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Abstract: The low-energy theorems on the 04, Ay vertex following from current
algebra and from the dimensional properties of the various components of the
axial vector current 4, and of its divergence o A, are extended to finite
momenta assuming 0-dominace of the trace of the energy momentum tensor 6 and
pion and A1 dominance of Ay;. Smooth vertex functions are determined for the
onm, CAm and CAA couplings. The role of Schwinger terms in the extrapolation
from the low-energy points is discussed.

1. INTRODUCTION

In addition to the well-known current algebra commutators of vector and
current densities, another set of commutators has recently been of con-
siderable interest [1-5].

In fact, when one attempts to impose upon observable local fields an
operator condition which serves to fix the asymptotic behaviour of their
renormalized propagators, one finds that this can be done most simply by
introducing the current of infinitesimal dilatations

Du(x) =xV QIJV(x) , (1.1)

where Ouy(x) is the local, finite energy momentum tensor ¥, and by postu-
lating that under the action of D j(x) the local field of interest, ¢(x), trans-
forms according to

i[Dol), $(N]x =y, = 62, +d) (%) 8%(x-y)+ST . (1.2)

Then the field ¢(x) is said to have dimensions 4, and it is possible to argue
that asymptotically the ¢-propagator, A(g) will behave as ((]2)“!"2 for large
spacelike ¢ . In realistic field theories, where the Lagrangian is not
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** Present address: Deutsches Elektronen Synchrotron DESY, Hamburg.
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I In a field theory, the improved energy momentum tensor has to be constructed
according to the guide lines of ref. [6].
 For this argument, see sect. II-3 of ref. [5].
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invariant under (1.2), (due for example to the presence of mass terms) the
dimension as defined in (1.2) is only an approximate concept. In general
there will appear additional logarithmic singularities on the right-hand side
of (1.2) which manifest themselves in powers of (log qz) in the asymptotic
behaviour of A(g). However, deep inelastic scattering of electrons on
protons mildly suggests that the dimensions of all components of the
electromagnetic currents are equal to three, and no logarithmic terms have
been resolved [7]. Guided by this observation, one conjectures that also
other observable local operators may have definite dimensions.

For any such operator, the commutator (1.2) leads to a low-energy
theorem (LET) connecting the matrix element of an (# + 1) point function
containing the divergence

B“Du(x) = 6(x) , (1.3)

at zero four-momentum ¢, with an n-point function not containing D, (x).
Such LET's can be exploited physically if one assumes 6(x) to contain a
low-lying resonance * whose pole in the variable q2 dominates the whole
region**. In fact, one usually assumes that the low-energy behaviour of 6
is dominated by the JP = 0+, I = 0 particle o(700) of width I’ = 400 MeV.
Then the LET yields conclusions on the ratios of o couplings to the other
fields appearing.

Unfortunately if one assumes unsubtraced form factors for 8, this pro-
cedure leads to incorrect results for the simplest couplings which may be
tested experimentally. One obtains from the LET ***

gcrmr/gcrNN - Zmi/ma mN ) (1.4)
Experimentally, one fields from the mass and width given above
Borm ~ 4.6 = mg/V2 fr (1.5)
while we obtain gyNN = 15 = gzNN from the rough estimate
8oNNE&omm ~ 69 £ 4, (1.6)

indicated by backward 7N scattering [8].

Thus, one has to conclude that the low-energy region up to the first pole
cannot be described by a pole term alone, but that the higher-lying reso-
nances extend with a considerable piece of the amplitude down to low-
energy region. We shall call this piece of amplitude the tail of the higher
resonances. It is the philosophy of the so-called hard-meson approach that,

* Or a few resonances.
** In the sense of an unsubtracted dispersion relation.
*** Where the couplings are defined by the effective Lagrangian
L :%gg.,r”r m0.07T2+gO.NN gNN ,
such that

g2
T _§ onT
oM T4 a4y P
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below the first pole, this tail can be very well approximated by a constant,
or at most a few powers of g2 to account for its curvature [9]. If the higher
singularities do not lie too close to the first pole, such an approximation is
indeed quite good.

Notice, however, that such a parametrization of the low-energy region
does not imply that the amplitude itself necessarily obeys a once or more
subtracted dispersion relation in qz. In the hard- meson method, Ward
identities should not be expected to supply information at energies beyond
that of the pole which is used for the parametrization I. The drawback in
the introduction of such additional polynomials lies in the fact that new
constants are introduced which must be determined by additional assump-
tions. These assumptions are usually inferred by generalizing the experi-
ence gained in dealing with field theoretic models.

The particular model which suggested all of the general assumptions to
be described below is the simple o-model [11]. This model yields the
amazingly good values (considering its simplicity)

ag T
= 1- , 1.7
Sonm f77 ( %) ( )
ZoNN = &7NN = MmN/ fr » (1.8)

which is definitely an improvement on (1.4). Indeed, in the 0-model,
although in the tree approximation, the vertex NN is unsubtracted

(g =p'-0P)

2 fn 8oNN

(N(p')|0(0) |N(p)) = m—z—z—a(p')u(z», (1.9)

mo-—‘ q
the 677 vertex is once subtracted in g2 kxd

. 2 2 m%fwgcm*rr
(n(P)\G(O)lw(PD:3mﬁ—m0+——n;%—_;§—. (1.10)

Guided by instructive models, such as the o-model and the gluon model,
the energy density of hadrons has been conjectured to have the following
simple properties with respect to the chiral group of vector and axial
vector charges of electromagnetic and weak interactions as well as with
respect to dilatations [2, 12].

Only Lorentz scalar local operators break either symmetry. Presently
one prefers to wrife

*

=6 +0+u, (1.11)
00 00

I If one does not make use of additional information like umtarltzv See ref. [10].
H Indeed in sect. 4, we will see that for a high-mass O'(m > 3m%) the low-energy
theorems on the 91r7r vertex force "a subtraction® in thls vertex,
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where the complicated part (in the Lorentz sense) 880 containing kinetic
terms, etc., behaves trivially under the chiral and dilatation groups I,

while the Lorentz scalars 6 and # break dilatation symmetry by having
dimensions dg # 4 and d # 4 respectively, and « also breaks SU(3) x SU(3)H.
At the present time, there is still hope that 65, may need only a ¢c-number
6-term (dg = 0), and that such a simplicity assumption will not produce
conflict with experiment [13].

For our purposes, the full extent of these popular assumptions on %0
will not be needed. We shall only make the following, more general hypoth-
eses.

(i) The SU(3) X SU(3) symmetry breaking term u(x) in 6, is a Lorentz
scalar of dimension d. Then, one can prove [14] immediately that

i[@5(x0), Opo(x)] = - 3HA ,(x), (1.12)
and hence that

{og(x,), u(x)] = -oH A, . (1.13)

(ii) The time and also the space components of the vector and axial
vector currents have definite dimensions dy, dg, df‘, dg = a's respectively.

The dimensions d¥ and dg are in principle arbitrary. However, as
mentioned above the fact that the present data on the ratios of transverse
to longitudinal cross sections in deep inelastic electron scattering is con-
sistent with quark model commutators [7], and secondly the very phenome-
non of scaling in deep inelastic lepton scattering and its explanation via
operator product expansions [12] suggest dg = dg = 3.

The dimensions dY and dA® of the time components are, however, fixed
by current algebra to be equal to 3. Then from (1.13) we can see that BU'AN
also has a fixed dimension which is equal to the dimension of the symmetry
breaking term z.

In sect. 2, assumptions (i) and (ii) will be used to prove
i[Ao(x), 6()] = (d-4) IHA (%) 83(x-y)+ST, (1.14)

where the first derivative Schwinger terms will be well determined.
We shall make no assumptions on the chiral content of #(x). Defining the

fl.e., itis a U(3) x U(3) singlet of dimension four.
1t Hopefully transforming like a simple tensor operator, perhaps like (3,3), (3, 3)
(ref. [14]).
Tt If all terms in oo breaking dilatation symmetry were Lorentz scalars Lpwy of
definite dimension d, # 4, one would find the analogue of (1.13)

i[D#g),000%)] = (68 +4) O55(0 -0M D, (x)
which leads to the "virial theorem" [2]
e :E(z;-a’n)wn .
n

However, we shall not use this equation.
¥ Note in this paper we will always omit isospin indices in places where they are
obvious. And all commutators will be taken at equal times.
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sigma commutator I
. b b
i[Ag(x), %A (] = =¥ (v, 9, (1.15)

we shall, however, make the additional assumption:
(iii) Schwinger terms are absent in this ¥-commutator, i.e., (no sum
over a)

200, y) = Z(x)63(x-y) . (1.16)

Notice first that as a consequence of the previous assumptions Z(x) has
again the same dimension as u(x).

We have now all the commutators we require to derive our Ward identi-
ties and low-energy theorems. It only remains to comment here that it is
usually an assumption that the commutator [A%(x), Aﬁ (y)] vanishes; how-
ever, this property can be shown to be true under assumption (iii)ﬁ.

In this paper we want to present a detailed study of the physical implica-
tions of our above assumptions on the Ajor system. To do this we will
perform the usual hard-meson technique [9] which will consist of deriving
Ward identities and low-energy theorems for the associated vertices
0A, Ay, 0A, 3¥V A, and 63 H'A,u 9¥ A, and dominating the low-energy region
of the various fields with Aq, o, 7 poles along with a smooth background.

It is well known that, when dealing with Ward identities away from the
low-energy point, Schwinger terms in local equal-time commutators become
visible in the equations: their presence is manifested in the appearance of
non-covariant pieces in time-ordered products. Therefore, in order to re-
present off-shell amplitudes, covariant objects, usually called T* products,
are conveniently defined by adding the so-called sea-gull terms[15].

Since, at present, no general information exists on the Schwinger terms
occurring in commutators involving D,(x), we shall use them only in LET's.
For the commutators containing A5(x), however, the dimensional proper-
ties of A,, A;and 8“‘A'u are sufficient to completely determine the first
Schwinger term in the commutator [A o(x), 6(vy)] as is shown in sect. 2. We
shall assume all higher Schwinger terms to be absent. As far as the
Schwinger terms in the remaining commutator Iﬂ:, [Ag(x), Ai(y)], are
concerned, no such general deduction is possible. We can only refer to
models for clues to their structure.

Now, even if all the Schwinger terms were known, the covariantization
procedure is still largely an arbitrary one in the choice of different sea-
gulls, and the off-shell covariant Ward identities will depend upon this
choice. Since nothing is known about the high-energy off-shell behaviour of
the vertices under considerations, there is no physical argument known to
us for preferring one sea-gull over another. Furthermore, different

i Zab(x, y) = 620 % (x, ¥) would mean that (), oM AU-) transform according to a
(3,%) representation of SU(3) x SU(3).
i See theorem 1II of sect. 2.
Hi We have already made assumption (iii) on the absence of Schwinger terms in the
sigma commutator,
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models are known to exhibit different covariantization. For example, while
the propagator of the local electric current in quantum electrodynamics
(QED), calculated by Feynman rules, is a strictly conserved quantity [16]
to any order in perturbation theory, one finds, for the same propagator in
gauge field theories, no conservation (and photons must be exchanged in the
Landau gauge [17] to eliminate the spin-zero part of the "photon" in all
Feynman graphs).

We shall choose our covariantization procedure analogously to those of
gauge field theories. This choice has the advantage of permitting an easy
comparison with such Lagrangian models. The choice of sea-gulls preferred
by QED has been applied before [18] and will not be discussed here.

The paper is arranged as follows. Sect. 2 is in the form of a review in
which give a detailed discussion of the Schwinger terms appearing in the
commutators used in deriving the Ward identities. These Ward identities
together with LET's for two and three-point functions are derived in sects.
3 and 4 and their application to the 0A7 system is discussed.

2. GENERAL THEOREMS ON SCHWINGER TERMS

We shall investigate here the general structure of the Schwinger terms
expected to appear in our Ward identities f. The first theorem deals with
the Schwinger term in the commutator of 6(x) with any vector current
whose time-like and space-like components and whose divergence have
definite dimensions di, dg and d, respectively. Because of our assump-
tions (i) and (ii), the axial current will satisfy these theorems with di = 3.

Theovem I: The equal-time commutator of 6(x) with the time component
Jo(x) of an arbitrary vector operator J“(x) having the dimensional proper-
ties listed above is

10 (), ;0] = (@, +1- D" T (1) 87 (x-y) +(dy- d) T () ¥ ) 67 (x-y)

> o ol afn g3 (s yy (2.1)
+ . -y, .
o Ry kO ) ) Y

where the operators op... are undetermined and N < .

The proof is performed in two steps. One first observes that the
dilatation charge, D(0) = fdsxDO(x) = fdsxx“' Bou(x), commutes with the
generators M,; of the Lorentz group according to

i[D(0), My;] = [ a3xx; 000, x) . (2.2)
Then one uses the vector character of Jg,
i[Mu_V’ JO(O)] =g,quv(0)—ngJu(0) s (2.3)

t Earlier derivations under slightly more restrictive assumptions are given in
refs. [19, 20].
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and the Jacobi identity to derive the result
i[ [ d3xx;0(0, x), Jo(0)] =i[D(0), J;(0)]-d J;(0)

= (dg - dt) Ji(0) , (2.4)

so that the lowest-order Schwinger terms is as given in (2.1). Second, one
writes the Heisenberg equation

oD (0) dD(0)
at — dt

i[D(0), H(0)] = = H(0)- [a3x6(0, x) , (2.5)
commutes this equation with J,(0), and uses again the Jacobi identities to
obtain

i[ [d3x0(0, x), Jo(0)] = @y+1-d)aH J,(0) - @y-dg) ¥J0), (2.6

which proves the theorem.

Therefore, whenever dg # dt, a well determined lowest order Schwinger
term exists in the commutator (2.1). Notice that such a Schwinger term
must arise because of the presence of a term in 6(x) which has dimension
(4 + dg -dt), and that therefore a 6-term is necessary in 6pp whenever
dg # di and 4 +dg-dt + d.

The second theorem deals with the connection between the commutator
[A,(x), Ap(y)] and the Schwinger term in the Z-commutator (1.15) (ref. [20])
It is usually assumed that

—i[Ag(x),AZ(y)] = "y Z(x)é (x-y) (y)a(x 5" (x-y)
ab k1 kR, .3
Z_;ok by .kn(y)a(x)...a(;f)a (x-y). (2.7)

This is not necessarily true for non-conserved currents, however. One
rather finds:
Theorem I ¥: Let

500 = [ dylr, - v lA0), 2H A% 0] (2.8,
then
(4%, A20)] = (€ VE) - 720(x)) 6 (x-y ) +ST . (2.9)

The proof follows upon commuting (2.8) with Mgy;, and using the following
commutators of My;

i[ Moij, Ao(x)] = (X004 - %i90)Ao(x) - Ai(x) , (2.10)

i[Moi, 3H A ()] = (%004 - x500) M A () , (2.11)

i Clearly, the same theorem also holds for vector currents.
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i[Mog Q5(xo)] = - [ d3xx;ak A (0, (2.12)

along with the Jacobi identity. _
Thus, from our assumption (iii), we find indeed that Tk = 0 and there-
fore (2.7). Notice that (2.8) implies that the dimension of T%b isd-1,
while according to (2.9) it is dg. Therefore T% cannot exist unless d
='d - 1 (which is itself not possible unless d = 2 since dg = 1+).
Unfortunately, the Schwinger terms in (2.7) are completely model depen-
dent. All that we may conclude is that the dimension of S %%(y) is dg-1, so
that a ¢c-number Sab( y) implies dg = 1, as is the case for the algebra of
fields ¥ [21].

3. WARD IDENTITIES FOR THE TWO-POINT FUNCTIONS

The commutators derived in the last section can be used to obtain LET's
and WI's involving the following two-point functions

A(p) = -i [dxe-tPX (0| T(@M Ay (x) 2V AL(0))]0) (3.1)
au(p) = [dxe % | T(A4 [ (x)8” A,(0))]0)

= p, A(P), (3.2)

A, y(P) = -i [dxe ¥ (0] T(4, (x)A(0)]0) (3.3)

Agx(q) = - [dxe=19% (0| T(0 (x) =(0))] 0) , (3.4)

Auppz(@) = [dxe ™ (o] (D, (x) 2(0)) | 0) , (3.5)

and Ags(q), AuDs(Q), defined in complere analogy to (3.4) and (3.5), where
S(x) = S (x) is deflned in eq. (2.7). Using the commutation relations for Ag
with A; and with ok A“, and also the fact that £ and S have dimensions

and (ds 1), respectively, we obtain the following WI's

PHA (D) = P2A(D) = A(D)- (3.6)
AL (D) = A0)- PR ey S, (3.7)
7" A, p5(@) = 8g5(g)-dZ+ ST, (3.8)
gt a L DS(?) = Apg(g) - (dg-1)S+ST , (3.9)

where we have introduced the notation = (0| Z(0)|0) and S = (0| s(0)| 0.
As usual, the Schwinger term in the commutator (2.7) causes the time-

I For a discussion, see ref. [20].
Dimensional theorems involving c-numbers are circumvented if the c-numbers
are divergent, as in the quark model for example. An infinite c-number has no
definite dimension,
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ordered product in (3.3), and subsequently the WI (3.7), to be non-covariant.
As we discussed in sect. 1, we introduce a covariant propagator by modi-
fying the time-time component of the propagator (3.3) by

ALAP= A (B)-g,,8,0S (3.10)
This covariant propagator satisfies the covariant WI
[T
pT A, (P =8,(P-D,S. (3.7")
Note that we could just as well introduce another covariant propagator
8D =8, (D) (g,,- 8,0 8,08, (3.11)

which satisfies the simpler WI
u A** A 3 7n
pha e =8 (D). (3.7)

Working with the first choice of covariant is suggested by a field theo-
retic model - the Feynman prescription for any Yang-Mills type Lagrangian
containing the current field identity [17], while the second choice is
preferred by quantum electrodynamics where, as is well known, all current
vertices in the latter theory are taken to be conserved [16]; this behaviour
corresponding to the WI (3.7") with 8‘”-Au zero. Since our smoothness
assumptions are suggested by Yang-Mills type effective Lagrangians, we
shall work with the first type of covariant.

Eqs. (3.6), (3.8) and (3.9) lead to the following LET's

A(0) = =, (3.12)
Ags(O) = (dS -1)S, (3.14)
such that, from (3.6)
b2 A(p) = A(p)-A(0) . (3.15)
If we assume A(p) to satisfy an unsubtracted dispersion relation i
py(12)dp2
A(p) = fLé—z‘ , (3.16)
P - u
then
) p(p2)p-2
A(p) = f‘m du“ ., (3.17)

In particular, pion dominance for low pz gives

f The pion with (0[Aﬁ(0)[7rbp) = ip“ I 5ab contributes p.n.(u.z) =f.‘,2rm;1,6(u2—m72,-).
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SEmy . fEmE

A(D) = , A(p) = . (3.18)
pz- m727 pz-m%

Similarly, we write for the vector propagator the usual unsubtracted
dispersion relations

Ppy(H2) =2 o

I O B RE (3.19)
(A) _ (;buzby—uzguu) 2. -4. 2
AvL(®) =/ P TN IR T (3.20)

Then the WI (3.7') leads to I

2 2y u-2q42
) 9. -4 9 (P (1) - ppy (L&) u-2dp
d S = . (3.21
f(p(A)(u )+p(p)(u Nu duss = [ 22 2 (3.21)
We conclude that
p(p)(uz) =p(u2), (3.22)
and (3.21) becomes
S =-(Cp+Cyp), (3.23)
where
ca= r@autau?, (3.24)
T N
Aj dominance of Cp and pion dominance of C, givesn
2
m
S - é‘*_fz_ (3.25)
[
YA .

We shall also assume o-dominance of the spectral functions Ag (q2) in

supposing these propagators to be well approximated by unsubtracted forms
for small g°, viz.

2

5 (3.26)

2 2, 2
8p5:@7) = - A, (0)m /(g" -m
S S
with A > (0) given by (3.13) and (3.14).
S

I The A1 meson contributes to the spectral function pA(uz) = (mg)/(yﬁ) 6(uz—m%)
where (0|4, [A (g, V) = m%)/(vp)€ @, .
H We remind the reader that in the case of vector currents in the pole approxima-

tion S, = - z/y% and then the assumption that S = S, leads to Weinberg's first
sum rule [2£.
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4. WARD IDENTITIES FOR THE THREE-POINT FUNCTIONS
INVOLVING 6, A4,,, 4,

We are now ready to discuss the full consequences upon the complex o,
7, A of our chiral and dimensional assumptions. We shall obtain the
vertices orm, omA, cAA. Define the following three-point functions:

T(q, p) = [ dxdye-{@%-PY) (0| T(0(x) 34 A, (») 2V A, (0)|0) ,  (4.1)

T, (g p) =i [dxdye @5 PY) (0| T(6() A, ()74, 0)] ),  (4.2)
T,,0a ) = - [dxdye TP (0| T(6() 4 , () A ON]0),  (4.3)
as well as

ox(g, p) = i [dxdye TP (0| T(D,(x)2* A () 2V A,(0)[0), (4.4)
o ula, p) = - [ dxdye~Ha%-Py) O] 7(Dy (%) A, (»)27A,(00)|0),  (4.5)

Oy (@, b) = i [ dxdy e~ Ha%-59) (0| T(D, (x) A pAL0))[0).  (4.6)

As a consequence of our assumptions stated in sect. 1, the functions 7T are
found to obey the WI's (B = g - p):

PH T (g, p) = - T(g, p)+ (4~ d) AR) - Agy(@)- (dg-3)pP 8y(R) ,  (4.7)

T, pYRY = - Ty(a, p)- (4- d) Ay (D) - g,; ¥ Bggla) +(dg - 3) kE Ay (D) . (4.8)

The analogous WI for the functions ¢ will again be used only at the low
energy point ¢ = 0, where the contribution of the Schwinger terms vanishes.
These LET's read ¥:

70, p) = - (2d-4-7 52) A(8), (4.9)
Ty(0, #) = (d+ds -4~ b 7) Aul(p)- (ds - 3) gov 2ol ) , (4.10)

Tyf0, ) = (2 - 4- £ 57) 8,,(8) - (dg - 3) 8oy Bop( )

‘(ds"s) goonu_(p) . (411)

We must now choose T* products order to obtain covariant equations.
As discussed in the previous section, we add sea-gulls which preserve the
spatial components of the non-covariant time ordered products in order to
construct the covariants for which we shall make smoothness assumptions.
These T™* functions are given by

I we will ignore possible anomalies - for a discussion of these, see ref. [5]. We
have no good physical reasons for doing this - however, their inclusion would
leave us with no predictions.
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*
T (q,0) =T/ q, p)-(d -3)a (kg , , (4.12)
K
T[J,V(q’ p) = TLLV(q’ p)_gOLLgOV Ags(Q)
+(d -3)[gvoau0(p +guOAV0(k)— (CA+CE, 08,0 (4.13)

A derivation of these sea-gulls is presented in appendix A.

Inserting (4 12) and (4.13) into (4.7)-(4.11), and using the covariant
propagator Auv of (3.10), we obtain the following covariant WI's and LET's
involving the covariant T functions:

P T (a, p) = - Ta, D)+ (4= D) AR - 85 (0)- g -3)p" 4, (), (4.14)

* v x v *
T (0 DR = - T (a, 0)- (4- D)8 (D) By (@) +(d - 3)R" A (p) , (4.15)
70, ) = (d+d _4_p ——)A , (4.16)

T,,0, 9 = (2d _4-p —) AW p) . (4.17)

The (already) covariant LET (4.9) may be carried over unchanged.

Notice that the LET (4.16) carries the information that the timelike and
spacelike components of A, have dimensions 3 and dg, respectively. These
dimensions have already been used, however, in the construction of (4.12).
It should not then seem surprising that (4.16) is redundant, and can be
obtained from (4.9) and (4.14), the latter equation at ¢ = 0 I. In ed. (4. 17)

a similar thing occurs only with respect to the contraction of TMV with pH
This information is completely contained in the previous WI's. However,
the other possible independent cotraction of T*w i.e., with gt¥  yields a
LET which cannot be obtained from the WI's at ¢ = 0. Therefore, in
conjunction with (4.9), (4.14) and (4.15), the remaining two eqs. (4.16) and
(4.17) may be replaced by the single equation

*1 _ EAWRY
T, 0, p) - (2d8-4-pap)A“ (p) . (4.18)

In order to extract physical consequences from these WI's and LET's,
we follow the procedure of Weinberg and Schnitzer [9] in defining reduced
vertex functions I, 1"“ and F“V for the onw, 0Arm and GAA couplings:

T(q, p) = - T'(g, p)a(p)a(k) , (4.19)

1 Note that T (0, p) may be written T, p(0, p) = p“A(pZ) Hence contracting (4.16)
with pH does not suppress any 1nformatxon
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T @,p) =T p)a (HaB+Tq, p)aPpawcyt, .20
v v 182 A
T, 8)= -Ta, p)a (0)a ®)-T g, alea (p)cy]
-ma, 28 )8 )}
ra, p)al(paBme? (4.21)

where Fuu has the crossing property

L'yuvig,p) =Ty, (g, k) . (4.22)

The WI's (4.14) and (4.15) may be written in terms of these reduced vertex
functions as

2T (@, p)+pV T (g, p)- 4-d)+a™1(k) ag 5(a)

+(ds-3)pkAR) A~ L(R) = 0, (4.23)
5rie, 0)-k T @, ) Rl ok A, @)
8 (A)
+a,(p)a (p)AQE(q)+ -3) {prA(p) a1 (p)- N(P)} =0, (4.24)
while the LET's (4.9) and (4.17) yield
r(0, p) - A72(p) (2-4- 2 ) (), (4.25)
20, 9 a0 aBp)
=(2 -4-p —){A (pP)a (p)A-l(p)—A(A (o)}, (4.26)
s ap 3 v '

where only one of the tensor parts, the coefficient of g, ,, or coefficient of
Py by or the trace in (4.30) yields independent information.

Within the hard meson philosophy, we now parametrize the propagators
by single poles as discussed in sect. 3, taking advantage of all the WI's
involving the two-point functions. We also assume that the low-energy
regions of the vertex functions T, 1"pL and I““V can be described by a o-pole
in the form

m4 1
I'(g, ) —fz 1,2 2 G, (4.27)
mg 1
r'yg, p) = 2 5 o (AP, +2Bg)), (4.28)

myg q ‘mcr
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2.2 1 -2
@ p)=mf Zom? (Cg,,+m, [2Ek P,
+2E'kvp +(H+H')ku kV+(H—H')p pu]) , (4.29)

where the invariant functions G, A, B, C, E, E', H and H' are low-order
polynomials in the variables pz qz kz w1th the proper crossing proper-
ties ¥ and serve to describe the effect of the tails of the higher resonances
in all three variables.

We shall use polynomials in pz, qz, k2 of sufficient degree to be able
to include the results of Lagrangian models of gauge fields. Accordingly,
we allow G to vary quadratically in these variables. Then an inspection of
the WI's shows that for consistency we should include only linear variation
in the function A, B and C, while setting E, E', H and H' constant, Since H'
is antisymmetric under crossing, it is zero to this order.

Using the described parametrization, we solve the WI's (4.23), (4.24)
and the LET's (4.25), (4.26) to find that the invariant functions can be ex-
pressed in terms of four free parameters, vy, v1, v2 and E, not counting
the dimensions d and dg. The complete result is presented in appendix B.
Here we just state some of the more relevant consequences.

(i) Taking all particles onto their mass shells, we find the following
coupling constants H

2
m
gcrmrZ'Vli(l-’)/l)+(d—2+2')’1+2‘)’2);‘g‘jl, (4.30)
g
2 2
~2fpvva mo ma
g :—[1- + -3 (ds-1)+ E], 4,31
TAT g 71 72@ 5 [dg ng. ( )
—f%mA[(d 34 (1-dg) A s E (4.32) I
gO'AA—m g-9J)+ 'S}?"‘Vl" ], .
f???’mA
hoaA = E CAne (4.33)

i From (4.22) we see that C, E, E' and H are symmetric under exchange of p2 and
k<, and that H' ig antisymmetric.

I These coupling constants are defined by the effective Lagrangian

_1 2 v u_"A VAl
.Q_Zmogcmﬂcm +g0'A'n'Au7Ta Trm,g AAUAuA 2 O‘AAUau.A 3’ A

f In the expression for gya A we may use the KSTR relation Cp = f7r to obtain

S0AA = [-2+2y1 - E].
o
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Here y is the coupling strength of oto the energy momentum tensor
(0|8(0)| o) = mg'y' . Thus, an appropriate specification of the four free
parameters allows us to fit any set of these four coupling constants con-
sistently with the WI's, Predictions can only arise if we make additional
smoothness assumptions. Consider the behaviour of the following form
factors with respect to the momentum transfer g = p'- p:

mg-y— lgomr q2

0(a%) = (5] 00)| w(p) = v, ¢+ 2m -

9% - mg
. 2 2
-io(P| A O)|7(p) = F (¢7)(p'+p) +F (¢T)q , (4.34)
M + mo- i
where
2 -
9. MASTY | | MAYA &aon
F+(q ) 3 T2 2 ) ’
mo_ q —mA
m2
E=3|B-s-1) |, (4.35)
i
A
2 2 1
ms m_ f_ g (mS-m2)ga~r ¥
F(q?) = -ygy—g+ —p 0T 4 -0 TOOTTA | (4.36)
mO‘ q _mTr q 'mA
2 2. 2

7@ = (a(p) 3% A ()] 1(p) = F (g

7] + o 71 -
We now list a possible set of smoothness assumptions and their conse-
quences for the couplings.

(ii) If 6(q2) and f(qz) are only once subtracted, then yy = y9 = 0. This
was the smoothness assumption of ref. [16]. Note that this condition is not
fulfilled in the case of the gauge field Lagrangian of Gasiorowicz and
Geffen (GG) [23]. There one findsy{ = (1-1/Z), where Z = mA/m% ~ 2, If
we modify the energy momentum tensor of the GG model by adding the
correction term [6] ~éd(au dy - Elguu)(cz +72) to the Belinfante tensor,
thus assigning dimension d to the o and 7 fields [18]: we obtain instead
Y1 = (1-d/Z). Thus we see that, in this model, a once subtraced 9(q2) can
only be obtained withd =Z (=2).

(iii) If (ii) holds and F+(q2) is unsubtracted ¥ then we obtain, in addition
to

(4.37)

T In Lagrangian models [2, 13] where dimensions are adjusted by inclusion of
factors e”Y, the parameter b is connected with ¥ via & = -y/mq

Hf We should mention that in this case the dimensional information provides that the
subtraction in f(qz) is of order m,zr/'m g. Carruthers [24] used the assumption of
unsubtr%ctegness of these form factors to obtain (&ram /(8o ) = - 2(Srpa)/ (m )
X (1 -mg/mg) which is the above result for d =1,
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m2 ‘
g
also
fﬂ"YA

S8cAn = - 2y m,, ’ (4.39)

w2Zmy Cp m3
g :——[-2+(d—1) 1_—-*}, (4.40)

cAA Ca Mg S ( f72T mi

2
vfeém

hGAA=#mZ(dS-1), (4.41)

i.e., the d-wave coupling constant vanishes if dg = 1. The value for gAgy
in (4.39) was the result obtained in ref. [18]1.

Within our general assumptions the coupling strength is an arbitrary
parameter. However, it can be related to the dimensional content of the
Hamiltonian density and the chiral content of the breaking term « by a
spectral function sum rule [2, 4]. In the GG Lagrangian with dg =1 and o
and 7 of dimension d one has

M

-y 4.42

‘}/:

In the same GG model, assumption (iii) on the form factors is not
satisfied because of the presence of the k- term [necessary to include d-
wave coupling in Ap7 ** and causing a subtraction in the matrix element
(m [plﬂ) proportional to (Cp k- 1)]. In fact this Lagrangian model yields the
following value for the parameter E

I Fora comparison of this value of gya to those obtained by other methods, see
ref. [18].

ii See eq. (5.29) of ref. [21]. In the ApT coupling constant, defined by L2
=SApPT PL” AaH XM +hApT P * (oHAVY x8,m, K occurs as EApT = (m%/zfﬂ) (2+0),

kAo = (1/2 £,)0 where 6 = (m2 /YA)K. In g one finds & (ref. [9]) as g
_ (%1;)/4\/_2f?7) 3-5). ATTA pmT pmm

Hf with v1 = (1-d/Z) and E given by (4.43), our equations yield

™ ma
- —Z |1+(z-2 T,
Eomn =7 £ 23/2[ (-2 mz}

(04
-3/2
gAO'7T=Z YA (2_26) ]
2 2 -3.,-1/2
E5AA "yAfan'mAZ %,

in agreement with the GG model.
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2
m
E=-m2dX =."9% g5 (4.43)
o YA mi

where we have introduced the familiar § -parameter frequently used in hard
pion calculations [9].

(iv) If we assume that the d-wave coupling vanishes, i.e., E = 0,[instead
of assumption (iii)], then gp,; vanishes for dg = 3*. Note that in this case,
F+(q2) is a constant in the low energy region up to the Aj pole.

(v) In the Lagrangian models that we have studied, which contain no
spin 2 f-meson, we always find that v9 = 0. However, we argue that 2

becomes non-zero in general on introducing the f-meson*, since we can
show (see appendix C) that in our model
0 2 2
_9_ = - 4.44
22 G,lq )|q2:0 Yo/ m (4.44)

where Gl is the tensor form factor defined in

a(p0]o, O lnlo) = 5[5, 3,6, g, -a,4,) Gy, (4.45)

187

where ¢ = p'-p, Z = p'+p. Thus if we assume G1(q2) to be at most of
once subtracted form for low q2 we have

2. 92, 92
Yogq“ms/m

G1lg?) =1+ (4.46)
qg- - wmyg

Requiring G1(¢2) to be unsubtracted [26] would then require
Y9 = - mg/mf i O y9 has such a typical order of magnitude i.e., 0(1), we
would be justified in neglecting it in considering the coupling constants
(4.30) and (4.31) since y9 always appears in these formulae with an asso-
ciated factor m%/mo.
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cussions, and the Theoretical Study Division at CERN for its hospitality.
One of us (L.S.) would like to thank the Netherlands Organization for Pure
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I We thank Professor B. Zumino for pointing this out to us.

i Professor B. Zumino has informed us that in Lagrangian models [25] incorporat-
ing f- and 0-dominance of the stress energy momentum tensor, extra higher-
derivative O7TT couplings are necessarily introduced which cause higher off-
shell momentum dependence which only disappears in the limit mg — o, In the
simplest model with minimal coupling, however, the orm coupling constant is
still independent of myg and given by (4.38). The appearance of just two arbitrary
parameters ¥y, Yo seems to be correlated to the fact that one can introduce
into this pion Lagrangian [25] (at the lowest-derivative level) just two independent
non-minimal couplings to the f- and o-mesons.

I Note then in this case the condition for G to be unsubtraced also in our model
isyq1 =0.
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APPENDIX A

Derivation of sea-gulls

We shall present a short construction of the T* products (4.12) and
(4.13). Consider the non-covariant WI's (4.7) and (4.8). These WI's show
immediately which sea-gull terms are required for covariance of T and
Ty As we explain in the text, we choose sea-gull terms preserving the
spatial components of T, and T';,.

Obviously,

7@, 0) =T @, p)- @ -3)A (Kg (a.1)

ou’

is a correct choice. Inserting this relation into (4.8), we note that certainly
the choice

* 2
T‘uu(q,.f)) = (q P)+g0“goy( < 3) AR - gougouAGS(q)
+(ds- g, OH(P V(P, k), (A.2)

will make (4.8) covariant if Spuv (p,k)EY = 0. The spatial components of
T vare unchanged if Sij(», k) = 0. Finally, we have to enforce the correct
crossing property for T’L (g, p) (see eq. (4.22)).

From these conditions, we find

_ 2 2
S[J.V(p’ k) _gIJ-O(gVOk _kOkV)Al(k ) ) (AS)
where A1(k) is one of the invariants occuring in the covariant decomposi-
tion of the propagator

ALV(k) -k, kVAl(kz)-g“VAz(kz). (A.4)

Inserting (A.3) and (A.4) into (A.2) and using the spectral function (3.19),
we indeed recover the T product (4.13).

APPENDIX B

Parametrization of vertex functions

The invariant functions of the vertices I', T';;, and I';;, in (4.27)-(4.29)
are found from the WI's (4.23)-(4.26) in terms of the three parameters yq,
v2 and & to be

2 9 2

¢=2"7 -2+ % G- a- Ll1e@-4 2]

Mg mg mg mag
+——4q2(q2 p2-B2)+ [(k2 p2)2 - q2(p2+k2)]

mg mc
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A=(d-d +1)+— {(2y1+v2+dg-3-£)q%- (va+£)(p2-E2)},

O'

1
2B = (dg- 1)+ {(3-dg- 2y1) 42 + 28p% + 2y9 2}
g

Ca 1 m% CA 9
C = zg (ds-2)+;;2;z(2'y1—2£ -[ds-l]m—%-(ds-S)(?z——l)) q

m

Ca mz
_(ds_l) 2 2 ng
f ma
E' :'2727
H=2E2v9+ 2(—2—+1)(d _1)
ma

2

m

E =2t+(dg-1) g

mA

APPENDIX C

In this Appendix we show that in our model

d 2 2 .2 2
a—qzcl(q 7p ,k )‘q2=0—'72/m0,
consider the covariant reduced vertex [3]

-1 -i(gx-py)

(@ D) A Y pate [ axdye

(0| T (6 9204 (y)a"AA(o))im

= 1 2 -2
- Z(fﬂmﬂ {E E G1+(q g —qqu)Gz
+2m2g G,+(Z q +Z. g )G,}
T QY 3 [T 1% u 4- ’

(C.1)

(C.2)

where = = p- &, ¢ = p+k. The form factors G; = Gz-(qz, 1)2, kz) can be con-
sidered to characterize the matter distribution of the pion. The conserva-

tion Ward identity on I'),,, reads:
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7, THq,p) =- ¥ & l(p)-p" a7l (0, (C.3)
which in terms of the form factors G; reads
2 2 4 -1 -1
24G 1 +4" Gy =f m (87 (p)- A7 (R) (C.4)
2 2 4, -1 -1
2mﬂG3+EqG4~—fﬂmW(A (PY+a “(R) . (C.5)

Thus the Ward identity (C.2) determines the off-shell form factors G3, G4
in terms of the on-shell form factor Gj; and also gives information on G1 at
=0, e.g., G1(0, m,, mz) = 1. We now define the scalar form factor
2 2 4 - 2

27Ts—f nu §2G+%qG

Then it follows from (C.3) and (C.4) that

+4m2G +2qG (C.8)

2 3 4

2 4 (p2 k2
mwm

mow (p2_p2
22

-1 1

2m2G (0, p°, k%) = f (0)-a"Lm)-2a7 1)+ a” LRy

(A

d 2 2 .2
+(p2- —5 G, @ ,p , k)| . (C.7)
aq2 1 q2=
In the pole approximation
-1 -2 -4, 2 2
A (P) :f m‘IT (p "m,n,) ’

T
we have therefore

2 2 .2 2 2 2 2 .22 3
2mwcs(o,p,k)_4mw-(p +B2Y+(p7 -9 P 1( ,p k |2 .(C.8)

But since I‘ﬁ is related to I" through the trace identity

-1 -1
(@, p) = T(g, p)-d(a™"(p)+ A (R) (C.9)
we have with our parametrization given in (4.27 ) and Appendix B
2m? G_(0, p%, &%) = am> - (0% k%) -2 (p2 - 1%, (C.10)
T S T mo

thus we conclude that, in our model, (C.1) holds.
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