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Dependence of variational perturbation expansions on strong-coupling behavior: Inapplicability
of é expansion to field theory
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We show that in applications of variational theory to quantum field theory it is essential to account for the
correct Wegner exponernt governing the approach to the strong coupling, or scaling, limit. Otherwise the
procedure does not converge at all or to the wrong limit. This casts doubt on all papers applying the so-called
6 expansion to quantum field theory.
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[. INTRODUCTION plained the experimentally best known critical exponemuf
the specific heat of tha transition measured in a satellite
Variational perturbation theory is a powerful tool for ex- orbiting around the eartfl1].
tracting nonperturbative strong-coupling results from weak- In spite of the existence of this reliable quantum-field-
coupling expansions. It was initially invented in quantumtheoretic variational perturbation theory, the literature keeps
mechanics as a reexpansion of the perturbation series of tledfering applications of the above quantum-mechandcak-
action[1] pansion to quantum field theory, for instance in recent papers
5 by Braaten and RadesdBR) [12,13 and de Souza Cruz
A= thdt - et al. and Kneuret al.[14] (see alsd 15]).
t, It is the purpose of this paper to show what goes wrong
with such unjustified applications, and how the proper quan-
which arises from splitting the potential into a quadratic parttum field-theoretic variational perturbation theory corrects
VvI®=02x?/2, with an arbitrary trial frequency), and an  the mistakes.
interacting part
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Il. REVIEW OF THE METHOD

V=4 X2+ VIM(x)

. (1.2

Suppose the functiof(g) is given by a divergent series

. L i expansion around the poigt=0:
The perturbation expansion is then performed in powers of

S, settingd=1 at the end, and optimizing the result éh L

guided by theprinciple of minimal sensitivity2]. The history f = ad 21

and convergence properties are discussed in the tex{l3dok L(9) |:zo 9 @
Because of the prefactdrin Eq.(1.2), the procedure is often

called 6 expansion1]. For the anharmonic oscillator, con- typically with factorial growth of the coefficienta, . Sup-
vergence was proved to be exponentially fast for fiteas  pose, furthermore, that the expected leading behaviétgyf

well as for infinite coupling strengtf8,5,6]. for largeg has the general power structure:
In recent years the method has been extended in a simple
but essential way to allow for the resummation of divergent M
perturbation expansions in quantum field theofigs§]. The fu(9)=g% > b,g M 2.2
most important new feature of thiield-theoretic variational m=0

perturbation theoryis that it accounts for the anomalous

power approach to the strong-coupling limit which the  \herew is the Wegner exponent of approach to the strong-
expansion cannot do. This approach is governed by an irgsoypling limit. In quantum mechanics, this exponent is easily
tional critical exponents as was first shown by Wegnf®]  found from the naive scaling properties of the action. In
in the context of critical phenomena. In contrast to #ie guantum field theory, however, it is an initially unknown

expansion, the field-theoretic variational perturbation expannymber which has to be determined from the above weak-

sionscannotbe derived from the action by add|ng and Sub'coup”ng expansion by a procedure to be Ca”eddyeami_
tracting a harmonic term as in E(L..2). The new theory has ¢g| determinatiorof .

led to the most accurate determination so far of critical ex-  Assuming for a moment that this has been done,Lithe

ponents via quantum field theory, as amply demonstrated igrger approximation to the leading coefficidntis given by
the textbool{ 10]. In particular, the theory has perfectly ex- [16]

L-I+(l—a)w

L
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where thez=g/Q?* is the variational parameter to be opti- O(N)-symmetric ¢*-field theory in the limit of largeN,
mized for minimal sensitivity orz. A short reminder of the \yhere the model is exactly solvable.

derivation of this formula is given in Appendix A. An appli-  Their procedure can be criticized in two ways. First, the
cation to a simple known function is shown in Appendix B. amplitudeA (g) they considered is not a good candidate for a
For a successful application to the quantum-mechanical arresummation by & expansion since it does not possess the
harmonic oscillators, the reader is referred to the textboolcharacteristic strong-coupling power struct(®e?) of quan-
[3]. The exponeniw is equal to 2/3 for arx*-anharmonic  tum mechanics and field theory, which the final resummed
oscillator, and the exponentially fast convergence has an eexpression will always have. The power structure is dis-
ror decreasing like """, For the oscillator, the num- turbed by additional logarithmic terms. Second, &hexpan-

ber o is found directly from the dimensional analysis in SION IS equivalent to choosing, on dimensional grounds, the
exponentw=2 in Eq. (2.2), which is far from the approxi-

Appendix A. As mentioned above, such an analysis will not ! ;
be applicable in quantum field theory, whesds anomalous Mate optimal value 0.842 to be derived below. Thus dhe
: : expansion is inapplicable, and this explains the problems into
and must be determined dynamically. hich in thei X X
Most often we want to calculate a quantityg) which which BR run in their resummation attempt. Most impor-
i tant in the st ing lirf tantly, they do not find a well-shaped plateau of the varia-
g‘r’les oha cons ?n Irl1l e slrong coup '”@_lrh' (g)— tional expressiond(X)(g,z) as a function oz which would
is is the case for all critical exponents. Then we must S€he necessary for invoking the principle of minimal sensitiv-
a=0 in Egs.(2.2) and(2.3), which implies that for infinite i |nstead, they observe that the zeros of the first derivatives

g 3,AM)(g,2) run away far into the complex plain. Choosing
dlogf(g) the complex_ solutions to determine their final resummed
)= ————— =0. (2.4y  Vvalue they miss the correct result by 3% up to the 35th order.

dlogg |, . One may improve the situation by trying out various dif-

ferentw values and choosing the best of them, yielding an
If B(g) is reexpressed as a function &f this implies acceptable plateau iA(g,z). This happens fow~0.842.
B(f*)=0, the standard requirement for the existence of arhe numerical analysis indicates that then convergence may
critical point in quantum field theory if(g) =gr(g) is the  be achieved.
renormalized coupling strength as a function of the bare cou- Let us explain these points in more detail. BR consider

pling strengthg. the weak-coupling series with the reexpansion paramgter
The dynamical determination af proceeds now by treat- w |
ing not only f(g) but also the beta functiof.4) according A(g)= _2 _ s a (3.2)
to the rules of variational perturbation thedf], and deter- = 1-5 " '
mining w to makeB* = B() vanish, which is done by op-
timizing the following equation of: where
L o]
L=l+l/w azf K(x)f'(x)dx
B=2=3, ﬁ|Z'< o s 1= J KeoTeade
. ) . with
wheref, are the coefficients of the expansion of E2.4) in
powers ofg. Minimal sensitivity is reached for a vanishing K 4x2 . 2 X 3.2
ivati i : X)=————, X)= —arctan;. .
derivative with respect ta: (x) (L) (¥)=5 n
L
iﬂ(m 2= glz' 1 L=l+lw _ (2.6) The geometric series in E@3.1) can be summed exactly,
Jz ’ = P L—I ' ' and the result may formally be reexpanded into a strong-

coupling series im=+1-6/(49):
so thatz and w are to be found as simultaneous solutions of ping (o9)

Egs.(2.5 and(2.6). A(g) f Koo 910 859 f(x)
g)= X
I1l. ANOMALOUS DIMENSIONS V1-6+6gf(x
As mentioned above, a number of authors have applied = Z bn(—h)™
the & expansion to field theories. Most recently, this was m=0
done for the purpose of calculating the shift of the critical\here
temperature in a Bose-Einstein condensate caused by a small
interaction[13,14]. Since the perturbation expansion for this I _
guantity is a function ofy/«, whereu is the chemical po- b= 0 KOOF= M0 dx. 3.3

tential which goes to zero at the critical point, we are faced

with a typical strong-coupling problem of critical phenom- The strong-coupling limit is found foh—0 whereA—b,

ena. In order to justify the application of thieexpansion to = [7dxK(x)=1. The approach to this limit is, howevemnt
this problem, BR12] studied the convergence properties of given by a strong-coupling expansion of the fo{@3). This
the method by applying it to a certain amplitudég) of an  would only happen if all the integralb, were to exist
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FIG. 1. Plot of 1-b{"(w,z) versusz for L=10 and o
=0.6,0.842,1,2. The curve with=0.6 shows oscillations. They
decrease with increasing and the curve becomes flat at abeut
=0.842. Further increase @ tilts the plateau and shows no re-
gime of minimal sensitivity. At the same time, the minimum of the
curve rises rapidly above the correct value efi;=0, as can be
seen from the upper two curves for=1 andw=2, respectively.

which, unfortunately, is not the case since all integralsofgr
with m>0 diverge at the upper limit, where

f(x)= garctang ~ ; (3.9

The exact behavior i in the strong-coupling limih—0 is
found by studying the effect of the asymptoti¢x contribu-

tion of f(x) to the integral in Eq(3.3). For f(x)=w/x we
obtain

PHYSICAL REVIEW D58, 065001 (2003

The logarithm ofh shows a mismatch with Eq2.2) and
requires extra care if the expansi¢8.1) is to become a
candidate for variational perturbation theory.

We now explain the second criticism. Suppose we ignore
the just-demonstrated fundamental obstacle and follow the
rules of thes expansion, to find theth order approximant to
A() by expanding(3.1) in powers of § up to orders",
setting =1, and replacingg—g. Then we obtain thé.th
variational expression fdo:

L-—I+l/w

.t (3.6

L
bV (w,2)=>, a7
=1

with =2, to be optimized irz. This w value would only be
adequate if the approach to the strong-coupling limit be-
haved likeA+B/h?+ - - -, rather than Eq(3.5). This is the
reason why BR find no real regime of minimal sensitivity on
z Had there been no logarithmic term in E®.5), w=1
would have been the correct choice.

As mentioned above it is possible to improve the situation
by allowing for an effective anomalous dimension in the re-
summation of Eq(3.5. Thus we determine dynamically
from Eq. (2.4), and we find that forw~0.842 there is defi-
nitely a flat regime of minimal sensitivity as can be seen in
Fig. 1 by comparing plots of +b{")(w,z) versusz for sev-
eral differentw values. The optimad is quite far from the
naive valuew=2, and also way off fromw=1.

This value can also be estimated by inspecting plots of
1-b{"(w,z) versusz for several different values, select-
ing the one producing minimal sensitivity. It produces good
results also in higher orders, as is seen in Fig. 2. The ap-

% 1 proximations appear to converge rapidly.
0 K(X) 1+h/f(x) dx As a final step, we are pushing the order upLte 100,
focussing orw=1 andw=0.82 . ... Wedetermine the op-
7+ 2m?h— w?h%+ 2h3+ 47%h logh/ timum of the variational parameterfrom the plateau, mak-
= 21 122 . ing use of the vanishing of the second derivative of
(m ) b{")(w,z) with respect toz. All real zeros are exploited to
(3.5 win an approximation for the strong-coupling coefficient
oM - ' T 1-tPea] l
N A G Y B S 1 A A N
/ /\ / — \L WA\ [\ |
0 - 7',_) -.0012 \Q\\\y\/}\ >// \_// FIG. 2. The functions 1
_ —b{")(w,z) are shown for various or-
\ Q -.0014 M&‘/Y\ dersL=10,17,24,31,38,45 in each plot.
™ / / w=0842 \ | The critical exponent is chosen to be
v/ / \] ©=0.6,0.842,1,2, respectively. The op-
6 ! 14 # 6 ! 14 *  timal w=0.842 ensures that the plateau
. is well pronounced and for increasing
Wa-tPw) [N [ ] ] AN 1-87w2) / ordersL stays near zero, which is the
0 \\ NEIRN [ ] | 25 \ correct value. The other choices for
\\ \ \L I l / I do not have this property. In particular,
© \ I \l T l 20 for =2 of the § expansion of BR
\7\\/ / / \// there is no convergence.
o A N 1 \
w=1 T\ w=2 —
B 1 15 \ z 5 1 1.5\ z
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FIG. 3. The absolute logarithmic error of the leading strong-  FIG. 4. Logarithmic error of the leading strong-coupling coeffi-
coupling coefficient lo.—b{"| is plotted as a function of the order cient b{") of the ground state energy of the anharmonic oscillator
L for =1 andw=0.842. The choiceo=1 would be the correct with x* potential. The errors are plotted over the ordleof the
dimension, if the logarithm was absent from 3.5, whereas variational perturbation expansion. At each order, all zeros of the
=0.842 has been determined dynamically as an effective anomdirst derivative have been exploited. Only the real parts of the com-
lous Wegner exponent to achieve a plateau of minimal sensitivityplex roots have been used to evalua§e . The fat points show the
The real zeros of the second derivativeb@f)(w,z) with respectto  results from real zeros, the smaller points those from complex ze-
z have been used throughout to fixFor w=1 there is only one ros, with the size decreasing with distance from the real axis.
zero for evenyL, leading to the highest curve. Far=0.842, there
are four zeros contributing at eath assembling themselves into of variational theory with a dynamical determination @f
four families for sufficiently largé.. One of them seems to have an yjelds the correct strong-coupling limit 1 with the exponen-

ing the one forw=1, level off and either converge slowly to some L oo like b ~1 exp(—1.909-1.168L)

value, which may not be the correct one, or converging rapidly to a . . .

wrong value. It cannot be concluded whether the exponential be- In the next section we arg going to point out that an es-
havior of the “good” family carries through to much higher orders, cape to complex zeros _Wh'_Ch BR propose to remedy the
since the numerical data have always a limited accuracy. Here wroblems of thes expansion is really of no help.

have employed an accuracy of at least 200 digits. It is remarkable

that for closely lying neighboring values such @s=0.841 or IV. RULING OUT COMPLEX ZEROS

=0.843, the exponentially decreasing families disappear. Appar-

ently, smaller and smaller adjustments«f 0.842 in higher deci-
mals are necessary to ensure exponential convergence to arbitrar
high orders.

. It has been claimefiLl7] and repeatedly quotgd 8] that
\.]P{e study of the anharmonic oscillator in quantum mechanics
suggests the use of complex extrema to optimize &hex-

b . Figure 3 shows the logarithm of its absolute errorPansion. In particular, the use of so-calfadiliesof optimal
log|1—b{), plotted over the ordet. Obviously the dynami- candidates for the variational parameterhas been sug-

cally determinedw=0.842 gives a better result thas=1. gested. We are now going to show that by following these

Figure 3 does not give sufficient evidence for the latter toSUQQEStionS one obtains bad resummation results for the an-

reach the correct result, but if so, it will certainly not do so harmonic oscillatof19]. Thus we expect such procedures to

exponentially fast. It is interesting to see that the exponenl—ealoI to ev?n Worsehres_uItT In fllgld-t'yheorter;uec:ppllcatlons.
tially convergent result given by one of the roots fer N guantum mechanical applications tnere are no anoma-

=0.842 seems to depend very sensitively on the corre(!f)us di.mensions in the strong-coupling behavior of the en-
choice of the Wegner dimension. We have found that smalg.rgy tf:lgen\(/jaluf(??. Th?hgrgwglbparamet&r?nq (fh can be
changes inw make the result oscillate around the correct rectly read off from the schrbnger equation, they are

value. Adjustingw as the ordet. increases, we may push the ;1/3)""?_?“”: 2I3 tf_or trlle arlhal;rrj[pnlctr?smlla_taisee IAp%(lan-f
transition from exponential to oscillatory behavior to higher IXA). The variational perturba 'O?L) ceory 1S applicable Tor
and higher orders. all coupling strengthg as long as’(z) becomes station-

This implies that the failure of the strong-coupling behav-ary_f(?r a certain value ot. For h|gh.er.ordersL It must
ior (3.5) to have a pure power structuf.?) requires a de- exhibit a wc_all-develppe_d pIateLa)lu. W|_th|n the range Qf the
parture from naive dimensions in favor of dynamically de-Platéau, various derivatives ot (2) with respect taz will
termined ones. To corroborate this issue we change théanish. In addtltlonl thterg will be Cg”t‘ﬁlex Iz?ros W_'IEE small
) ) . : %o imaginary parts clustering around the plateau. They are,
funct|on.f(x) in Eq. (3'_2) sllghtly~|nt(? F0)—=109=1(x) however, of limited use for designing an automatized com-
+1, which makes the integrals far, in Eq. (3.3 conver- ey program for localizing the position of the plateau. The

gent. The exact |Im|t|ng value 1 (ZA& remains unchanged, but Study of several examp|es shows that p|0tﬂm&)(z) for
H(()L) acquires now the correct strong-coupling power strucvarious values of andw and judging visually the plateau is
ture (2.2). The reader may easily verify that the applicationby far the safest method, showing immediately which values
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FIG. 5. Deviation of the coefficierti{~) from the exact value is shown as a function of perturbative drden a linear scale. As before,
fat dots represent real zeros. In addition to Fig. 4, the results obtained from zeros of the second derihé't?varefincluded. They give
rise to their own families with smaller errors by about 30%NXt 6, the upper left plot shows the start of two families belonging to the first
and second derivative dn‘gL) , respectively. The deviations of both families are negative. On the upper right-hand figure, an enlargement
visualizes the next two families starting t=15. Their deviations are positive. The bottom row shows two more enlargements of families
starting atN=30 andN=53, respectively. The deviations alternate again in sign.

of @ andw lead to a well-shaped plateau. shift of the Bose-Einstein condensation parametrized as
Let us review briefly the properties of the results obtained
from real and complex zeros G;bg")(z) for the anharmonic AT,
i i i (L) —=can*®, (5.2
oscillator. In Fig. 4 the logarithmic error di;,”’ is plotted 70 1
Cc

versus the ordekr. At each order, all zeros of the first deriva-
tive are exploited. To test the rule suggestefilifi, only the  prasaniy five coefficients of the relevant perturbation ex-
real parts of the_ complex roots have been used to evalua nsion are known for the weak-coupling expansion
b(()L). The fat points represent the results of real zeros; th?13 14,2Q
thin points stem from the real parts of complex zeros. Itis =
readily seen that the real zeros give the better result. Only by 3
chance may a complex zero yield a smaller error. Unfortu- F(x)= > ax", (5.2
nately, there is no rule to detect these accidental events. Most n=-1
complex zeros produce large errors. ) o ]

We observe the existence of families described in detail ifvhose asymptotic value for—oo coincides withc;:c,
the textbook3] and rediscovered in Ref17]. These fami- =F =lim,_..F(x). The known coefficients area_,=
lies start at aboull=6,15,30,53, respectively. But each fam- —13.9707, 89=0, a,;=-0.446572, a,=0.264412, a;=
ily fails to converge to the correct result. Only a sequence of~ 0.199. ) ) )
selected members in each family leads to an exponential con- e would like to offer an alternative resummation result
vergence. Consecutive families alternate around the correé@r this series to that in Ref20]. It is based on considering
result, as can be seen more clearly in a plot of the deviation§® functionxF(x) containing no negative powers gf The
of b{-) from theirL— limit in Fig. 5, where values derived desired numbec, is the leading coefficierts, of the strong-
from the zeros of the second derivative fff) have been COUPIING expansion
included. These give rise to accompanying families of simi-
lar behavior, deviating with the same sign pattern from the F(X)=X
exact result, but lying closer to the correct result by about
30%.

cy+ ngl bnx“‘”). (5.3

The result forc; should be unaffected by this modification of
the function, and given by the optimizédh-order approxi-

V. TEMPERATURE SHIFT FOR N=2 REVISITED mations
Much attention has been paid to a field theoretic model L L—1+(1—1)/
with O(2) symmetry[13,14,2(Q to calculate in a realistic ¢z w)zz a|z'1( w). 5.4
context the coefficient,, which enters into the temperature L =0 L—I
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For the available orders<4, this set of functions is now
inspected for plateaus. For< 3 there is none. Fdr=3 and Bo
L=4, a plateau can be identified unambiguously as the only
horizontal turning point solving simultaneousvyc(l")(z,w)
=0 andd’c{”(z,0)=0. The results are The limit e— leads directly to the propert.4).
B @3)_ 3)_ 3)_ Another well-known fact is that all the functiorfg(gg)

L=3, z=1.089, *=1.071, ¢;"=0.940, (5.5  for k>1 can be expressed in terms of the residiggy)
only [10]. Indeed, taking the derivatives @y(g) in Eqg.
(6.5 with respect togg ande:

Bo(9)dg,9=— €9l g, (6.7

=e2, [fi(ge) ~0afi(ge)]e "
(6.6)

grffgl fi(gg)e X

L=4, z%=2057, 0®=0.571, c{¥=1.282.
(5.6)

Given only two approximations foc, it is unrealistic to
attempt an extrapolation tbo—«, as done with another se- ,
lection rule of optima in Ref.20], but it is interesting to note Bo(9)99=9+ €9.9—9adg,0~ €98dg,d T,
that the value of the coefficient for the temperature shift = = , . .
c{Y=1.282 is in excellent agreement with the latest MonteS/minating Bo(g) between these two equations, and insert-
Carlo result ofc,~1.30[21]. ing thg expan3|or(6..3), we_obtam or_der by order in &/q
recursive set of differential equations for the functions
fr(gg) with k>1, which are power series g . If we now

expand

(6.9

VI. RENORMALIZATION GROUP AND VARIATIONAL
PERTURBATION

The most convincing evidence for the power of the field- 2 . _ i
theoretic variational perturbation theory with anomalous di- f1(gs) = gB+,§="3 7i%; fk(gB)_j=§k;rl Ykids:
mensions comes from applications to critical exponents in (6.9
4— e dimensiong 8,10]. The results obtained turn out to be o ] o )
immediately resummed expressions of theexpansions, & Solution is readily found, beginning with
which can be recovered as a Taylor series. The renormaliza- 8 3 v
tion group functiond(g) is o_btalned fro_m the weak-coupllng Yikr1=(— 1)K, Y24= "3 Vs Y2575 75— 574
expansion of the renormalized coupling constgnn terms

of the bare coupling constagg [10,22: (6.10
-1 29 18 22
B(g e)=—egd|ogg(gB'6) =— d10g9s(9.€) Y35~ g ¥3: Y2675 V3YaT | Vs
' dloggg dlogg
(60 32, 39
Due to renormalizabilityB(g) necessarily has the form Y36~ T g v3t 5§ Y4 (6.11
B(g,€)=—€g+ Bo(9). (6.2 37 13 16

_ o - Yag= = g Y3 V21— 2%t 3 V35~ 3 e
Perturbation theory with minimal subtractions yields the

weak-coupling expansion

5 , 551 59
o Y37=5 73" %7374+ B Vs (6.12
_ —k
9=0s+ > f(de)e ™, 6.3
K 751 , 141 103
Ya7= 253" 1o Y4 Ys1m g V3 (6.13

wheref,(gg) possesses an expansion in powerggf start-
ing with g5~ *. By suitably normalizingy andgg, the lead-
ing coefficient of f; can be made equal to minus one:
fl(gB)=—g§+O(gB)3. The function Bo(g) can be ex-
pressed in terms of the residfig(gg) of the € pole in Eq.

(6.3 alone

In the renormalization group approach, a fixed paght:0

is determined by the zero of the function: 8(g*)=0. The
Wegner exponent» governing the approach to scaling is
given by the slope at the fixed pointi=8’(g*). The two
guantities have: expansions

Bo(9)=T1(9)—gfi(9). (6.9

Recall the standard proof for this based on combining Egs.
(6.1) and (6.2 to

g*=j§1 ajej, w=j§1 wjej. (6.19

The coefficient&vj and w; are determined from the residues
Bo(9) = €9~ €9pdg,9(9s . €), 6.5 yjas

which becomes, after inserting E@.3): a1=1, @,=2y;, a3=8y5+3y,, (6.19
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a,=40y3+30y3y,+4ys, L L—I+l/w
* S hZ - 1w, 6.18

L—I

a5=224ys+252y5y4+ 27y5+48y3y5+ 575, (6.16

L
and > h

I=1

L—l+l/w
1zt L =0, (6.19
w1=1, wy=—2y3, ‘03:_875_67’47
where theh, are the expansion coefficients of
w4=—40y3— 48y5y,— 12ys. (6.17 )
9s9"(9s) 6.20

We can now convince ourselves that precisely the same re- ; :
sults can be derived from variational perturbation theory ap- 9'(ge)
plied to the weak-coupling expansi®d.3) (and as shown in
[23] from the expansion of any other critical exponente
determinew dynamically solving Eq(2.5), while assuming
for @ an unknowne expansion of the fornt6.14). The varia-
tional parameter is again adjusted to mak@.5) stationary.
Then, since fore—0 the weak-coupling coefficients of
g(gg) in the expansior(6.3) behave like~€'™!, z has to
scale with €, so that we may puiz={,e+{,e*+ (3¢
+0(€%), and solve Eqs2.5) and(2.6) for each perturbative

Of some computational benefit is the observation that with
the same accuracy inthe first and second derivatives of the
variational serieg2.3) themselves vaniskhere fora=0).

This means that the function has a flat plateau. For a typical
field-theoretic application with only a few known perturba-
tion coefficients, the plateau is easily found by inspection.
Therefore, if the model possesses a well-behg¥ddnction
satisfying Eq. (6.2, we expect a reliable result for the

\ ) o anomalous dimensioa if it is chosen such as to produce an
orderL, order by order ine. This leads to a rapidly increas- ,ccentaple plateau. The ordinate of the plateau is the most

ing number of nonlinear and not even independent equation,mising variational perturbative value for the quantity ana-
for the unknown{, and w;, some depending also on the lyzed to the respective order.

orderL.

Despite these possible complications, the solutions turn
out to be well structured and easily obtained. At e&cto
lowest order ine, the term independent &fin Eq. (2.5 and Summarizing this paper we have learned that the so-called
the coefficient ofe™* in Eq. (2.6) demand that{;=1. In 5 expansion is inapplicable to quantum field theory, since it
addition, they requirey, x+1=(—1)* for somek, in agree-  does not account for the Wegner exponentf approach to
ment with Eqs(6.10. Such conditions imposed oy), can,  the strong-coupling limit. Only the field-theoretic variational
of course, not depend on the orderbut must be enforced in  perturbation theory yields the correct results by incorporating
general. Raising the order efin Egs. (2.5 and(2.6), and  w in an essential way.
imposing¢;=1 as well as the conditions already established

VIl. CONCLUSION

for the y,;, all dependences on thag, and{, disappear, and APPENDIX A
we are left with conditions oy, ; alone, which reproduce _ _ .
exactly the relation$6.10 through(6.13. This shows that Here we review briefly how the strong-coupling param-

the variational perturbation method is completely compatibleeterse andw in Eq. (2.2) and the variational equatiai2.3)
with the well-known e expansions, if the input divergent for the leading strong-coupling coefficient are found for the
series has a structure satisfying the renormalization groupnharmonic oscillator with the Schdimger equation in natu-
equation(6.2). ral units

After having reproducedy, ,, there are further equations 1 )
to be solved. Going to the next h}ghgr ord(_aremelther for B Y X_q,+gxzk\1,: EV. (A1)
Eq. (2.5 or for (2.6), gives a relation involving exactly one 2 2
of the expansion coefficients @&f w, which are simply re- ) )
lated to the coefficients, of w. In this way, the renormal- We rescale the space coordinatso that the potential be-
ization group results of Eq6.17 are exactly reproduced. COMeS
These solutions are stable in the sense that with increasing
orderL, the expansion coefficients, for I<L remain un- V(x)= 19—2/(K+1)X2+X2K. (A2)
changed. This proves that the variational method produces 2
the samee expansions of all critical exponents as renormal- ) . . .
ization group theory. At the same time this implies that theANY €igenvalue has the obvious strong-coupling expansion
standardé expansion which does not allow for the anoma- w
lous dimensionw is bound to fail. — o U(k+1) —2l(k+1)!

It is noteworthy that several other conditions are auto- E=g ;o bi(g ) (A3)
matically satisfied up to some ordef, -1, or -2, re-
spectively. Among them is the variationally transcribed secwhereb, are the strong-coupling coefficients. The aim is to
ond logarithmic derivative of the weak-coupling series anddetermine them from the known weak-coupling coefficients
the derivative thereof: a, of the divergent perturbation expansion:
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APPENDIX B

— |
E_,:Eo ag- (A4) In order to gain further insight into the working of the
variational resummation procedure, we apply it to the simple
The solution of this problem comes from physical intuition, test function
suggesting that the perturbation expansion should be per-
formed around an effective harmonic potenti@’x?/2, f(X)=(1+X)*=x
whose frequency is different from the bare value 1/2 in Eq.
(A1), depending org and the ordel of truncation of Eq. : ; - _(a ;
(A3). Thereafter only the difference between the anharmonigglsgng\_l ggspl?r?; pg'gga\ﬁg?Tilc?(Tf”a /X(j;). a;1 ,d sg tlr?:td b";g
part and the effective harmonic part is to be treated by per- 1. Inserting this information into Eq2.3), we obtain the
turbation methods. The trial frequendy of the effective | 5iiational leading coefficient thth order: ’
potential can be fixed later by the consideration that the re-
sulting quantity of interest should be as independent as pos- L L la\[L-a -
sible of ), according to the principle of minimal sensitivity. b§ )(2)226 AN z7, (B2)
With the harmonic trial potentia¥{9)=2x?/2, the interac- -
tion potential(1.2) readsV!)'= 6[ gx?“— (Q2—1)x?2]. The  which is easily transformed into the expression
parametew organizes the reexpansion and is set equal to 1 at TR
L)E(I)—(—l)”'Z'“- (B3)

a

1+ (B1)

the end. The expansion proceeds from the rescaled Schro b{H)(z)=
dinger equatior(A1): 0 | —a

X2 59X W E Dgtermining thg variation_ql .parame_teraccording to the
_ E\I,u ?\If+ =27, (A5)  principle of minimal sensitivity requires a well developed
B B plateau ofb{") as a function ofz. For the simple test func-

tion, the derivatived,b{-(z) can be obtained in the closed
where 8= Q?— 5(0%—1). To orderL, the energy has the form:
reexpansion

d L—al« . (L)
L ! (L)) — (—q)L+1 N
o (-1 — B4
EV(0.g)- 85, aft| 22| | (A6) gz (@=(-1 zm(L).Eo( 2'| ] B9
i=o BK‘Fl
i i : =~ L+1 @|(1-2)"
with the well-known weak-coupling expansion coefficients =(-1)""(L—a) L — (B5)
z

as defined in Eq(A4). The strong-coupling behavidA3)

suggests changing the variational parameter fildmo z  This exhibits a flat plateau arourg=1 if the orderL is

=g/Q*"". In the limit g—o we obtain the reexpansion mych larger thanx. An equally flat plateau is found for

which must be optimized ia: b{")(z). The value of the leading strong coupling coefficient
L) :

L—1+(I—a)w by~ at the plateau is

L—I w _(Q)EL:<L)L_‘“ L+l
by’(1)= L& —a(—l) =1, (B6)

L
EQ@)=g> af”z'“( ) (A7)

wherew=2/(k+1) anda=1/(x+1). For the leading coef-
ficient of the strong coupling expansion of the ground statén perfect agreement with the exact result, thus confirming
energy, Eq.(A7) leads directly to the variational equation the applicability of the resummation scheme for this class of

(2.3. problems.
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