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Abstract

On the basis of recent seven-loop perturbation expansiom‘br: 3/(2 — a) we perform a careful reinvestigation of the
critical exponentr governing the power behavi¢f, — T|~* of the specific heat of superfluid helium near the phase transition.
With the help of variational strong-coupling theory, we fiagd= —0.01126+ 0.0010, in very good agreement with the space
shuttle experimental value= —0.01056+ 0.00038.0 2000 Elsevier Science B.V. All rights reserved.

1. The critical exponent characterizing the power The exponentr is extremely sensitive to the pre-
behavior| T, — T|~* of the specific heat of superfluid cise value of the critical exponentwhich determines
helium near the transition temperatufeis presently the growth of the coherence length when approaching
the best-measured critical exponent of all. A micro- the critical temperature, oc [T — T.|~". Sincev lies
gravity experiment in the Space Shuttle in October very close to 23, anda is related tov by the scal-

1992 rendered a value with amazing precision [1]: ing relatione = 2 — 3v, a tiny change ob produces
. a large relative change af. Ahlers’ value was for
o™= —0.01056+ 0.00038 (1) many years an embarrassment to quantum field the-

orists who never could find quite as negative — the
field theoreticv-value came usually out smaller than
vahl = 0.6753+ 0.0013. The space shuttle measure-
ment was therefore extremely welcome, since it comes
a = —0.02640.004, 2) much closer to previous theoretical values. In fact, it
) ) N turned out to agree extremely well with the most re-
in which the sharp peak of the specific heat was cent theoretical determination efby strong-coupling

broadened to 10° K by the tiny pressure difference  perturbation theory [3] based on the recent seven-loop
between top and bottom of the sample. In space, the hower series expansions f4], which gave [5]
temperature could be brought to within 0K close

This represents a considerable change and improve-
ment of the experimental number found a long time
ago on earth by Ahlers [2]:

to 7, without seeing this broadening. = —0.0129+ 0.0006 (3)
The purpose of this note is to present yet another
- ! . . 1
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a priori unclear which of the two results should be ponentof approach to scalingshose size is known to

more accurate, we combine them to the slightly less be about B for superfluid helium. Any resummation

negative average value with a larger error method which naturally incorporates his power behav-

ior should converge faster than those which ignore it.

*°=—0.01126+0.0010 ) This incorporation is precisely the virtue of variational
Before entering the more technical part of the perturbation theory, which we have therefore chosen

paper, a few comments are necessary on the reliability for the resummation af.

of error estimates for any theoretical result of this For a second additional information we take advan-

kind. They can certainly be trusted no more than tage of our theoretical knowledge on the general form

the experimental numbers. Great care went into the of the large-order behavior of the expansion coeffi-

analysis of Ahlers’ data [2]. Still, his final result (2) cients:

does not accommodate the space shuttle value (1).

The same surprise may happen to theoretical results c@D @

and their error limits in papers on resummation of ¥ (=) k'kl“(k+b)<1+ T2 +)

divergent perturbation expansions, since there exists

so far no safe way of determining the errors. The In the previous paper [5] we have done so by choos-

expansions in powers of the coupling constardre ing the nonleading parametet$ to reproduce ex-

strongly divergent, and one knows accurately only actly the first seven known expansion coefficients.of

the first seven coefficients, plus the leading growth The resulting expression (5) determines all expansion

(5)

behavior for large orderk like y (—a) k!kT (k + b). coefficients. The so-determined expression (5) pre-
The parameteb is determined by the number of zero dicts approximatelyall expansion coefficients, with
modes in a solution to a classical field equatiens increasing precision for increasing orders. The ex-
the inverse energy of this solution, apdthe entropy tended power series has then been resummed for in-
of its small oscillations. creasing order#/, and from theN-behavior we have

The shortness of the available expansions and their found thex-value (3) with quite a small error range.
divergence make estimates of the error range of there-  As a third additional information we use the fact
sult a rather subjective procedure. All publications re- that we know from theory [3] in which way the in-
summing critical exponents such asalculate some  finite-order result is approached. Thus we may fit the
sequences ofVth-order resummed approximations approximate valuegy by an appropriate expansion in
ay, and estimate an error range from the way these 1/N and achieve in this way a more accurate estimate
tend to their limiting value. While these estimates may of the limiting value than without such an extrapola-
be statistically significant, there are unknown system- tion. The error can thus be made much smaller than
atic errors. Otherwise one should be able to take the the distance between the last two approximations, as
expansion for any functiorf (g) = f(«(g)) and find has been verified in many model studies of divergent
a limiting numberf («) which lies in the correspond-  series [6].
ing range of values. This is unfortunately not true in The strategy of this Letter goes as follows: We
general. Such reexpansions can approach their limit- want to use all the additional informations on the
ing values in many different ways, and it is not clear expansion of the critical exponent as above, but
which yields the most reliable result. One must there- apply the variational resummation method in two more
fore seek as much additional information on the series alternative ways. First, we reexpand the se#i€®) in
as possible. powers of a variablé whose critical limit is no longer

One such additional information becomes avail- infinity butz = 1. The closer distance to the expansion
able by resumming the expansions in powers of the point # = 0 leads us to expect a faster convergence.
bare coupling constargg rather than the renormal- Second, we resum two different expansions, onefor
ized oneg. The reason is that any function of the and one for f(«) = v = 3/(2 — «). From the
bare coupling constant(go) which has a finite crit- difference in the resulting-values and a comparison
ical limit approaches this limit with a nonleading in-  with the earlier result (3) we obtain an estimate of the
verse power okg, wherew is called thecritical ex- systematic errors specified in Eq. (4).
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2. The seven-loop power series expansiomfan — 1062344643086436¢°
powers of the unrenormalized coupling constant of +3322392175082958016 + - - - )
O(2)-invarianip?-theory which lies in the universality '
class of superfluid helium reads [4,7,8] Scaling implies thatg(go) becomes a constant for
) 5 go — 00, implying that the powes goes to zero in this

v " =2-04g0+0.468148148148228% limit. By inverting the expansion fos, we obtain an

— 0.6673%703 + 1.0792618385897(},3)4 expansion fon—1in powers ofi = 1 — s as follows:

— 1.912740° + 3.64434729152739%° v=1(h) = 2 — 0.4h — 0.09303%2 + 0.0004850123

7

—1.3780&0" + - ©6) — 00139286 + 0.00734%°
By fitting the expansion coefficients with the theoret- —0.014047%° + 0.015954% 7
ical large-order behavior (5), this series has been ex- 0.029175:8 - 0.0521537,°
tended to higher orders as follows [5]: o +0.

L o o —0.102226:*° 4 0.224026:**
Av™=1575313406543746° — 35.2944¢¢ 12 13
10 1 —0.49104%“+ 1.22506:
+ 82.690090152006¢h™" — 202094g9 14 15
12 13 —3.00608:~" + 8.2952&
+ 514.33943955261 78 — 136142g9 16
— 225967 (20)

+ 3744242656157152** — 106917g0*°
T @ This series has to be evaluatediat 1. For estimating
the systematic errors of our resummation, we also
The renormalized coupling constant is related to the calculate from (10) a series far=2 — 3v:
unrenormalized one by an expanspa: Z/Z:l akgé.
Its power behavior for larggo is determined by a  «(h) =0.5— 0.3k —0.12977&* — 0.03954743

series —0.0243203* — 0.003249&°
g= dloggeo) 4 947g0° —0.012109%° + 0.0074930&"
dloggo 675 , —0.0194876:5 + 0.0320172°
- 23223243494074%4 — 0.065172G0+ 0.144221
+42762036090260%% — 031505812+ 0.80239%°
—85161144047322%% ; —1.9545% '+ 5.49143,1°
+ 18.05897631325588% 148771 4 ... (11)
+ (8)
A similar best fit of these by the theoretical large-order _ .
behavior extends this series by 3. Inorder togeta rough idea about the pehaylor of
. the reexpansions in powers bf we plot their partial
As =40.3865722873011gh sums ath = 1 in the upper row of Fig. 1. After an
+ 94.6453399123477:8 initial apparent convergence, these show the typical
divergence of perturbation expansions.
9
— 2313922442162560 A rough resummation is possible using Padé ap-
+5883206172579103° proximants. The results are shown in Table 1. The
— 15521163584042170* highest Padé approximants yield
+ 4242372685080157,'2 «P39—= _0.01234+ 0.0050 (12)
—1200118866491822,*3

The error is estimated by the distance to the next lower
+ 3511523006646194¢* approximation.
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Fig. 1. Upper plots: Results of partial sums of series (10)fot up to orderN, once plotted asy = l/vg,l, and once agy =2 — 3vy.
The third plot shows the corresponding partial sums of the serigs. fohe dotted line is the experimental space shuttle vaftteof Eq. (1).
Lower plots: The corresponding resummed values and a fit of theeg I@ycl/N2 +cp/N4. The constantg is written on top, together with
the seventh-order approximation (in parentheses). The square brackets on top of the left-hand globfes the correspondingvalues.

;aet;ljlti of the Padé approximatioRg; v (/1) ath = 1 to the power series 1 (k) anda(h). The parentheses show the associated values of
andv

M N v (o) (v) o

4 4 0.678793 (—0.0363802 (0.678793) —0.0363802

5 4 0.671104 (—0.0133107% (0.670965) —0.0128940

4 5 0.670965 (—0.0128940 (0.670901) —0.0127031

5 5 0.670756 (—0.0122678 (0.670756) —0.0122678

4. We now resum the expansions () anda(h)

v~1(h) againsth in Fig. 2, we see that this function

by variational perturbation theory. This is applicable will have a zero somewhere above= 1o = 3.

to divergent perturbation expansions

fo)=) anx",
n=0

which behave for large like

o0
F)=xP/TY " byx=2m/a,

m=0

Itis easy to adapt our function to this general behavior.
Plotting the successive truncated power series for

We therefore go over to the variahtedefined by
h = h(x) = hox/(hg — 1 + x), in terms of which

(13)

f(x) = v 1(h(x)) behaves like (14) withp = 0

and ¢ = 2, and has to be evaluated at= 1. The
largex behavior is imposed upon the function with
expansion (13) as follows. We insert an auxiliary scale

(14)

parametek and define the truncated functions

N n
N =k ay (:—q> :
n=0

(15)
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The parameter will be set equal to 1 at the end.
Then we introduce a variational parametérby the
replacement

Kk —>VK24+xk2—- K2 (16)

The functions fy (x) are so far independent f.
This is changed by expanding the square root in
(16) in powers ofk? — K2, thereby treating this
difference as a quantity of order. This transforms
the terms«?x"/k?" in (15) into polynomials of
r=%-K?/K?

kP ’ —>K"’i 1+<(p—qn)/2>r
Kan K 1
N ((p—qn)/2>r2+,__
2
(p—qm)/2\ n_,
+( N )r } (17)

Setting nowx = 1, and replacing the variational
parameterk by v defined byk?2 = x/v, we obtain

1.495

1.49p
1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

,,,,,

Fig. 3. Successive variational functiomlsl(h) anday (h) with N =3

an (K) g9
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from (15) atx = 1 the variational expansions

al 2
@ =Y a1+ -0 (18)

n=0

where the symbd|1 + A]E{,:f”)/z is a short notation
for the binomial expansion ofl + A)(?P—47/2 jn
powers ofA up to the orderd ¥ .

The variational expansions are optimizedurby
minima for odd, and by turning points for evew,
as shown in Fig. 3. The extrema are plotted as
a function of the orderN in the lower row of
Fig. 1. The left-hand plot shows directly the extremal
values ofngl(v), the middle plot shows the-values
ay = 2 — 3vy corresponding to these. The right-hand
plot, finally, shows the extremal values @f; (v). All
three sequences of approximations are fitted very well
by a largeN expansiorncy 4 c1/N? + co/N*4, if we
omit the lowest five data points which are not yet very
regular. The inverse powers 2 and 4 ®fin this fit
are determined by starting from a more general ansatz
co + c1/NPL + c2/NP2 and varyingp1, p2 until the
sum of the square deviations of the fit from the points
is minimal.

The highest-order data point is taken to be the one
with N =12 since, up to this order, the successive as-
ymptotic valuesg change monotonously by decreas-
ing amounts. Starting wittv = 13, the changes in-
crease and reverse direction. In addition, the mean
square deviations of the fits increasing drastically, in-
dicating a decreasing usefulness of the extrapolated
expansion coefficients in (7) and (9) for the extrap-
olation N — oo. From the parametefy of the best
fit for @ which is indicated on top of the lower right-

0.015
0.01
0.005
0
-0.005
-0.01

.1 12 1.3 14 15 K

5

12 of Table 2 plotted foh = x = 1 against the variational parameter

K = /x/v, together with their minima for odd/, or turning points for evemN. These points are plotted agaiétin the lower row of Fig. 1,

where they are extrapolated 36— oo, yielding the critical exponents.
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Table 2

Variational reexpansions mgl(h) anday (h) for N =2,..., 9 ath = x = 1 which are plotted in Fig. 3 and whose minima and turning points
are extrapolated t&/ = oo in the lower left- and right-hand plots of Fig. 1. The lists are carried only te 9, to save space, whereas the plots
areforN =3,...,12

vyt =2-12v + 0690672

vzt =2 18v+2072002 - 0.72036°

u;1 =2— 2.4v +4.144002 — 2.881453 + 0.534124

ugl =2—3.0v+6.9066%2 — 7.203633 + 2.67060% -+ 0.28949)°

ugl =2—36v+ 1036002 — 1440733 + 8.01180% + 1.73692° — 2.96286/°

vyl =2 420 + 1450402 - 252127%° + 186942 + 6.07922° — 20.7401,° 4 1118357

ug—l =2— 480+ 19338%2 — 40.34033 + 37.3884% + 16.2113° — 829602° + 89.46837 — 3695758

ugl =2 — 5.4 + 24.86402 — 6051053 + 67.2992% + 36.4753° — 2488816 + 40260707 — 3326178 + 121914°

ap=0.5—0.90v + 0.38302

a3 =05— 1.35 + 1.1490:2 — 0.26997%3

a4 =05—1.800 4 2.29802 — 1.079893 + 0.025254*

a5 = 05— 2.250 + 3.83002 — 2.699723 + 0.1262714 + 0.57604)°

ag = 0.5—2.70v + 574502 — 5.39945°3 + 0.378812% + 3.45629° — 2.19244)

a7=0.5—3.150 + 8.043W2 — 9.449033 + 0.883895* + 12.0970° — 15.3471° + 6.8901 17

ag=05—3.60v + 10.7242 — 1511843 + 1.767790* + 32.2587%° — 6138840 + 5512087 — 21.57048
ag=05—4.05 + 137882 — 2267773 + 3.182020% + 725821° — 184.165° + 2480447 — 1941348 + 70.781°

 -0030
0.676 ‘
: 3 ‘ ‘ 1 -0025
0.674 {, | 1 ‘ 4 -0020
0.672 ; % ! i % j $ 1 -0015
Y 0670 b xF———]|— —{—*— —f—i- : < 0010 %
0.668 | E 3 1 -0005
0.666 : I | 70000
‘ ; 0005
0.664 0010
' : our H
(1] [9] [2]  [to] [11][13] [12] [10] [11][4] [14][5] (15] [16]  [17] [18]
EXP 4-c D=3 MC High T

Fig. 4. Survey of experimental and theoretical valuesofoirhe latter come from resummed perturbation expansiorqﬁf‘dheory ind4—e¢
dimensions, in three dimensions, and from high-temperature expansions of XY-models on a lattice. The sources (Refs. [1,2,4,5,9-18]) are
indicated below.

hand plot in Fig. 1, we find the critical exponent dle plotin Fig. 1 yieldsx = —0.01226. It also accom-

o = —0.01126 stated in Eq. (4), where the error es- modates our earlier seven-loop strong-coupling result
timate takes into account the basic systematic errors (3) of Ref. [5]. The dependence on the choicehpf
indicated by the difference between the resummation is negligible as long as the resummed serie$(x)

of « = 2 — 3, and ofv~1, which by the lower mid- and «(x) do not change their Borel character. Thus
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ho = 2.2 leads to results well within the error limits
in (4).

Our number as well as many earlier results are
displayed in Fig. 4.

The entire subject is discussed in detail in Ref. [19].

Note added in proof

A recent calculation ofx by an improved high-
temperature expansion yields the exponent=
—0.015017) [20].
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