 derived by standard

w xfield theoretic techniques 15,11 . In this approxima-
Ž .tion, the partition function 2 becomes a functional

Ž .integral over a complex disorder field f x with
w xquartic and sextic self-interactions 11,9 . When

cooling the disordered phase slightly below the tran-
sition point, such a field theory possesses spheri-
cally-symmetric solutions whose inside contains the
ordered phase whose energy is slightly lower than
that of the disordered phase. Let e be the difference
in energy density and s the surface energy density.
The total energy of the bubble is then

SDbubble Dy1 DE sS R sy R e , 4Ž .D D
D r2 Ž .where S s2p rG Dr2 is the surface of a unitD

sphere in D dimensions. This energy is maximal at
Ž .R s Dy1 sre , where it is equal toc

S s D
D Dy1E s Dy1 . 5Ž . Ž .c Dy1D e

The important point is now that for temperatures
which lie only very little beyond the transition tem-
perature, the energy difference e between the two
phases is very small, corresponding a huge bubble
radius and energy. The probability of nucleating such
a bubble is therefore suppressed by an infinitesimally

Ž Dy 1.small factor exp yconstre . Only after consid-

Fig. 2. Free energy as a function of loop length n for second- and
first-oder phase transitions at different inverse model temperatures
b .V
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Ž .erable overheating or overcooling does the bubble
energy become small enough to nucleate sponta-

Žneously in the absence of other condensation nulei
.such as dirt . In freezing transition of water, the

˚radius r is about 50 A.c

In a superconductor, however, the phase transition
proceeds without overheating, and the reason for this
is the vortex nucleation discussed above. The energy
of a critical vortex may be estimated by imagining a
planar phase boundary rolled up to a thin line whose
radius is the coherence length j of the disorder0

theory. This, in turn, is bent into a doughnut of
radius nstj . Neglecting the bending energy, we esti-0

mate the critical vortex energy to be of the order

Ec f2pj =nst j s . 6Ž .vort 0 0

This energy does not depend on the energy differ-
ence e between the two phases, so that the rate is
practically independent of the degree of overheating
Ž .or undercooling , this being in contrast to the energy
of the critical bubble which is extremely large slightly
beyond the transition point.

Note that in contrast to vortex nucleation, bubble
nucleation is not enhanced significantly by the con-
figurational entropy of fluctuations of the bubble
surface. The reason is that apart from translations, all

w xsurface fluctuations are massive 17 , Configurational
distortions of a long vortex line, on the other hand,
require practically no energy as long as they happen
on length scales longer than the finite stiffness length.

4. The above discussion shows that bubble nucle-
ation is of negligible relevance to the phase transi-
tions in superconductors of second as well as first
order, and for that matter, to the first-order transi-
tions in the early universe, as long as we believe the
theory describing the latter to be of a generalized
Ginzburg-Landau type, allowing for line-like topo-
logical excitations. These drive the transition with
much greater efficiency than bubbles due to their
larger configurational entropy.
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