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A relativistic current operator is given in the 0(4,2) description of the H atom whose matrix elements re-
duce to the correct Galilean form in the limit ¢ — . This current is used to obtain a relativistic wave
equation which contains the H-atom states as solutions and in which the electromagnetic field is coupled

minimally.

I. INTRODUCTION

ECENTLY, the study of the electromagnetic
interactions of the hydrogen atom from the group-
theoretical standpoint has revealed high symmetries
in the structure of form factors, or generalized oscil-
lator strengths, as the atomic physicists call them.!2 A
nonrelativistic wave equation has been found which
describes in complete equivalence to Schrédinger theory
a hydrogen atom that has been accelerated from rest
to momentum q by the impact of an external photon.3+*
This equation defines a current operator if one intro-
duces the electromagnetic field through minimal
coupling in the standard way. The transition amplitudes
to higher states which are excited by the photon impact
are then given in a natural manner as the matrix ele-
ments of the current operator between the initial and
final state. The final state moving with momentum q
is described by means of a certain Galilean transfor-
mation corresponding to the acceleration process.®
The structure of this description of the electromag-
netic current has been postulated to apply also to the
form factors of elementary particles. In this case,
however, a relativistic current operator is needed to
couple to the electromagnetic field. The results of such
an approach have been very encouraging. Electro-
magnetic form factors up to high momentum transferss?
and pion baryon form factors (as tested by pionic decay
rates of baryon resonances)® are found in excellent
agreement with experiment.
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The relativistic currents in such calculations were
first, for simplicity, assumed to be completely algebraic,®
and when the agreement with experiment turned out
to be not yet satisfactory, convective types of currents
were added.”

In order to have some guide as to what types of cur-
rents may occur in theories of this kind, it is quite
instructive to turn back to the exactly soluble case of
the hydrogen atom, and to investigate the same
problem there.

It is the purpose of this paper to give a relativistic
current of the hydrogen atom that has the property of
reducing to the correct nonrelativistic current in the
limit of infinite light velocity. Using this current a
relativistic wave equation of the hydrogen atom is set
up to which the electromagnetic field is coupled mini-
mally.® The current turns out to be the sum of an
algebraic and a convective vector operator.

II. NONRELATIVISTIC CURRENT

Let us recall briefly how the nonrelativistic current
for hydrogen-atom transitions is calculated. If x., x,,
X, x denote electron, proton, center-of-mass, and
relative coordinates, respectively, then a hydrogen
atom moving with momentum q is described by the
state

(1)

Gq(Xe,Xp) =" EP,(x),

with obvious notation. The electronic contribution to
the current for the transition from momentum q to rest
is then given by the Fourier transforms of charge and
current densities:

1
P(q) = ; _/¢°I*(XG;Xp)‘t‘—q(xs:xp)eiq'x’dxedxp , (2
(@)= [ (o %)
(@) =——— || $*(Xe,x
Y=Y o ?

>

d
X—p-oltoxs) o, ()
Xe*

% This proves that the current is conserved,
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Changing variables to X and x, we find from this,

p(a)= / Yot (X)eRalmsl tmal-zy (x)dx,  (4)

J{@=I(q)—(a/2m.)e(q), )
with
1 a
I(q)=— / Y (x)—eialmsl (matmol-zy, ()dx. (6)
mel dx*

These equations can be cast in group language on an
0(4,2) representation space generated by Lag (e, 8=1,
-+, 6) with the commutation rules

1
[Lag,Lay]= t8aalpy; g= 1 (D

-1
-1
One identifies L;; as the angular momentum, L, as the
Lenz vector, and Lg as the principal-quantum-number

operator, and the Casimir operators of the representa-
tion have to be chosen as follows:

Co=L,gL¥=6,
C3 = €afyie 1L03L75L"= 0 )
C4=LaﬁLﬂ7L-,aL"“= —12. (8)

In this case, the states of the hydrogen atom with the
parabolic quantum numbers 71, 5, m can be represented
by means of creation and annihilation operators a.t,
ar, b, b, satisfying

[aT,an: 6".!: [br,bu'r]‘_' 61‘,: (f, §= 1, 2)
in the form

[ ninam)=[n11(n1+m) Ing\(no+m) 12
X al'l'nz-‘}-ma21'nlbl‘Tm+fnb2fnzl 0) (9)

for m>0. For m<0, the same formula holds with #,
and #, being replaced by #,—m and #,—m, respectively.
On these states the generators L.s become

L;j= %(a"aka—l-b"akb)z Lk B
L;4 = ——%(afo'.-a— b*a',-b) = R.’ ,
L.'5 = —%(GT(T,'CbT - aCo,-b) s
L= (1/2i)(a'0:Cb'+-aCob),
L= (1/21) (a"Cb"—— aCb) ’
Liys=3%(a"Cb"+aCb) ,

Lyy=3(d'a+0'0+2), (10)
where o; are the Pauli matrices and
1
C=( ) )=ia2. (11)
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From these equations we find that the third com-
ponents of the angular momentum and the Lenz
vector are diagonal with the eigenvalues m and (n,—n,),
respectively, while Lss gives the value of the principal
quantum number #:

n=n1+ny+|m|+1. (12)

The transition from parabolic states to the usual ones
with definite angular momentum L? are found in the
following way. One observes from Eq. (10) that L is the
direct sum of “a spin”

Jo=1a'oa 13)
and “b spin”

Je=1b'od, (14)

which are diagonal on the states (1) with the eigenvalues

(Jo)2=1(n*—1), Jee=3(m—nitns),
I92=1(m2—1), Jd=3(m+n—ny).  (15)

But then the states |nlm) of angular momentum / are
simply the combinations

[ nlm)=(—)"(24-1)1"
(., 11—
X( i(n—1) 3(n—1) l )]nxnzm). (16)

tm—niFn) tmtni—ny) —m

Using this representation, it has been shown that the
Schrédinger theory of the hydrogen atom can be
completely translated into group-theoretical language
if one represents the physical states in the form

| 7ilmy= (1/n) e=iL1s n(an) | 31 an

and the quantum-mechanical operators x; and p; by

%:=(1/a)(Lis— Lis),

pi=a(Lsg— Lag)~'Lss, (18)

where @ is a completely arbitrary parameter.® In these
equations atomic units have been used with p=mm,/
(m4my)=e=h=1.

The physical scalar product has to be evaluated using
the metric (Lss— L)/ in the form

/,09)=@T'm’| (1/a)(Lss— Lss)O| 7ilm). (19)

The operation

TnE e—l'Lu In(an) (20)

is called “tilting” and turns out to be very important
in applications to particle physics. It is interesting to
note that the tilting angles

(21)

have just the right values to make the physical states

6,=—In(an)

0 Hagen Kleinert, Lectures in Theoretical Physics, edited by
W. E. Brittin and A, O. Barut (Gordon and Breach Science
Publishers, Inc., New York, 1967).
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|7ilm) orthogonal with respect to the scalar product
(19).n

Using the translation rules (17)-(19), the currents can
be rewritten in the form

p(@) = (7’| (1/a)(Lss— Lag)e*( @ Imea) Lis—Lao) | 3}
I'(q) = (1/m.) (7 | L;g e¥(a*/mea) (Las—La) | 7 | (22)
where the indices /,m have been dropped for simplicity.
These expressions can be simplified by observing that

the tilting operator T, dilates (Lss— L4g) and (Lxs— Lzq)
by the factor en while it leaves L;q invariant, i.e.,

Tn—l(LEG_ L46) Th= an(LBG_ L46) ’

Tn_l(Lks— LM)T,;: an(Lks— Lkg) . (23)
Thus Eqgs. (22) take the form
p(@)=(1/n)(n'| (Lss— Lus)
X g—tlin(n/n’)1L4s gi(q¥/me)n (Lis—Ls) l n) ,
| I =(1/n'mm){n’ | Lig
X g—tn(n/n’)1 Las gi(g¥/me)n (Lks—Lks) |n> , (24)

in which the currents can easily be evaluated using
0(2,1) subgroups.® For completeness we have given the
results in the Appendix.

III. RELATIVISTIC CURRENT

Consider now the current operator defined on the
tilted states |7ilm) by

J#=(a/me)[T*— (P*/2mp)Lss], (25)
where T'* is the algebraic vector
Ie= ("' L567 Li'ﬁ) 3 (26)

P+ is the sum of initial and final four-momentum of the
hydrogen atom at the interaction vertex, and « is the
fine-structure constant. Here we have used natural
units which are convenient for relativistic calculations
(u=%=c=1). This operator J* is clearly a four-vector
if one defines Lorentz transformations by

A= ittLes 27)
where ¢* is the rapidity parameter [ =tanh=!(v*/c)] of
the motion. The matrix elements of J* for the transition
of the atom from rapidity (—{) to rest are given by

=@ | T* et i), (28)

where |71) are tilted states just like in Eq. (17), but a
has now the specific value

a=2m,/a. (29)

1 This follows from conservation of the current and is shown
explicitly in Ref. 1. Note, however, that the Ehysical states |Alm)
do not span the representation space given by the states |nlm),
even though they are in one-to-one correspondence with |nim)
and orthogonal in the physical scalar product. For completeness
the states of the continuum of the H atom have to be added which
are tilted eigenstates of Ly rather than Lss. For a detailed dis-
cussion of this point see Ref. 0
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We then prove that these matrix elements reduce in
the nonrelativistic limit c—« exactly to the result (24).
To see this, let us perform the operations corresponding
to (23). We find

Tn-lLaeTn — g—iﬂnlusL“ etnL4s

= Lgg cosh@,~ Lag sinhd,, , (30)

which becomes with (21) and (29)
Ty LseTn= (mp/0)n(Lss— Las)

X (a/4mm)(Lss+Lig). (31)
Similarly, we obtain
T 'LygTn=— (mp/a)n(Lss— Lus)

+(a/4myn)(Lse~+ Lsg) ,
Ty LyTn= L,
T”_lLksTn= (m,,/a)n(Lk5— Lk4)

+ (a/4mm)(Lis+Lis). (32)

Thus, up to the lowest order in o2, the current can be
rewritten as

0 mp\1
—"—p)*@/ | (Lse— L4e)
n

()= (ZP

M. Me

+eilin (/)1 Las g3 Ek/@Imon (Lis—Lro) | 1)

+0%a?),
.7"(5) = (1/””’) (a/me) ("' l L

X e—tlin(n/n")1Ls gi(€*/a)ympn (Lis—Lks) I n)
+(g¥/2ms)-a- j°(£)+0%(a) .

Let us in this equation go to the nonrelativistic limit
¢— 0. This means that also

(33)

(34)

and we can forget about the functions 0%a?) and O#(a?®).
The sum of initial and final mass of the atom at the
vertex, P%/c?, is explicitly

a—0

pa®  uod

2n’2__

1
—_po— —
c’P 2(mpt-m.) P>

+() /Artm)

and therefore converges to 2(m,+m.). Further, the
parameter of the Lorentz transformation becomes

§*/aymyp — W/ ca)ymy=(1/ca)(g/mou.  (35)
If we now introduce the charge density
pl@)=(1/¢) i@ (36)

and use atomic units (which is simply done by dividing
the currents by o and inserting ¢=1/a everywhere)
we indeed recover Eq. (24).
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Thus the operator J# given in Eq. (25) represents a
relativistic current possessing the correct nonrelativistic
matrix elements in the limit of infinite light velocity.
It is the sum of an algebraic vector which lies completely
in the Lie algebra and a convective current LP*.

For comparison we write down the relativistic current
that has been used to fit the electromagnetic properties
of the nucleons.” This current is

Je=a,I'*+ (a2+ asLsg) P*+-iaAP g, , 37

where A#* are the generators of the Lorentz group, i.e.,

Aij= Lk, A0i= hnd L,’5 ) (38)
and

r=—pr. 39)
We notice that like in the hydrogenic current all terms
are at most linear in the Lie algebra and the external
momenta. But while the first three terms of the baryon
current have the same structure, we have found for the
hydrogen atom, the third term is new in character and
similar to the anomalous part in the Dirac current of
the nucleons $xo#’q,. We shall discuss this current in

the next section.

IV. RELATIVISTIC WAVE EQUATION

The current J* can be used to construct a relativistic
wave equation of the type!?

(JrP,—scalar)y(x)=0. (40)

The most general scalar in the O(4,2) representation
space is
(41)

We now show that there exists a choice of 8 and v such
that the physical states used in (28) with the tilting
angles (29) become eigenstates of this equation.

Consider the equation at rest, when P=(m,0,0,0).
The general solution is then

Y(X)= e X, 42)

On the states |72) the equation can therefore be written
explicitly as

scalar=BLs+y.

[ﬁ(rom— L“_'."i)_eLM—y] 13)=0. (43)

Me 2my

Let us now take 8 and v to be

B=a(my?—m?)/2mym, (44)
and
v=—c?. (45)
Then we see that the tilting operation
lﬁ’>= e—t[In2(mp a)n] Las I ﬂ) (46)

12 Equations of this structure were first discussed by Y. Nambuy,
Progr. Theoret. Phys. (Kyoto), 1966, commemorative issue in
honor of S. Tomonaga.
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reduces Eq. (43) to
a m2 mp2__m62 2-11/2
{—l:mz— (——+——-) :I L5e—a2} [n)=0, (47)
Me 2myp 2myp
from which we find the mass spectrum
mal=m 2+ mk2m m.(1—a?/n?)'2. (48)
The upper sign of this spectrum yields
WMy= +[mp2+me2+ Zmpme(l__aZ/n2)1/2]1/2
=+[(mp+me)— (ue?/2n*)+0(?)], (49)

which are the masses of the hydrogen atom. Using
the lower sign we obtain

mn=+[mpt+me—2mmm(1—a?/n?)1/?]

MpMe ol
o+ o9 |, (0

Mp—Me 20

which is an unphysical spectrum converging to m,—m.
from above. The eigenstates of (47) corresponding to
these masses are orthogonal to the hydrogen states in
the physical scalar product (19), since the Hamiltonian
corresponding to the wave equation is Hermitian.

Thus we observe that our equation describes more
than the observed states.!® This seems to be characteristic
for many relativistic wave equations.?!* In order to
interpret the Eq. (40) physically, we therefore have to
understand it in terms of a projection onto the physical
subspace. A purely algebraic definition of currents and
matrix elements as we have given it in (25) and (28)
without the use of wave equations avoids this difficulty
by working from begin with only in the physical
Hilbert space.’®

If we now introduce the electromagnetic field in the
wave equation, postulating minimal electromagnetic
coupling in the form

Pr—s Ph—eAr, (51)

we obtain the correct first-order interaction eJ*4, we
started out with. The electromagnetic field therefore
couples minimally to our relativistic wave equation.

In contradistinction to this, consider now the current
of the baryons (37). Also there one can find a wave
equation that contains the physical states as solutions:

{[a:1T#+(a3+ a3 L4g) P¥]1P,—BLss—y}¥(x)=0. (52)

18 Besides this, the Eq. (40) contains a continuous set of solu-
tions part of which gives the free wave functions of the H atom
while the other part arises from exchanging m, by —m,. Further
there are also unphysical solutions with spacelike momenta. We
shall not discuss these points here (see Ref. 14).

14 If one requires currents to satisfy factorized SU(3)+SU(3)
commutation rules such a projection is not possible. The currents
of infinite component wave equations satisfy the current algebra
if the complete set of solutions, physical as well as unphysical, is
used as intermediate states.

15 Shan-Tin Chang and L. O’Raiteartaigh, Princeton Report
(unpublished) ; I. T. Grodskey and R. F. Streater, Trieste Report
No. IC/68/8 (unpublished).
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However, as one can easily see, this equation produces a
current containing only the first three terms of the ex-
pression (37), if the electromagnetic field is coupled
minimally. In fact, one can prove that there is no wave
equation at all that can give a current term ia,A*g, by
minimal coupling.”

The reason for this can be understood rather simply.
Relativistic wave equations constructed with a current
J# are nothing else but another way of expressing the
conservation of this current. Thus if

(J#P,—scalar) |7,P)=0, (53)

then obviously

g, P'| J# |7, P)y= (0’ P’ | J*P,'— J#P, |1, P)=0. (54)
Conversely, if the current J# is conserved, i.e., Eq. (54)
holds for all #’, n, P’, P, then J#P, must be equal to a
scalar operator that does not depend on P, and with this
operator the states |7i,P) satisfy a wave equation (53).
Now observe that the term ia4A#q, always contributes
a conserved current no matter what the physical states
are. Therefore it cannot change the wave equation for
the physical states. Hence it also can never be obtained
from such a wave equation by minimal electromagnetic
coupling.

If the current (37) pertains to give a good description
of the electromagnetic form factors also for the higher
mass baryons, then either the idea of a wave equation or
its minimal coupling will have to be abandoned.

RELATIVISTIC CURRENT OF THE H ATOM IN 0(4,2)
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V. CONCLUSION

We have seen that the relativistic current of the
hydrogen atom has the following properties: (a) It is
the sum of an algebraic and a convective part. (b) It is
minimal in the sense that one can construct with it an
infinite-component wave equation which contains the
electromagnetic field in minimal coupling. Only the
first property is satisfied by the electromagnetic current
of the baryons that has been used to fit the form factors
of the nucleons up to high momentum transfers. In
addition, the baryon current contains an essentially
nonminimal term that cannot be generated by minimal
coupling.

The theory of the electromagnetic properties of the
hydrogen atom has until now been the exclusive model
in guiding the construction of a similar theory for
baryons. With respect to the new nonminimal current
term the model has been left behind. If one likes the
idea of minimal coupling and infinite-component wave
equations this is a rather unesthetic feature of the
theory. A more intensive test of the baryon transition
form factors will be necessary to find out which way
nature has chosen.
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APPENDIX

We introduce the auxiliary functions

Umn?(8) = Oma? cosh—™"(38) sinh™*(3B8)F(p—n, 1 —n— p, 1+m—n, —sinh2(38)), (A1)
where F(a,b,c,2) is the hypergeometric function and
1 (m—p) (m~+p—1)171/2
er= [ :| , (A2)
mn (m—n) I (1— p) l(n+p—1)1
for m>n [for m<n use nn(—B) instead]. Further, let
e T 9 (ayy) +1
) cos +1
e 12 O (o) =|: L :| 28’44 0 plat2ky| for (—)‘=[ :| (A3)
—1 sin —1
b 9 (ayy) -1

Then one finds for the charge density

G@bn

3m—k'

1
Ar>(¢1)=;[(2l’-1-1)(2l+1)]"2 2

k' .k

Im+k

$w'—1) VU

-—m

s s )

X{n' by 10 V=D (a,‘Y)v;n'+k'.in+k* (m+l)(13)+%[(n/+ 1+2k’)2—m2]”%y,k+' (V—-l)(a,.y)
XVinsiestanesd )AL — 14+ 20 —m? ] e = D ay)

Xtk 1, ntkd T (B)04nr e 3aad ™HD(—B)},  (A4)
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while the spatial parts of the current are
;1 '—1 '—1 14 —-1) i(n—1 )
L T -1 dw-1) )(%(n ) do-n 1)
n'nme vk \}(mt1)—k' m+1)+E —mF1/\im—k im+k -—m
X LG ("+m))2— B ] 220 D ()04 ey 4ae g bk T B) vy oy -t O (=)

d + LG 0 —m))2— 2] e 1O E=HD (@ )0y ur tyke A my+id T (B0 v a1y -3 @ T(—B)}  (AS)
an

(%(n'—l) -1 7V )(%("—1) $(n—1) l)
im—k'  Imtk —m/\im—k im+tk -—m
X (3L +14-2k") 21— m2] 2 5 EHD (0y7) 4k 41, 4044 (8)
—3[(0 — 1428 ) —m*] % o VD (07) 04w k1, g0tk (B) } 04— pnk(—B) . (AG)

The angles a,8,y are defined in terms of the momentum transfer ¢? and the principal numbers # and »’ of initial
and final states by

1
I(@=— @+ )@+ DA T
nnm,

k'k

sinh(38)= 2 m[(nf_ )i+ gon 12
and
a=arc sin(ng/sinhg) ,

= —arc sin(n’g/sinhB),

where the principal value of arc sin has to be taken for n’<n, while for n’>n, a starts out at g=0 with the value
w, and ¥ with —. A plot of some of these form factors is given in Ref. 10.



