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The free energy of a field theory can be considered as a functional of the free correlation function. As such
it obeys a nonlinear functional differential equation that can be turned into a recursion relation. This is solved
order by order in the coupling constant to find all connected vacuum diagrams with their proper multiplicities.
The procedure is applied to a multicomponent scalar field theory with a ¢* self-interaction and then to a theory
of two scalar fields ¢ and A with an interaction ¢?A. All Feynman diagrams with external lines are obtained
from functional derivatives of the connected vacuum diagrams with respect to the free correlation function.
Finally, the recursive graphical construction is automatized by computer algebra with the help of a unique

matrix notation for the Feynman diagrams.

PACS number(s): 05.70.Fh, 64.60.—i

I. INTRODUCTION

If one wants to draw all Feynman diagrams of higher
orders by hand, it becomes increasingly difficult to identify
all topologically different connections between the vertices.
To count the corresponding multiplicities is an even more
tedious task. Fortunately, there exist now various convenient
computer programs, for instance, FEYNARTS [1-3] or QGRAF
[4,5], for constructing and counting Feynman diagrams in
different field theories.

The purpose of this paper is to develop an alternative
systematic approach to construct all Feynman diagrams of a
field theory. It relies on considering a Feynman diagram as a
functional of its graphical elements, i.e., its lines and verti-
ces. Functional derivatives with respect to these elements are
represented by graphical operations that remove lines or ver-
tices of a Feynman diagram in all possible ways. With these
operations, our approach proceeds in two steps. First the con-
nected vacuum diagrams are constructed, together with their
proper multiplicities, as solutions of a graphical recursion
relation derived from a nonlinear functional differential
equation. This relation was set up a long time ago [6,7], but
so far it has only been solved to all orders in the coupling
strength in the trivial case of zero-dimensional quantum field
theories. The present paper extends the previous work by
developing an efficient graphical algorithm for solving this
equation for two simple scalar field theories, a multicompo-
nent scalar field theory with ¢* self-interaction, and a theory
with two scalar fields ¢ and A with the interaction ¢?A. In a
second step, all connected diagrams with external lines are
obtained from functional derivatives of the connected
vacuum diagrams with respect to the free correlation func-
tion. Finally, we demonstrate how to automatize our con-
struction method by computer algebra with the help of a
unique matrix notation for Feynman diagrams.

I1. SCALAR ¢* THEORY

Consider a self-interacting scalar field ¢ with N compo-
nents in d Euclidean dimensions whose thermal fluctuations
are controlled by the energy functional
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with some coupling constant g. In this short-hand notation,
the spatial and tensorial arguments of the field ¢, the bilocal
kernel G™1, and the quartic interaction V are indicated by
simple number indices, i.e.,

1={x1, a1}, J;EE d;,
ay

$1=da,(X1), G'=G., (X1.,%),

V1234EVal,a2,a3,a4(Xl1X21X31X4)- (22)
The kernel is a functional matrix G~*, while V is a func-
tional tensor, both being symmetric in their indices. The en-
ergy functional (2.1) describes generically d-dimensional Eu-
clidean ¢* theories. These are models for a family of
universality classes of continuous phase transitions, such as
the O(N)-symmetric ¢* theory, which serves to derive the
critical phenomena in dilute polymer solutions (N=0),
Ising- and Heisenberg-like magnets (N=1,3), and superflu-
ids (N=2). In all these cases, the energy functional (2.1) is
specified by

Gl o, (X1:X2) = 8oy ( — 5+ M2 8(X1 = Xp),  (2.3)
V“l!az!as-%(xl 1X2,X3,X4)

:5{50’1,&250’3,a4+5(11,&35(1’2,(14 5(1’1,(1450’2,(13}

X 8(Xy—X2) O(X1—X3) 6(X1—Xy), (2.4)
where the mass m? is proportional to the temperature dis-
tance from the critical point. In the following we shall leave
G~ and V completely general, except for the symmetry
with respect to their indices, and insert the physical values
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(2.3) and (2.4) at the end. By using natural unitsin which the
Boltzmann constant kg times the temperature T equals unity,
the partition function is determined as a functional integral
over the Boltzmann weight e~ 54

Z= f D¢ e EL4] (2.5)
and may be evaluated perturbatively as a power series in the
coupling constant g. From this we obtain the negative free
energy W=InZ as an expansion

W:i i -9 pW(p) (2.6)

p=o p!\ 4! ' '
The coefficients WP may be displayed as connected
vacuum diagrams constructed from lines and vertices. Each
line represents a free correlation function

1 (2.7)

2 EG12,

which is the functional inverse of the kernel G in the
energy functiona (2.1), defined by

LG 12625 = d13. (2.8)
The vertices represent an integral over the interaction
>< = / ‘/1234 ] (2-9)
1234

To construct all connected vacuum diagrams contributing to
W) to each order p in perturbation theory, one connects p
vertices with 4p legs in al possible ways according to Fey-
nman’s rules, which follow from Wick’s expansion of corre-
lation functions into a sum of al pair contractions. This
yields an increasing number of Feynman diagrams, each with
a certain multiplicity that follows from combinatorics. In to-
tal there are 4!Pp! ways of ordering the 4p legs of the p
vertices. This number is reduced by permutations of the legs
and the vertices that leave a vacuum diagram invariant. De-
noting the number of self-, double, triple, and fourfold con-
nections with S, D, T, F, there are 215, 210, 31T 41F |eg
permutations. An additional reduction arises from the num-
ber N of vertex permutations, leaving the vacuum diagrams
unchanged, where the vertices remain attached to the lines
emerging from them in the same way as before. The result-
ing multiplicity of a connected vacuum diagram in the ¢*
theory is therefore given by the formula [9,10]

E—o 41Pp!
M¢4 = W (210)
The superscript E=0 records that the number of external
legs of the connected vacuum diagram is zero. The diagram-
matic representation of the coefficients W(P) in the expansion
(2.6) of the negative free energy Wis displayed in Table | up
to five loops [12-14].

For higher orders, the factorially increasing number of
diagrams makes it more and more difficult to construct all
topologicaly different diagrams and to count their multi-
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plicities. In particular, it becomes quite hard to identify by
inspection the number N of vertex permutations. This iden-
tification problem is solved by introducing a uniqued matrix
notation for the diagrams, to be explained in detail in Sec.
V.

In the following, we shall generate iteratively all con-
nected vacuum diagrams. We start in Sec. |1 A by identifying
graphical operations associated with functional derivatives
with respect to the kernel G2, or the free correlation func-
tion G. In Sec. Il B we show that these operations can be
applied to the one-loop contribution of the free partition
function to generate all perturbative contributions to the par-
tition function (2.5). In Sec. 1| C we derive a nonlinear func-
tional differential equation for the negative free energy W,
whose graphical solution in Sec. Il D yields all connected
vacuum diagrams order by order in the coupling strength.

A. Basic graphical operations

Each Feynman diagram is composed of integrals over
products of free correlation functions G and may thus be
considered as a functional of the kernel G™1. The connected
vacuum diagrams satisfy a certain functional differential
equation, from which they will be constructed recursively.
Thiswill be done by a graphical procedure, for which we set
up the necessary graphical rules in this subsection. First we
observe that functional derivatives with respect to the kernel
G~1 or to the free correlation function G correspond to the
graphical prescriptions of cutting or of removing asingle line
of a diagram in al possible ways, respectively.

1. Cutting lines

Since ¢ isareal scalar field, the kernel G~ is a symmet-
ric functional matrix. This property has to be taken into ac-
count when performing functional derivatives with respect to
the kernel G, whose basic rule is

6G,
5G4

1
= 5{5135424' 314635} - (211)

From the identity (2.8) and the functional chain rule, we find
the effect of this derivative on the free correlation function

060Gy,
_2—,12613642"‘ Gl4G32. (212)
060Gy
This has the graphical representation
2 i = +
565411—2—1—3 4—2+1—4 3—2.
(2.13)

Thus differentiating a free correlation function with respect
to the kernel G~ amounts to cutting the associated line into
two pieces. The differentiation rule (2.11) ensures that the
spatial indices of the kernel are symmetrically attached to the
newly created line ends in the two possible ways. When
differentiating a general Feynman integral with respect to
G 1, the product rule of functional differentiation leads to a
sum of diagrams in which each line is cut once.
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TABLE I. Connected vacuum diagrams and their multiplicities of the ¢* theory up to five loops. Each diagram is characterized by the
vector (SD,T,F;N) whose components specify the number of self-, double, triple, and fourfold connections, and of the vertex permutations

leaving the vacuum diagram unchanged, respectively.

P w
#1
1 3
(2,1,0,051)
#2 #3
2 24 @ 72
(0,0,0,1;2) (2,1,0,0;2)
#4 #5 #6 #7
3 1728 @ 3456 1728 2592
(0,3,0,0;6) (1,0,1,0;2) (3,0,0,0;86) (2,2,0,0;2)
48 #9 #10 #11 412
4 62208 248832 55296 497664 165888
(0,4,0,08) (0,2,0,0:8) (0,0,2,034) (1,2,0,0:2) (2,0,1,0:2)
413 414 415 416 417
248832 165888 248832 62208 124416 m
(2,1,0,054) (1,1,1,0:2) (3,1,0,0:2) (4,0,0,08) (2,3,0,02)
With this graphical operation, the product of two fields ) SWP
can be rewritten as a derivative of the energy functional with GH=-2 SG-I- (2.18)
12

respect to the kernel

OE[ 9]
¢1¢2—2F1—21, (214
as follows directly from (2.1) and (2.11). Applying the sub-
stitution rule (2.14) to the functional integral for the fully
interacting two-point function

1
Gi=>5 f D prpe 7, (2.15)
we obtain the fundamental identity
6122 —ZE. (216)

Thus, by cutting a line of the connected vacuum diagrams in
all possible ways, we obtain all diagrams of the fully inter-
acting two-point function. Analytically this has a Taylor se-
ries expansion in powers of the coupling constant g similar

to (2.6)
p
e

©

Gp= 2

p=0 P!

1

-9

_2 (p)
4!

12 (2.17)

with coefficients

The cutting prescription (2.18) converts the vacuum dia
grams of pth order in the coefficients W(P) in Table | to the
corresponding ones in the coefficients G{5) of the two-point
function. The results are shown in Table Il up to four loops.
The numbering of diagrams used in Table Il reveas from
which connected vacuum diagrams they are obtained by cut-
ting a line. For instance, the diagrams 15.1-15.5 and their
multiplicities in Table Il follow from the connected vacuum
diagram 15 in Table I. We observe that the multiplicity of a
diagram of a two-point function obeys a formula similar to
(2.10):

e, 41PpI2!

Mya "= rsvog TN

(2.19)

In the numerator, the 4!Pp! permutations of the 4p legs of
the p vertices are multiplied by a factor 2! for the permuta-
tions of the E=2 end points of the two-point function. The
number N in the denominator counts the combined permuta
tions of the p vertices and the two end points that |eave the
diagram unchanged.

Performing a differentiation of the two-point function
(2.15) with respect to the kernel G yields
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TABLE Il. Connected diagrams of the two-point function and their multiplicities of the ¢* theory up to four loops. Each diagram is
characterized by the vector (SD,T;N) whose components specify the number of self-, double, triple connections, and of the combined
permutations of vertices and externa lines leaving the diagram unchanged, respectively.

p G
#1.1
1 12
(1,0,0;2)
#2.1 #3.1 #3.2
2 192 - 288 288
(©,0,1;2) (1,1,022) (2,0,02)
B #45.1 #5.2 #53
3 @ 6912 @ 20736 13824
(0,2,0;2)
(0,0,1;4) (1,1,0;2) (1,0,1;1)
#6.1 #6.2 #7.1 #7.2
10368 10368 M 10368 20736
(2,0,0:4) (3,0,0;2) (1,2,0;2) (2,1,0;1)

#8.1 #9.1 #9.2 #10.1 #10.2
4 | 995328 @ 1990656 1990656 221184 —@—@— 663552
(0,3,0:2) (0,1,0;4) (0,2,0:2) 0,0,2;2) ©,1,1;2)

#11.1 #11.2 #11.3 #11.4 #12.1
995328 @ 1990656 Q_@ 995328 3981312 % 995328
(1,1,0;1) (2,1,0;2)

(0,2,0;4) (1,2,051) (1,2,0;2)

#12.2 #12.3 #12.4 #13.1 #13.2
331776 Q@Q 663552 em 663552 @D 995328 995328
(2,0,1;2) (2,0,1;1) (1,0,1;2) (2,0,0;4) (1,1,0;4)
#13.3 #14.1
1990656 8Q 995328
(2,1,0;1) (1,2,052)

#14.2 #14.3 #14.4

663552 663552 Q@ 331776

(l,l,l;l) (1,0,1;2) (0,1,1;4)
#15.1 #15.2 #15.3 #15.4 #15.5
995328 8_0_0 497664 Q_8_Q 497664 995328 005328
(3,1,051) (3,1,0;2) (2,1,0;4)

(2,1,0;2) (3,0,0;2)
#16.1 #16.2 #17.1 #17.2 #17.3
497664 m 497664 995328 497664
(4,0,0;2) (1,3,02) (2,2,030) 2,2,0;2)

497664
(3,0,054)
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Gy,

_2—,
6G5

=G123— G1oGu, (2.20)

where G134 denotes the fully interacting four-point function

1
G123422J Do $1drdpapse L7, (2.21)

The term G4,G3, in (2.20) subtracts a certain set of discon-
nected diagrams from G4,3,. By subtracting all disconnected
diagrams from G534, We obtain the connected four-point
function

Gir3=GC1234— G183~ G13Gs— GGz (222)
in the form
c 686Gy
1234~ — 2 =1~ 51362~ G14G2s. (2.23)
6Gyy

The first term contains all diagrams obtained by cutting a
line in the diagrams of the two-point function G;,. The sec-
ond and third terms remove from these the disconnected dia-
grams. In this way we obtain the perturbative expansion

62208

YOX =

Generaizing the multiplicities (2.10), (2.19), and (2.26) for
connected vacuum diagrams, two- and four-point functions
to an arbitrary connected correlation function with an even
number E of end points, we see that

£ 41PplE!
Me= SrsrogiTaN (228)
where N counts the number of combined permutations of
vertices and external lines which leave the diagram un-
changed.

2. Removing lines

We now study the graphical effect of functional deriva-
tives with respect to the free correlation function G, where
the basic differentiation rule (2.11) becomes

060G,

1
3Gas = 5{5135424‘ 81403} - (2.29)

We represent this graphically by extending the elements of
Feynman diagrams by an open dot with two labeled line ends
representing the delta function:

(2.30)

1—o—2= 612

RECURSIVE GRAPHICAL CONSTRUCTION OF FEYNMAN . ..

1541

c _w 129’ cm
61234—;15 21| Gizs (2.24)

with coefficients

5G(p) p p
Gib=-2—25 - (
1234 5G341 2 q

3 [ blet e+ o ve).

(2.25)

They are listed diagrammatically in Table Il up to three
loops. Asbeforein Table 11, the multiple numbering in Table
Il indicates the origin of each diagram of the connected
four-point function. For instance, the diagram 11.2.2, 11.4.3,
14.1.2, 14.3.3in Table 111 stems together with its multiplicity
from the diagrams 11.2, 11.4, 14.1, 14.3 in Table I1.

The multiplicity of each diagram of a connected four-
point function obeys a formula similar to (2.19):

_ 41Ppl 4]
E=4
Mot = 2rsmogTN- (220
This multiplicity decomposes into equal parts if the spatial
indices 1, 2, 3, 4 are assigned to the E=4 end points of the
connected four-point function, for instance:

1 3 1 2 1 2
20736 OO, +20736 XXX, + 20736 XX

(2.27)

Thus we can write the differentiation (2.29) graphically as
follows:

) 1
17225 {1—0—3 4—0—2+1——4 3_0_2}- (231)

03—4

Differentiating a line with respect to the free correlation
function removes the line, leaving in a symmetrized way the
spatial indices of the free correlation function on the vertices
to which the line was connected.

The effect of this derivative is illustrated by studying the
diagrammatic effect of the operator

L—f G i
S 2 6Gy,

Applying L to a connected vacuum diagram in W(®), the
functional derivative 6/ §G1, generates diagrams in each of
which one of the 2p lines of the original vacuum diagram is
removed. Subsequently, the removed lines are again rein-
serted, so that the connected vacuum diagrams WP are
eigenfunctions of L, whose eigenvalues 2p count the lines of
the diagrams:

(2.32)

CWP =2pWP, (2.33)
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TABLE II1. Connected diagrams of the four-point function and their multiplicities of the ¢* theory up to three loops. Each diagram is
characterized by the vector (S D, T; N) whose components specify the number of self-, double, triple connections, and of the combined

permutations of vertices and externa lines leaving the diagram unchanged, respectively.

#5.2.2,#6.1.1
82944,41472
124416

(1,0,0;8)

#5.2.3,#5.3.1,#7.1.2,#7.2.1

82044,82944,41472,41472

OO0

#7.1.3,#7.2.3

248832
(1,1,0;2)
#6.1.3,#6.2.1

41472,41472 +Q_Q

41472,41472

P &)
#1.1.1
1 24 ><
(0,0,0;24)
#2.1.1,#3.1.1 #3.1.2,#3.2.1
) 1152,576 >O< 1152,1152 4+Q
1728 2304
(0,1,0;8) (1,0,0:6)
#40.01,#7.1.1 #4.1.2,#51.1,#5.2.1 #5.1.2,#53.2
3 41472,20736 m 165888,41472,41472 é 27648,27648 S
62208 248832 55296
(0,2,0;8) (0,1,0;4) (0,0,1;6)

#6.1.2,#6.2.2,#7.2.2
20736,20736,82944
124416

L

(2,0,0,4)

82944

(2,0,0;6)

82944

(1,1,0;6)

#8.1.1,#17.1.1

2985984
(0,3,0;8)
#9.1.1,#13.2.1
3981312,1990656
5971968
(0,1,0;16)
#9.2.2,#14.1.1,#14.4.3
7962624,1990656,1990656
11943936

(0,2,0;4)

A

#11.2.4,#11.3.2,#17.1.2,#17.2.1

#11.1.3,#11.2.1
3981312,3981312
7962624

(0,2,0;6)

3981312,3981312,1990656,1990656

11943936

(1,2,0;2)

(

#8.1.2,4#9.2.1,#10.2.1

1990656,995328 3981312,3981312,3981312
! XOOCX

11943936

{0,2,0;4)

#9.1.3,#9.2.3,#11.1.1,%11.4.1

#9.1.2

0,0,0;24)

#10.1.1,#10.2.3,#14.2.1,#14.4.2
2654208,2654208,1327104,1327104

7962624

g

#11.2.2,#11.4.3,#14.1.2,%#14.3.3

(0,1,1;2)

7962624,7962624,3981312,3981312
23887872
(1,1,0;2)
#11.3.3,#11.4.4,#12.1.1,#12.4.5
7962624,7962624,3681312,3981312
23887872

(1,1,0;2)

15925248,15925248,7962624,7962624

#8.1.3,#11.1.2,#11.3.1
7962624,1990656,1990656
11943936

(0,2,0;4)

47775744
(0,1,0:2)
#10.2.2,#12.4.1

2654208,1327104

©

#11.2.3,#11.4.2,#13.2.2,#13.3.1

3981312

(0,0,1;8)

7962624,7962624,3981312,3981312 ; é ! 2
23887872
(1,1,0;2)
#11.4.5,415.3.1,#15.4.1
7962624,1990656,1990656
11943936

(1,1,0;4)
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TABLE I1l. (Continued).

#11.4.6,#13.1.1,#13.2.3 #12.1.2,#12.2.2,#13.3.3,#17.2.2

1990656,1990656,3981312,3981312 QQQ
11943936

(2,1,0;2)

#12.1.3,#16.1.2
15925248,3981312,3981312 3981312,1990656

23887872 5971968

(1,0,0;4) (2,0,0;8)

#12.1.4,#12.3.3,#15.1.1,#15.3.2 #12.2.1,#12.4.2 #12.3.2,#12.4.3,#14.2.2,#14.3.2

(2,1,0;2) (1,0,1;6) (1,0,1;2)

#12.3.1,#12.4.4

1327104,1327104 ( ?
2654208

(1,0,1;6)

#14.1.4,#15.4.4

3981312,1990656
5971968

(1,1,0;8)

#13.1.2,#13.3.4,#15.4.2,#15.5.1 #13.1.3,#16.1.1

7962624,7962624,3981312,3981312 1990656,995328

23887872 2085984

8o =g

#13.3.2,#15.2.1,#15.3.3 #14.1.3,#14.2.3,#17.1.3,#17.3.1

3981312,995328,995328 Qm 3981312,3981312,1990656,1990656
5971968

11943936

(2,0,0;2) (2,0,0;16)

#13.2.4,#13.3.5
3981312,3981312
7962624
(1,1,0;6)

(2,1,0;4) (1,2,0;2)

#14.3.1,#14.4.1 #15.1.2,#15.53,#16.1.3,#16.2.2

3981312,3981312,1990656,1990656
11943936 : + :Q’Q

(3,0,0;2)

1327104,1327104
2654208
(0,0,1;12)

#15.1.3,#15.4.3,#17.2.3,#17.3.2

#15.1.4,#15.4.5 #15.2.2,$#155.2

1990656,1990656 Q@
3981312 b

(3,0,0;6)

1990656,1990656,3981312,3981312 1990656,1990656

11943936 3981312

(2,1,0:2) (2,1,0:6)

#15.2.3,#15.4.6 #15.3.4,#15.5.4 #16.1.4,#16.2.1

1990656,1990656 M

3981312

1990656,1990656 1990656,1990656

3981312 3981312

(2,1,0:6) (2,0,0;12) (3,0,0;6)

#17.1.4,#17.2.4
1990656,1990656
3981312

(1,2,0;6)

3981312,3981312,1990656,1990656 m 1327104,1327104 g } 1327104,1327104,2654208,2654208 ( 2
119439386 2654208 . 7962624

As an example, take the explicit first-order expression for the

. ) B. Perturbation theory
vacuum diagrams, i.e.

and apply the basic rule (2.29), leading to the desired eigen-
value 2.

:3f V1234G15G 34,
1234

(2.34)

Field theoretic perturbation expressions are usualy de-
rived by introducing an externa current J into the energy
functional (2.1) which islinearly coupled to the field ¢ [15—
17]. Thus the partition function (2.5) becomes in the pres-
ence of J the generating functional Z[ J], which alows us to
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find al free n-point functions from functional derivatives
with respect to this external current J. In the normal phase of
a ¢* theory, the expectation value of the field ¢ is zero and
only correlation functions of an even number of fields are
nonzero. To calculate all of these, it is possible to substitute
two functional derivatives with respect to the current J by
one functional derivative with respect to the kernel G~ 1.
This reduces the number of functional derivatives in each
order of perturbation theory by one-haf and has the addi-
tional advantage that the introduction of the current J be-
comes superfluous.

1. Current approach

Recall briefly the standard perturbative treatment, in
which the energy functional (2.1) is artificialy extended by a
source term

El¢.J]=E[¢]- LJltbl- (2.35)
The functiona integral for the generating functional
Z[J]= f D¢ e EL4] (2.36)

isfirst explicitly calculated for a vanishing coupling constant
g, yielding

0) 1 1, L
Z [J]:exp _ETrlnG +§ 12612 ‘]1‘J2 y
(2.37)

where the trace of the logarithm of the kernel is defined by
the series (see p. 16 in Ref. [18])

o

_ (—nnt - _
TrinG 1221711 n{6121_512}"'{6n11_5n1}-
(2.38)

If the coupling constant g does not vanish, one expands the
generating functional Z[J] in powers of the quartic interac-
tion V, and reexpresses the resulting powers of the field
within the functional integral (2.36) as functional derivatives
with respect to the current J. The original partition function
(2.5) can thus be obtained from the free generating func-
tional (2.37) by the formula

Z=exp _gf \Vj L Z(O)[J]
41 1o 124 53,63,8338d, o

(2.39)

Expanding the exponentia in a power series, we arrive at the
perturbation expansion

z=l1+-2[ v _
- 41 ) 1oz 1224 63,63,83383,

+1(_g)2f VsV

2\ 4l 1o3as678 24 078

x Gl +...1Z903]
83,03,8330,03561503,03g

J=0
(2.40)
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in which the pth order contribution for the partition function
requires the evaluation of 4p functional derivatives with re-
spect to the current J.

2. Kernel approach

The derivation of the perturbation expansion simplifies, if
we use functional derivatives with respect to the kernel G 1
in the energy functional (2.1) rather than with respect to the
current J. This allows us to substitute the previous expres-
sion (2.39) for the partition function by

g & WO
Z= - = Vioss ——7——1 , (241
exp[ 6 f1234 1234 5G 1, 6G3t € (2.41)

where the zeroth order of the negative free energy has the
diagrammatic representation

1 1
0 _-_Z -1 = = . 2.42
W 2TrlnG 5 O (2.42)

Expanding again the exponentia in a power series, we obtain

52

Z={1+— V 1T =71
6 Jioz 2 6G, 6G

— g 2
T) f V1234V5678
12345678

X 54 +
6G, 6Ga, 6Ggg 6Gog

L
2

)
e,

(2.43)

Thus we need only half as many functional derivatives than
in (2.40). Taking into account (2.11), (2.12), and (2.38), we
obtain

SW© 1 WO 1
P 5G12, PR 21613824+ G14Gasl,
(2.44)
such that the partition function Z becomes
2211+ 293  VpuGLGut —9)°
= 3,V 12881Gut 5|
X J V1234V5678 [ 9G 126G 324G 56G 78
12345678
WO
(2.45)

This has the diagrammatic representation
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O

(2.46)

All diagrams in this expansion follow directly by successively cutting lines of the basic one-loop vacuum diagram (2.42)
according to (2.43). By going to the logarithm of the partition function Z, we find a diagrammatic expansion for the negative

free energy W

_1 -9 1(=g
W‘2O+4!3OO+2(4!

which turns out to contain precisely al connected diagrams
in (2.46) with the same mulltiplicities. In the next section we
show that this diagrammatic expansion for the negative free
energy can be derived more efficiently by solving a func-
tional differential equation.

C. Functional differential equation for W=InZ

Regarding the partition function Z as a functional of the
kernel G2, we derive a functional differential equation for
Z. We start with the trivial identity

1)
f D¢5Tsl{¢zef Flel =0, (2.48)

which follows via direct functional integration from the van-
ishing of the exponential at infinite fields. Taking into ac-
count the explicit form of the energy functiona (2.1), we
perform the functional derivative with respect to the field and
obtain

| D¢‘ s | G gats

g _
5 V1345¢2¢3¢4¢’5] e El4l=0. (249
5

Applying the substitution rule (2.14), this equation can be
expressed in terms of the partition function (2.5) and its de-
rivatives with respect to the kernel G~

f ' - v 2
12 3 18 5(3231 3 345 L 565315G251 '
(2.50)

Note that this linear functional differential equation for
the partition function Z is, indeed, solved by (2.41) dueto the
commutation relation

)2 23 +12000 [+,

(2.47)

2
exp _Qf Vi, 7 e

ool =3[ vz
P76 Sz 6G 5 6Go,t
g j g
=73 \ o~ —1
3 7575 5G 1

g &
X - = ——1—1 .

which follows from the canonical one

P
@634 —Gy 3G = 5{513524+ 814023}
(2.52)

Going over from Z to W=InZ, the linear functiona differ-
ential equation (2.50) turns into a nonlinear one:

S +2f Gt oW
12 3 13 5G2_31

2 f v 5°W . SW W
739 )55 135) 56,06 oL | 6GL, 0G|

(2.53)

If the coupling constant g vanishes, this is immediately
solved by (2.42). For a non-vanishing coupling constant g,
the right-hand side in (2.53) produces corrections to (2.42)
which we shall denote with W(™_ Thus the negative free
energy W decomposes according to

W=WO + Wi, (2.54)
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Inserting this into (2.53) and taking into account (2.44), we Swint) g
obtain the following functional differential equation for the f ZGle =72 f 1234V1234@12@34
interaction negative free energy W™ 12
int)
J, G—l‘sw(im) —gf V1234G12G35G46 5Ges
o2 5G_121 g
g SWim 3 12345678V1234(315G26G37G48
=— V1234G1,G V123G
4 f 1234 123412934 g f 1234212 55 T 5634 S2\(ind SWM - s\\ind

g v S2wino +6W'm) Swin % 5G565G78+ 0Gss  6G7g
3 )iz P 5G 106G, 8GLE 8GLt | (2.58)

(2.55) D. Recursion relation and graphical solution

We now convert the functional differential equation
With the help of the functional chain rule, the first and sec-  (2.58) into a recursion relation by expanding W™ into a

ond derivatives with respect to the kernel G™* are rewritten  power series in g;

as
1
wiinh — 2 — ( ) WP, (2.59)
S =1 P
G136 2.56
5G, f 122 5G4, 256 g ng the property (2.33) that the coefficient W(P) satisfies
the eigenvalue problem of the line numbering operator
and (2.32), we obtain the recursion relation

SWP)
WP = 12j V1234G 150G 35616 —=—
123456 6Gsg

8 2
——T 1= G15G26G37Gug =
5G 121 5G 341 f 5678 159263748 5G 56 5G 8 . f v . 52w( p)
+ R
12345678 12342152262 37248 5G = 5G 78

1
+ 5 J 56{G13C"25G46+ G14G25G3s

- (P
+4 ( ) f V1234G 156 26G37G 48
=1 \9/ J 10345678
+G23G15G 6t Gz4GlsGss}fa SWP-9 S
(2.557) X 3G G
and the initia condition (2.34). With the help of the graphi-

respectively, so that the functional differential equation  cal rules of Sec. I A, the recursion relation (2.60) can be
(2.55) for W™ takes the form (compare Eq. (51) in Ref. [7])  written diagrammatically as follows:

(2.60)

s2w ) SW®
(p+1) — A 2 X )
W = 4 §1—283—4 j> + 12 §1—2 2

=llp SWp—9) 1 3 SWi9)
4 —_— , >1.
+ q; q 61—2 2><4 63—4 P (2.61)

This is iterated starting from

wo =3 00 .

(2.62)

The right-hand side of (2.61) contains three different graphical operations. The first two are linear and involve one- or two-line

amputations of the previous perturbative order. The third operation is nonlinear and mixes two different one-line amputations
of lower orders.
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An alternative way of formulating the above recursion relation may be based on the graphical rules

5W(P) 1
we = —
@ ’ 0G1a 2

With these, the recursion relation (2.61) reads

@:4 +12@@+4§ Z

O -
’ 5G125G34 - 3@ '

(2.63)

4

D 1.
@) (e P2 (2.64)

To demonstrate the working of (2.61), we calculate the connected vacuum diagrams up to five loops. Applying the linear

operations to (2.60), we obtain immediately

Sw 1

51—z = 0 O

2w 1 3
§1—263—4 6 2><4

(2.65)

Inserted into (2.61), these lead to the three-loop vacuum diagrams

we =2 S+ OO0 -

(2.66)

Proceeding to the next order, we have to perform one- and two-line amputations on the vacuum diagrams in (2.66), leading to

SW®
s =96 12 + 144 182 +144 OQ), (2.67)
and subsequently to
2w 1 2 1 3 !
m: 288 3><><4 +144 2>O<4 +288 2i—Q4
1 2
t1aa 040 p1ag 1400, 4 1aa 1Q3 (2.68)
4 3 2 4

Inserting (2.67) and (2.68) into (2.61) and taking into ac-
count (2.65), we find the connected vacuum diagrams of or-
der p=3 with their multiplicities as shown in Table |. We
observe that the nonlinear operation in (2.61) does not lead
to topologically new diagrams. It only corrects the multi-
plicities of the diagrams generated from the first two opera-
tions. This is true aso in higher orders. The connected
vacuum diagrams of the subsequent order p=4 and their
multiplicities are listed in Table I.

As a crosscheck we can also determine the total multi-
plicities M () of all connected vacuum diagrams contributing
to W(P), To this end we recall that each of the M (P) diagrams
in W(P) consists of 2p lines. The amputation of one or two
lines therefore leads to 2pM® and 2p(2p—1)M® dia-
grams with 2p—1 and 2p—2 lines, respectively. Consider-
ing only the total multiplicities, the graphical recursion rela
tions (2.61) reduce to the form derived before in Ref. [7]

MP+D=16p(p+1)MP

p-1 |
163, g MM Pt
(2.69)
These are solved starting with the initial value
ML =3, (2.70)
leading to the total multiplicities
M@=96, M®=9504, M =1880064, (2.71)

which agree with the results listed in Table I. In addition we
note that the next orders would contain

M) =616108032, M (®)=301093355520,
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M (7)) = 205062331760640 (2.72)

connected vacuum diagrams.

[1l. SCALAR ¢*A THEORY

For the sake of generality, let us also study the situation
where the quartic interaction of the ¢* theory is generated by
ascalar field A from acubic ¢? A interaction. The associated
energy functional

E[#,A]=E%[¢,A]+E"™[¢,A] 31

decomposes into the free part

(0) 1 -1 1 -1
E [ﬁbyA]:z 12612 ¢1¢2+§ 12H12 A1A; (32

and the interaction

. Vg
E[ ¢,A]= 79 J123V123¢>1¢’2A3- (3.3)

Indeed, as the field A appears only quadratically in (3.1), the
functional integral for the partition function

Z= J D¢DAe El#Al (3.4)

can be exactly evaluated with respect to the field A, yielding

z= f D e B4 (35)

with the effective energy functional

1 1 .
E(eff)[¢]: — ETrInH_1+ > J12G121¢’1¢’2

5| VeVseHaibodste. (36
Apart from a trivial shift due to the negative free energy of
the field A, the effective energy functiona (3.6) coincides
with that of a ¢* theory in Eq. (2.1) with the quartic inter-
action

Vipgs=—3 J’ 56V125V346H 56 - (3.7)

1 1 1 1
(0)—__ -1 _ -1 = — .
WO = TG = STrlnH™ = 5 (O +5 (3
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If we supplement the previous Feynman rules (2.7), (2.9) by
the free correlation function of the field A
1 ~~2 = Hpy (3.8)

and the cubic interaction

>M = /123‘/123,

the intimate relation (3.7) between the ¢*-theory and the
¢$>A- theory can be graphically illustrated by

T

(3.10)

(3.9

This corresponds to a photon exchange in the so-called s, t,
and u channels of Mandelstam’ s theory of the scattering ma-
trix. Their infinite repetitions yield the relevant forces in the
Hartree, Fock, and Bogoliubov approximations of many-
body physics. In the following we analyze the ¢?A theory
aong similar lines as before the ¢* theory.

A. Perturbation theory

Expanding the exponential in the partition function (3.4)
in powers of the coupling constant g, the resulting perturba-
tion series reads

< 1 (g
2=2 o) (Z)
p

X f D¢DA< f V123Vaseh1 P2 babsAzAe
123456

x e Es.A] (3.11)
Substituting the product of two fields ¢ or A by a functional
derivative with respect to the kernels G™* or H ™%, we con-
clude from (3.11)

o (—20)° 5 P
= | f Vi23Viass s T T -1
p=o (2p)! 123456 0G5 6G 5 Hyg

0)

x eV (3.12)

where the zeroth order of the negative free energy reads

(3.13)
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Inserting (3.13) in (3.12), the first-order contribution to the
negative free energy yields

wb=2 f V123V as6H 366G 14G 25
123456

+ f V123V 56H 366G 12G 45, (3.14)
123456
which corresponds to the Feynman diagrams
1) —
wh=2 & + O~0O - @i

B. Functional differential equation for W=InZ

The derivation of afunctiona differential equation for the
negative free energy W requires the combination of two in-
dependent steps. Consider first the identity

i —E[¢,AN —
f D$DA ¢1{¢2e }=0, (3.16)

which immediately yields with the energy functional (3.1)

S{(A)Z}
6G,
(3.17)

5Z
512+ 2f Ggsl—,ﬁz@f Vi
3 5G23 34

where (A) denotes the expectation value of the field A. In
order to close the functiona differential equation, we con-
sider the second identity

)
_ a El¢AI=
f DDA oA, e 0, (3.18)
which leads to
Y4
(A)Z= ng VozH 14 ——7. (3.19)
234 6G,3

Inserting (3.19) in (3.17), we result in the desired functional
differential equation for the negative free energy W=InZ:

_1 OW
01212 | Gig—=—1=-29 V134Vs67
2 0G5 34567

“H 5°W . SW  SW
Y 6G3 6Ggs 0G5 8Gg |
(3.20)

A subsequent separation (2.54) of the zeroth-order (3.13)
leads to a functional differential equation for the interaction
part of the free energy W(™:
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f GflM [ 9 Vo2V aeH
5 12756 Iz1 4 | 1y 123" 4567136
X{G12G 45+ 2G14G s}
5\N(ir‘lt)
+g J V123Vas6G1oH 36 —==1
123456 0G5
52w(int)
- V123VasgH 361 ———=17=—=7
g f Lousg 123 456 36{ 5G 121 5G451
M(int) 5w(int)
+ - 3.21

Taking into account the functional chain rules (2.56), (2.57),
the functional derivatives with respect to G~ 1 in (3.21) can
be rewritten in terms of G:

J m(int) B g
1

Guv =2 V123V aseH 361 G12G a5+ 2G 14G o5}
2 1 123456

+ g J’ V123V456H 36{ G 12G 47G 58
123456

5vv(int)
+2G14G /Gsg} Wm

+9 J’ —V123Vasg
1234567891

X H36G17G2G39Ga1

52w(int) 5w(int) M(int)
3G40Gg, | 0Grs 0Gg;

X

] . (322

C. Recursion relation and graphical solution

The functional differential equation (3.22) is now solved
by the power series

o]

win = (3.23)

p
;(g) W),
p=1 (2p)!\4

Using the property (2.33) that the coefficients W(P) satisfy
the eigenvalue condition of the operator (2.32), we obtain
both the recursion relation

WD =4(2p+1)

f V123V 456H 36( G 12G 47Gss
12345678

-V 123\/456

(p)
+2G14G27Geg) m=— + f
1234567891

0Grg
X H36G17G 286G 329G a1
S2WP) p-1 2p SWP— s\W(@
X[mﬂ,l (ZQ>T78 WQIH
(3.29)

and the initial value (3.14). Using the Feynman rules (2.7),
(3.8), and (3.9), the recursion relation (3.24) reads graphi-
cally
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W) = 4(2p + 1){

§2W (p) 2 r-!
e +
61—263—4 3

4 9=1
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swip 1

2p

sWwir=a) 4 W

_— >
§1—2 1>MN<3 53— P2b
2q (3.25)

which isiterated starting from (3.15). In analogy to (2.64), this recursion relation can be cast in a closed diagrammatic way by

using the alternative graphical rules (2.63):

e

> p—1
IOR>
> g=1

2p

= 4(2p+1){w> +2@

(3.26)

o)

Weillustrate the procedure of solving the recursion relation (3.25) by constructing the three-loop vacuum diagrams. Applying

one or two functional derivatives to (3.15), we have

+4}>

Sw@) 1
=2
§1—2 2

This is inserted into (3.25) to yield the three-loop diagrams
shown in Table IV with their multiplicities. The table also
contains the subsequent four-loop results, which we shall not
derive here in detail. Observe that the multiplicity of a con-
nected vacuum diagram in the ¢?A theory is given by a
formula similar to (2.10) in the ¢* theory:

(2p)! 4P
2!S+DN '

N (3.28)
Here Sand D denote the number of self- and double connec-
tions, and N represents again the number of vertex permuta-
tions leaving the vacuum diagram unchanged.

The connected vacuum diagrams of the ¢?A theory in
Table IV can, of course, be converted to corresponding ones
of the ¢* theory in Table |, by shrinking wiggly lines to a
point and dividing the resulting multiplicity by 3 in accor-
dance with (3.10). This relation between connected vacuum
diagrams in ¢* and ¢?A theory is emphasized by the num-
bering used in Table V. For instance, the shrinking converts
the five diagrams 4.1-4.5 in Table IV to the diagram 4 in
Table |. Taking into account the different combinatorial fac-
tors in the expansion (2.6) and (3.23) as weII as the factor 3
in the shrinkage (3.10), the multiplicity M of a ¢* dia

gram results from the corresponding one M ¢2A of the ¢2A
partner diagrams via the rule

ME=0_ 1 ME=0

= g Men: (3.29)

s2w
51—2d83—4

IV. COMPUTER GENERATION OF DIAGRAMS

Continuing the solution of the graphical recursion rela
tions (2.61) and (3.25) to higher loops becomes an arduous
task. We therefore automatize the procedure by computer
algebra. Here we restrict ourselves to the ¢* theory because
of its relevance for critical phenomena.

A. Matrix representation of diagrams

To implement the procedure on a computer we must rep-
resent Feynman diagrams in the ¢* theory by algebraic sym-
bols. For this we use matrices as defined in Refs. [8—10]. Let
p be the number of vertices of a given diagram and label
them by indices from 1 to p. Set up an adjacency matrix M
whose elements M;; (0<i, j=<p) specify the number of lines
joining the vertices i and j. The diagonal elements M;; (i
>0) count the number of self-connections of the ith vertex.
External lines of a diagram are labeled as if they were con-
nected to a single additional dummy vertex with number O.
The matrix element M is set to zero by convention. The
off-diagonal elements lie in the interval 0<M;;<4, while
the diagonal elements for i >0 are restricted by 0<M;;<2.
We observe that the sum of the matrix elements M;; in each
but the zeroth row or column equals 4, where the diagonal
elements count twice,

3 e

The matrix M is symmetric and is thus specified by

4.1
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TABLE IV. Connected vacuum diagrams and their multiplicities of
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the ¢2A theory up to four loops. Each diagram is characterized by

the vector (S, D; N) whose components specify the number of self- and double connections as well as the vertex permutations leaving the

vacuum diagram unchanged, respectively.

P w®
#11 #1.2
(0.1:2) (2.02)
#21 #2.2 #31 #3.2 #3.3
2 a8 @ 24 96 @ 6w OO un OO0
(0.0:8) (0.2 (0.0:4) (1,02) (2.12)
#4.1 #4.2 #4.3 #4.4 #45
3 3840 @ 11520 @ 3840 960 %@ 5760
(0.012) (0.0:4) (0.0:12) (0.3:6) (0,154)
#51 #5.2 #53 #5.4 #6.1
11520 23040 @ 11520 5760 QQ:Q 7680 @
(0.1:2) (0.02) (1,02) (L12) (0.0:6)
#6.2 #6.3 #6.4 #71 #7.2
11520 5760 960 11520 @ 5760 @{D
(L.0:2) (2.02) (3,0:6) (0.054) (0.08)
#7.3 #74 475 #4756
11520 60 (DO« 110 OO 20 (OO
(L0:2) (112) (2.22) (2,008

(p+1)(p+2)/2—1 elements. Each matrix characterizes a
unique diagram and determines its multiplicity via formula
(2.28). From the matrix M we read off directly the number of
self-, double, triple, fourfold connections S, D, T, F and the
number of external legs E=3P_ My, . It aso permits us to
calculate the number N. For this we observe that the matrix
M is not unique, since so far the vertex numbering is arbi-
trary. In fact, N is the number of combined permutations of
vertices and externa lines that leave the matrix M un-
changed [compare to the statement after (2.28)]. If n,, de-
notes the number of different matrices representing the same
diagram, the number N is given by

p!

N=
iy

P
I Mg,

=1

(4.2)

where the matrix elements M; count the number of externa
legs connected to the ith vertex. One way to determine the
number ny, is to repeatedly perform the p(p—1)/2 ex-
changes of pairs of rows and columns except the zeroth ones,
until no new matrix is generated anymore. For larger matri-
ces this way of determining ny, is quite tedious. Below we
will give a better approach. Inserting Eg. (4.2) into the for-
mula (2.28), we obtain the multiplicity of the diagram repre-
sented by M. This may be used to crosscheck the multiplici-
ties obtained before when solving the graphical recursion
relation (2.61).

So far, the vertex numbering has been arbitrary, making
the matrix representation of a diagram nonunique. To
achieve unigqueness, we customize to our problem the proce-
dure introduced in [11]. First we group the vertices in a

given diagram into different classes, which are defined by
the four tuples (E, S D, T) containing the number of external
legs, self-, double, and triple connections of a vertex. The
classes are sorted by increasing numbers of E, then S, then D,
then T. In general, there can still be vertices that coincide in
al four numbers and whose ordering is therefore still arbi-
trary. To achieve unique ordering among these vertices, we
associate with each matrix a number whose digits are com-
posed of the matrix elements M;;(0<j<i=<p), i.e, weform
the number with the (p+1)(p+2)/2— 1 elements

M 10M 11| M 20M 1M 25| M 3oM 1M 35M 35| ..M 5, . (4.3)

To guide the eye, we have separated the digits stemming
from different rows by vertical lines. The smallest of these
numbers compatible with the vertex ordering introduced
above is chosen to represent the diagram uniquely. Instead
we could have aso allowed all vertex permutations and iden-
tified the number (4.3) with a unique representation of a
given diagram. However, for most diagrams containing sev-
eral vertices, this would drastically inflate the number of ad-
missible matrices and therefore the effort for finding a
unique representation.

Now we can also give an improved procedure for finding
Ny - Let ny, be the number of different matrices compatible
with the vertex ordering by the four tuples introduced above.
Let there be c classes of vertices and kq,...,k; vertices be-
longing to each class. Then we have

p! )

nM:—Hjczlk]-! Ny (4.9
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or, together with (4.2),

w2l

=1

. (4.5)

p
I1 mq!
i=1

As an example, consider the following diagram of the
four-point function with p=3 vertices:

5

Its vertices are grouped into c= 2 classes with k=2 vertices
belonging to the first class characterized by the four tuple
(E,S,D,T)=(1,0,1,0) and k,=1 vertex belonging to the
second class (E,S,D,T)=(2,0,0,0). When labeling the ver-
tices in view of the unique matrix representation, the vertex
in the second class comes last because of the higher number
of external legs. Exchanging the other two vertices in the
first class does not change the adjacency matrix anymore due
to the reflection symmetry of the diagram (4.6). Thus its
unique matrix representation reads

(4.6)

4.7

N B P O
R N O B
= O N -
O r B N

with rows and columns indexed from O to 3. According to
Eq. (4.3), the matrix (4.7) yields the number

10120/ 2110. (4.8)
Asthereisn/ =1 matrix compatible with the vertex ordering
by the four tuples, the number N of vertex permutations of
the diagram (4.6) is determined from (4.5) as 4 (compare the
corresponding entry in Table II1).

A more complicated exampleis provided by the following
diagram of the two-point function with p=4 vertices:

Here we have again c=2 classes, the first one is
(E,S,D,T)=(0,0,2,0) with k;=2 vertices and the second
one (E,S,D,T)=(1,0,1,0) with k,=2 vertices. Exchanging
both vertices in each class leads now to ny, =2 different
matrices

(4.9

0 0011 0 00 11
0 0 2 2 0 0 0 2 0 2
0 2 0 0 21, 0 20 20
1 2 001 1 0 2 0 1
1 0 2 10 12 010

(4.10)

For the unique matrix representation we have to choose the
last matrix as it leads to the smaller number

00]020] 1020/ 12010. (4.11)
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From Eq. (4.5) we read off that the number N of vertex
permutations of the diagram (4.9) is 2 (compare the corre-
sponding entry in Table I1).

The matrix M contains, of course, al information on the
topological properties of a diagram [9,10]. For this we define
the submatrix M by removing the zeroth row and column
from M. This allows us to recognize the connectedness of a
diagram: A diagram is disconnected if there is a vertex num-

bering for which M is a block matrix. Furthermore a vertex
is a cut vertex, i.e., a vertex which links two otherwise dis-

connected parts of a diagram, if the matrix M has an almost
block form for an appropriate numbering of verticesin which

the blocks overlap only on some diagonal element M;;, i.e.,
the matrix M takes block form if the ith row and column are

removed. Similarly, the matrix M allows us to recognize a
one-particle-reducible diagram, which falls into two pieces
by cutting a certain line. Removing a line amounts to reduc-

ing the associated matrix elements in the submatrix M by

one. If the resulting matrix M has block form for a certain
vertex ordering, the diagram is one-particle reducible.

B. Practical generation

We are now prepared for the computer generation of
Feynman diagrams. First the vacuum diagrams are generated
from the recursion relation (2.61). From these the diagrams
of the connected two- and four-point functions are obtained
by cutting or removing lines. We used a MATHEMATICA pro-
gram to perform this task. The resulting unique matrix rep-
resentations of the diagrams up to the order p=4 are listed
in Tables V-VII. They are the same as those derived before
by hand in Tables I-Ill. Higher-order results up to p=6,
containing all diagrams that are relevant for the five-loop
renormalization of ¢* theory in d=4—¢e dimensions
[10,20], are made available on the internet [19], where also
the program can be found.

1. Connected vacuum diagrams

The computer solution of the recursion relation (2.61) ne-
cessitates to keep an exact record of the labeling of external
legs of intermediate diagrams which arise from differentiat-
ing a vacuum diagram with respect to a line once or twice.
To this end we have to extend our previous matrix represen-
tation of diagrams where the external legs are labeled as if
they were connected to a simple additional vertex with num-
ber 0. For each matrix representing a diagram we define an
associated vector that contains the labels of the external legs
connected to each vertex. This vector has the length of the
dimension of the matrix and will be added to the matrix as an
extra left column, separated by a vertical line. Consider, as
an example, the diagram (4.6) of the four-point function with
p=3 vertices, where the spatial indices 1, 2, 3, 4 are as-
signed in a particular order:

ey

In our extended matrix notation, such a diagram can be rep-
resented in total by six matrices:

(4.12)
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TABLE V. Unique matrix representation of all connected vacuum diagrams of ¢* theory up to the order
p=4. The number in the first column corresponds to their graphical representation in Table I. The matrix
elements M;; represent the numbers of lines connecting two verticesi and j, omitting M;o=0 for simplicity.
The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vector (S, D, T, F; N) characterizing the topology of the diagram, the multiplicity M, and
the weight W=M/[(4!)Pp!]. The graphs are ordered according to their number of self-connections, then
double connections, then triple connections, then fourfold connections, then the number (4.3).
w®: 1 diagram
|| 1
il 1
#|IMi; [(s,.0,7. 70 M| W
1]l 2 [(2,1,0,0;1) | 3]1/8
Ww®: 2 diagrams
z(|1]22
jll1j12
#(Mi; | (s, 0,7, 7 |M| W
2[[o]40[ (0,0,0,1;2) |24]1/48
3((1]21] (2,1,0,0;2) |72|1/16
W®: 4 diagrams
2(|1122]333
711112]123
# M;; s,p,T,F;N)\ M | W
4([o]20]220[ (0,3,0,0;6) [1728]1/48
5(l0[30{111](1,0,1,0;2) [3456 [1/24
7|10[21{201] (2,2,0,0;2) [2592 |1/32
6|1[11{111](3,0,0,0;6) [1728|1/48
W®: 10 diagrams
|| 1(22]333]|4444
7l(1({12]123]|1234
# M;; (s,p,T,F;N)| M w
10[[o]00]130[3100[ (0,0,2,0;4) | 55296(1/144
9lo|10{120]|2110( (0,2,0,0;,8) | 248832 1/32
8(|o|0o[220]|2200| (0,4,0,0;8) | 62208(1/128
14|(0]30]110]0021 | (1,1,1,0;2) [165888| 1/48
11|{0]10]220]1101|(1,2,0,0;2) [497664| 1/16
12|{0]30]011]1011(2,0,1,0;2) [165888| 1/48
13|{0]20]111]1101|(2,1,0,0;4) [248832| 1/32
17|{0]20]021]2001 | (2,3,0,0;2) [124416| 1/64
15|{0{11]111]2001 | (3,1,0,0;2) [248832| 1/32
16({1]{01]111]1101(4,0,0,0;8) | 62208|1/128
(v lo 211 {(} o121 {} o112
{12} /2 0 1 1 {3 |1 0 1 2 {3 |1 0 2 1
(3t |11 0 2| |{L2}|2 1 0 1| {4 |1 2 0 1/’
{1 (11 2 0 {4 |1 2 1 0 {1,212 1 1 0
{} |10 2 11 {} |01 2 1 {} |01 1 2
{1,2}12 0 1 1 {4 11 0 1 2 {4 11 0 2 1
, , 4.13
{4 112 1 0 2 {1,2}/2 1 0 1 {3 11 2 01 4.13)
{3 |11 1 2 0 {3 |11 2 10 {1,2}|2 1 1 0

When constructing of the vacuum diagrams from the recursion relation (2.61), starting from the two-loop diagram (2.62), we

have to represent three different elementary operations in our extended matrix notation:

(i) Taking one or two derivatives of a vacuum diagram with respect to a line. For example, we apply this operation to the

vacuum diagram 2 in Table |
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TABLE VI. Unique matrix representation of al diagrams of the connected two-point function of ¢* theory up to the order p=4. The
numbers in the first column correspond to their graphical representation in Table I1. The matrix elements M;; represent the numbers of lines
connecting two vertices i and j. The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vector (S, D, T; N) characterizing the topology of the diagram, the multiplicity M, and the weight W= M/[(4!)Pp!]. The
graphs are ordered according to their number of self-connections, then double connections, then triple connections, then the number (4.3).

G%): 30 diagrams
1|(11]222]3333 44444
7{101{012]0123(01234
&, 1 diaer: 7# M;; (s,p,;N)| M w
i ¢ 1 dlagram 10.1([00[010]1030[13000( (0,0,2;2) | 221184|1/36
il 11 9.1|/00|020|1110{11110|(0,1,0;4) | 1990656 | 1/4
j|| 01 14.4||00|030{0110|20020| (0,1,1;4) | 331776 |1/24
# |[Mij | (5,078 |M | W 10.2|{00]030[1010[11020|(0,1,1;2) | 663552|1/12
11| 21 [(1,0,0:2) [12]1/2 11.1{|00|010{0220|21100| (0,2,0;4) | 995328 1/8
9.21100|010|1120|12100](0,2,0;2) (1990656 | 1/4
G 3 diagrams 8.1(/00|020|1020{12010((0,3,0;2) | 995328| 1/8
1|(11]222 12.4|/00({030(0011|21010((1,0,1;2) | 663552|1/12
j||01|012 14.3]00|030{1110|10011(1,0,1;2) | 663552(1/12
# || My |(spmsny|M | W 13.2|/00({020(0111(21100((1,1,0;4) | 995328| 1/8
2.1{[10{130](0,0,1;2) [192]|1/6 11.4|/00({011(1110(12010|(1,1,0;1) | 3981312 1/2
3.1{/01]220((1,1,0;2) [288(1/4 14.2|/00{001(1300(11200((1,1,1;1) | 663552|1/12
3.2{|11]111|(2,0,0;2) [288[1/4 11.3|/00({001(1210(12100((1,2,0;2) | 995328| 1/8
11.2|/00{020(1120(11001 [ (1,2,0;1) | 1990656 | 1/4
G7: 8 diagrams 14.1||00{021|1100|11020| (1,2,0;2) | 995328 1/8
122213333 17.1{{00/020|0021|22000] (1,3,0;2) | 497664 |1/16
illo1]o12|o123 13.1{{01|001|1110{11110{(2,0,0;4) | 995328 1/8
” M |Gorm] M W 12.3|(00]011[1300(10101|(2,0,1;1) | 663552|1/12
15.5//01(011(1110(10011|(3,0,0;2) | 995328| 1/8
15.2|/00(021(1101|11001|(3,1,0;2) | 497664 |1/16
15.1]/01{001(1120(11001(3,1,0;1) | 995328| 1/8
16.2)/01(011{1011[11001 | (4,0,0;2) | 497664 |1/16
b g e
- e A
-

_ 1 2 2 1 1 2 2 1 (4.14)
=31 O, + XX+ XK+ XK

This has the matrix representation

2 {{l0 0 0 5 {10 11 1o 11
m{}004:25612{3}103+{4}103
{0 4 0 {4y/1 3 0 (31|13 0
{+ |02 2 { |02 2 {4 o2 2
—3 {1,3}202+{2,3}202>+{1,4}202
(24y12 2 0 {14y|12 2 0 {2312 2 0
o 2 2
+l {242 0 2|]. (4.15)
{1,312 2 0
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The first and fourth matrix as well as the second and third matrix represent the same diagram in (4.14), as can be seen by

permuting rows and columns of either matrix.

(i) Combining two or three diagrams to one. We perform this operation by creating a block matrix of internal lines from
the submatrices representing the internal lines of the original diagrams. Then the zeroth row or column is added to represent
the respective original external spatial arguments. Let us illustrate the combination of two diagrams by the example

glo11

{2} 130

and the combination of three diagrams by

{3 102 { 04 {}
{3,4}

{1,2} |21 {1,2,3,4} |4 0

We observe that the ordering of the submatrices in the
block matrix is arbitrary at this point; we just have to make
sure to distribute the spatial labels of the external legs cor-
rectly.

(i) Connecting external legs with the same label and cre-
ating an internal line. Thisis achieved in our extended matrix
notation by eliminating the spatial |abels of external legs that
appear twice, and by performing an appropriate entry in the
matrix for the additional line. Thus we obtain, for instance,
from (4.16)

{}/0000

S
{

Glo13so

0111 (4.18)

0103

and similarly from (4.17)

0 lo211
O lo2 1,2} (2100
_).
(1,2) [2 1 {1} {1003
) (1030
(4.16)
3
DO =
0 lo242
02 1,2y |2100
_)
21 {1,2,3,4} |4 000
3,4 2001
3.4} (4.17)
[
Nloooo
Co00 = [PPI20] e
lo202
Olooz

As we reobtain at this stage connected vacuum diagrams
where there are no more external legs to be labeled, we may
omit the extra left column of the matrices.

The selection of a unique matrix representation for the
resulting vacuum diagrams obtained at each stage of the re-
cursion relation proceeds as explained in detail in Sec. 1V A.
By comparing we find out which of the vacuum diagrams are
topologically identical and sum up their individua multi-
plicities. Along these lines, the recursion relation (2.61) is
solved by a MATHEMATICA program up to the order p=6.
The results are shown in Table V and in Ref. [19]. To each
order p, the numbers n{”) of topologically different con-
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nected vacuum diagrams are

p [1]2]314]|5]6

n® 1 1]2/4]10]2897

(4.20)

A direct comparison with other, already established com-
puter programs like FEYNARTS [1-3] or QGRAF [4,5] shows
that the automatization of the graphical recursion relation
(2.61) in terms of our MATHEMATICA code is inefficient. Ac-
cording to our experience, the magjor part of the CPU time
needed for the generation of high-loop order diagrams is de-
voted to the reordering of vertices to obtain the unique ma-
trix representation of a diagram—a problem faced also by
other graph-generating methods. After implementation of a
dedicated agorithm for the vertex ordering written for in-
stance in Fortran or C, we would therefore expect CPU times
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for the time-consuming high-loop diagrams which are com-
parable to those of other programs.

2. Two- and four-point functions G, and G{,,
from cutting lines

Having found all connected vacuum diagrams, we derive
from these the diagrams of the connected two- and four-point
functions by using the relations (2.18) and (2.25). In the
matrix representation, cutting aline is essentially identical to
removing a line as explained above, except that we now
interpret the label s that represent the external spatial labels as
sitting on the end of lines. Since we are not going to distin-
guish between trivially ‘‘crossed’’ diagrams that are related
by exchanging external labels in our computer implementa-
tion, we need no longer carry around external spatial 1abels.
Thus we omit the extra left column of the matrix represent-
ing a diagram when generating vacuum diagrams. As an ex-
ample, consider cutting a line in diagram 3 in
Table |

)
—5ao OO0 =2 Q0+ X0 + &XX, (421)
which has the matrix representation
5 0 0O 0 1 1 0 20 0 0 2
5G‘1012:2111+202+012 (4.22)
0 21 111 0 21 2 20

Here the plus signs and multiplication by 2 have a set theoretical meaning and are not to be understood as matrix algebra
operations. The last two matrices represent, incidentally, the same diagram in (4.21) as can be seen by exchanging the last two
rows and columns of either matrix.

To create the connected four-point function, we also have to consider second derivatives of vacuum diagrams with respect
to G~ L. If an external line is cut, an additional external line will be created, which is not connected to any vertex. It can be
interpreted as a self-connection of the zeroth vertex, which collects the external lines. This may be accommodated in the
matrix notation by letting the matrix element M o, count the number of lines not connected to any vertex. For example, taking
the derivative of the first diagram in Eq. (4.21) gives

(4.23)

200 -4+ Q04 5 4200

with the matrix notation The first two matrices represent the same diagram as can be
seen from Eq. (4.23). The last two matrices in Eq. (4.24)
correspond to disconnected diagrams: the first one because
of the absence of a connection between the two vertices, the
second one because of the disconnected line represented by
the entry Mg=21. In the full expression for the two-loop
contribution G$42) to the four-point function in Eq. (2.25) all
disconnected diagrams arising from cutting alinein G(lg) are
1 canceled by diagrams resulting from the sum. Therefore we
1. may omit the sum, take only the first term and discard all
disconnected diagrams it creates. This is particularly useful
for treating low orders by hand. If we include the sum, we
use the prescription of combining diagrams into one as de-

- 5GI

=)
[ SN
S S =Y
Il
B O W
I S =
R oNn T—
_|_
w Rk O
e S N
A =

+
— k W O
N N O
o N

(4.24)
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TABLE VII. Unique matrix representation of all diagrams of the connected four-point function of ¢* theory up to the order p=4. The
numbersin the first column correspond to their graphical representation in Table 111. The matrix elements M;; represent the numbers of lines
connecting two vertices i and j. The running numbers of the vertices are listed on top of each column in the first two rows. The further
columns contain the vector (S, D, T; N) characterizing the topology of the diagram, the multiplicity M, and the weight W= M/[(4!)Pp!]. The
graphs are ordered according to their number of self-connections, then double connections, then triple connections, then the number (4.3).

taay: 1 diagram G33): 8 diagrams

1| 11 i[[11]222[3333

7| 601 jllo1]o12|0123
# |IMi;| ¢s,p, 783 |M|W 7 M;; 0N M W
1.1.1]| 40 [(0,0,0;24) [24| 1 5.1.2, 5.3.2[|00[130[3100] (0,0,1;6) | 55296[2/3
4.1.2, 5.1.1, 5.2.1(/10|120|2110| (0,1,0;4) | 248832| 3
G52): 2 diagrams 4.1.1, 7.1.1{{00|220|2200| (0,2,0;8) | 62208|3/4
if[11]222 5.2.2, 6.1.1[/01{210{2110|(1,0,0;8) | 124416|3/2
jllo1]o12 7.1.3, 7.2.3[/01{120|3010 (1,1,0;6) | 82944| 1
# Mi; |sorm| M | W 5.2.3, 5.3.1, 7.1.2, 7.2.1{[10|111|2200| (1,1,0;2) | 248832| 3
2.1.1, 3.1.1/[20]220] (0,1,0;8) | 1728[3/2 6.1.3, 6.2.1(/01{111(3100|(2,0,0;6) | 82944| 1
3.1.2, 3.2.1[|11(310] (1,0,0;6) 2304| 2 6.1.2, 6.2.2, 7.2.2(111|101|2110| (2,0,0;4) | 124416|3/2

Gi’gé): 37 diagrams
1](11]222|3333 (44444
71/01({012(0123|01234
7# M;; (8,D,T;N) M w
9.1.2((10{110{1110{11110{(0,0,0;24) | 7962624| 1
10.2.2, 12.4.1]/00(030(2010(21010| (0,0,1;8) | 3981312(1/2
14.3.1, 14.4.1]/00(030 (1110 {30010 ((0,0,1;12)| 2654208(1/3
9.1.1, 13.2.1{|00|020|2110|21100|(0,1,0;16) | 5971968|3/4

9.1.3, 9.2.3, 11.1.1, 11.4.1|[00{110{1210{21100| (0,1,0;2) |47775744| 6
10.1.1, 10.2.3, 14.2.1, 14.4.2{[00{130|1100|20020| (0,1,1;2) | 7962624| 1
11.1.3, 11.2.1{|00(020{1120{31000| (0,2,0;6) | 7962624| 1
9.2.2, 14.1.1, 14.4.3]|00|110|1120|22000| (0,2,0;4) (119439363 /2
8.1.3, 11.1.2, 11.3.1{00|120|1200|20110| (0,2,0;4) [11943936|3/2
8.1.2, 9.2.1, 10.2.1{/10|100 {1120 (12100 (0,2,0;4) |11943936(3/2
8.1.1, 17.1.1{|00|020|2020|22000| (0,3,0;8) | 2985984(3/8

11.4.6, 13.1.1, 13.2.3||01{110{1110|20110| (1,0,0;4) |23887872| 3
12.3.1, 12.4.4|/00(011 {1300 (301001 (1,0,1;6) | 2654208(1/3
12.2.1, 12.4.2]/00(030 (1011 {31000 (1,0,1;6) | 2654208(1/3

12.3.2, 12.4.3, 14.2.2, 14.3.2{[00{130|1001|21010] (1,0,1;2) | 7962624| 1
11.4.5, 15.3.1, 15.4.1//00|011{2110|22000| (1,1,0;4) |11943936|3/2
14.1.4, 15.4.4]/00(021 {2100 (21010 (1,1,0;8) | 5971968(3/4

13.2.4, 13.3.5||00(011{1210{31000| (1,1,0;6) | 7962624| 1

11.2.3, 11.4.2, 13.2.2, 13.3.1{[00{120|1101|21100| (1,1,0;2) [23887872| 3
11.3.3, 11.4.4, 12.1.1, 12.4.5|[01{100|1120|21100| (1,1,0;2) [23887872| 3
11.2.2, 11.4.3, 14.1.2, 14.3.3|[10{110|1120|11001| (1,1,0;2) [23887872| 3
17.1.4, 17.2.4]/00 (021 {1200 {30010 (1,2,0;6) | 3981312(1/2
11.2.4, 11.3.2, 17.1.2, 17.2.1{[00{120|1011|22000| (1,2,0;2) [11943936|3/2
14.1.3, 14.2.3, 17.1.3, 17.3.1{[01{100|1210|20200| (1,2,0;2) (119439363 /2
13.1.3, 16.1.1{|01 {001 {2110{21100 |(2,0,0;16) | 2985984 (3/8
12.1.3, 16.1.2{|01 {011 {2010{21010| (2,0,0;8) | 5971968(3/4
15.3.4, 15.5.4|/01 {011 {1110{30010 ((2,0,0;12)| 3981312(1/2

13.1.2, 13.3.4, 15.4.2, 15.5.1{[01{110|1011|21100| (2,0,0;2) [23887872| 3
15.2.3, 15.4.6//00(021 {1101 {31000 (2,1,0;6) | 3981312(1/2
15.1.4, 15.4.5|/01 {001 {1120 (31000 (2,1,0;6) | 3981312(1/2
13.3.2, 15.2.1, 15.3.3||00(111 {1101 {22000 (2,1,0;4) | 5971968(3/4
12.1.4, 12.3.3, 15.1.1, 15.3.2{[01{110|1101|20200| (2,1,0;2) (119439363 /2
15.1.3, 15.4.3, 17.2.3, 17.3.2{[01{120|1001|20110] (2,1,0;2) (119439363 /2
12.1.2, 12.2.2, 13.3.3, 17.2.2{[10{120|1011|11001| (2,1,0;2) (119439363 /2
16.1.4, 16.2.1|/01 {011 {1011 {31000 (3,0,0;6) | 3981312(1/2
15.1.2, 15.5.3, 16.1.3, 16.2.2{[01{101|1101|21100] (3,0,0;2) (119439363 /2
15.2.2, 15.5.2||110(111 {1101 {11001 | (3,0,0;6) | 3981312(1/2
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scribed above in Sec. IV B, except that we now omit the
extra vector with the labels of spatial arguments.

3. Two- and four-point functions G, and G{,3,
from removing lines

Instead of cutting lines of connected vacuum diagrams
once or twice, the perturbative coefficients of Gy, and Gi,3,
can also be obtained graphically by removing lines. Indeed,
from (2.16), (2.44), (2.54), and (2.56) we get for the two-
point function

§W(int)
G= G12*‘2f G13G24 55— (4.25)
3 3
so that we have for p>0
) oW
Ci2=2| Gila 55— (4.26)
3 3

at our disposal to compute the coefficients G{3 from remov-
ing one line in the connected vacuum diagrams W in all
possible ways. The corresponding matrix operations are
identical to the ones for cutting a line so that in this respect
there is no difference between both procedures to obtain
Gio-

Combining (4.25) with (2.12), (2.23), and (2.56), we get
for the connected four-point function

SN
o4
=4f G15G6G37Grg ————
1234 so7s 0 2™ 5Gg0G g

4f 615G Goxas + GaBig) e W
— —+ —_—_—
5678 15 27( 3648 46 38) 5G 6 5G 78

(4.27)
which is equivalent to

G°<p>—4f G15GG4,G FW
1234 se7s 0 20 317 5Gee0Grg

p-1
p
—4 ( )f G15G27(G36Gagt GusGs)
ag=1 19/ Jsers

SW@ syw(P—a)
X 3G 3G (4.28)
Again, the sum serves only to subtract disconnected dia-
grams that are created by the first term, so we may choose to
omit the second term and to discard the disconnected dia-
grams in the first term.

Now the problem of generating diagrams is reduced to the
generation of vacuum diagrams and subsequently taking
functional derivatives with respect to G,,. An advantage of
this approach is that external lines do not appear at interme-
diate steps. So when one uses the cancellation of discon-
nected terms as a cross check, there are less operations to be
performed than with cutting. At the end one just interprets
external labels as sitting on external lines. Since all necessary
operations on matrices have already been introduced, we
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omit examples here and just note that we can again omit
external labels if we are not distinguishing between trivially
‘‘crossed’’ diagrams.

The generation of diagrams of the connected two- and
four-point functions has been implemented in both possible
ways. Cutting or removing one or two lines in the connected
vacuum diagrams up to the order p=6 leads to the following
numbers n{?) and n? of topologically different diagrams of
G and G4

p l1i2(3l4| 5| 6

nj(f) 11318130118 548

n{ |1]28|37|181 1010

(4.29)

V. OUTLOOK

Using the example of ¢* and A theory, we have devel-
oped in this work a new method to generate al topologically
different Feynman diagrams together with their proper mul-
tiplicities without any combinatorial considerations. Solving
a graphical recursion relation leads to the connected vacuum
diagrams and a subseguent cutting of their lines resultsin the
connected diagrams. Although our automatization in terms
of a MATHEMATICA code [19] turned out to be inefficient in
comparison with other, already established programs like
FEYNARTS [1-3] or QGRAF [4,5], the construction method as
such is conceptualy attractive as it immediately follows
from the functional integral approach to field theory. As de-
tailed in Sec. IV B, we expect that a sophisticated implemen-
tation of our program will be as efficient as existing codes.

In separate publications our method is applied to generate
the Feynman diagrams of quantum electrodynamics [21] and
one-particle irreducible diagrams in the ordered phase of ¢*
theory, where the energy functional contains a mixture of
cubic and quartic interactions [22,23]. The work [22] also
suggests the capability of our new method beyond a mere
generation of graphs. For example, aformal proof of the fact
that W generates connected graphs and that the effective en-
ergy I' generates one-particle irreducible graphs could be es-
tablished. Also, a simple all-orders resummation of perturba-
tion theory is presented there. We believe that our method
has great potential in formalizing physically interesting re-
summations without concern over combinatorics of graphs
explicitly, afrequent source of errors in the history of resum-
mations.

It is hoped that our method will eventually be combined
with efficient numerical agorithms for actually evaluating
Feynman diagrams, e.g., for a more accurate determination
of universal quantities in critical phenomena.
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