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Summary. — We use the technique of equating unsubtracted dispersion
relations in the forward and backward directions at threshold in order to
obtain sum rules for the invariant amplitudes of Compton scattering.
Assuming f, ¢,  and =, A, to dominate the absorptive part of the {-channel,
and baryon resonances to saturate the integrals over the s- and «-channel
cuts we are able to express the coupling constants of these mesons fo
photons and nucleons in terms of the electromagnetic multipole ampli-
tudes of the baryon resonances. The results are compared with estimates
obtained by other methods.

1. - Introduction.

Three hypotheses have recently given rise to 2 number of predictions con-
cerning coupling constants of mesons:

1) The energy-momentum tensor is dominated by a single (700, '~
~~ 400) (*?) and a single £(1260, I" ~ 150 4-25) (*) meson in its spin-zero and
spin-two content, respectively.

(*) Supported in part by Deutsche Forschungsgemeinschaft under Grant No. KL 256.
Yy H. A. Kastrur: Nucl. Phys., 15 B, 189 (1970); see however: H. KLEINERT and
P. H. WErsz: Nucl. Phys., 27 B, 23 (1971); M. Dar-CiN and H. A. Kastrur: Nuel.
Phys., 15 B, 189 (1970); J. ELr1s: Nuel. Phys., 22 B, 478 (1970); M. GELL-MANN: Lecture
Notes Hawaii Summer School (1969); B. ZumiNo: Brandeis Lectures (1970); H. KLEI-
NERT: Lectures presented al the XI Institutwochen fiir Hernphysik (Schladming, 1972).
(3) H. KLeEiNERT, L. P. StaAUunTON and P. H. WEi1zs: Nucl. Phys., 38 B, 87 (1972).
() P.G.O.FrReEUND: Phys. Leit., 2, 136 (1962); D. H. Snarp and W. G. WAGNER:
Phys. Rev., 131, 2226 (1963); B. RENNER: Phys. Rev. Lett., 33 B, 599 (1971); DESY
preprint 71/14 (1971).
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2) The pomeron trajectory is linked in some way with the f trajectory (24).
Involving the standard smoothness of reggeology one is able to conclude that
properties of diffractive production are related to those of the f coupling.

3) Absence of exotic resonances in certain channels implies exchange de-
generacy of f, ® and p, A, trajectories and equality of their Regge residues (*).
Assuming again the standard smoothness one can extrapolate these relations
to the mass shells of these particles.

Many of these predictions fix coupling constants observable in Compton
seattering. Thus assumption 1) has led to the estimates for the radiative
decays of o (%) and £ (°) mesons

(1.1) Gy~ 04

4
(1.2) gizy)y R~ j}‘;z Jerere » gi(;;z) ~0,
o

*%

while for the coupling of o (*) and £ (%) (**) to nucleons one obtains

m

1.3 A —
(1.3) Joosx A = Jomm
m
(1'4) GS\?’.N’ ~ ﬁ' Girere Gfifw ~ 0.

1

The pomeron trajectory has been found experimentally to decouple from
helicity-flip amplitudes in 7N and yN — pN> amplitudes (?). Using assump-
tion 2) one can then conclude that the f coupling to two photons is pre-

() P. AcmuraN, H. G. ScovaiLe and F. STEINER: Nucl. Phys., 24 B, 398 (1970);
P. G. 0. FreunD: Chicago preprint COO 264-572 (1971). R. Oporico, A. GaRrcrA and
C. A. Garcra CaNaLn: Phys. Lett., 32 B, 375 (1970); C. MicHAEL and R. ODORICO:
Phys. Leit., 34 B, 422 (1971).

(5) R. C. ArNorD: Phys. Rev. Leit., 14, 657 (1965); C. ScHMID: Phys. Rev. Leti., 20,
689 (1968).

(*) TFor a discussion see, for example, ref. (1) or the introduction of ref, (). Our onw
coupling is normalized by Porp= (gonn/2Mg)on? such that |gomm|=ms/V2Fr=5.2.
In the model, ggnn=—mx/F7z<<0.

(®) H. KirINERT, L. P. 8TaAUNTON and P. H. WE1sz: Nucl. Phys., 38 B, 104 (1972).
(**) Here L= giun/mi0¢nd*nf,, such that In=2%(ginn/dm)(k°/m?) and |gu|~ 12.
() G. HomrEr and R. StraUsSs: Zeits. Phys., 232, 205 (1970); F. J. GIiLmaN,
J. PumMpLIN, A. ScHWIMMER and L. STOoDOLSKY: Phys. Lett., 31 B, 387 (1970); H. HARARI
and Y. Zarmi: Phys. Lett., 32 B, 291 (1970).
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dominantly helicity conserving, i.e.

(1.5) Gl |G ~ 0,
(1.6) oy Gy 0,

in agreement with the predictions 2) and 4).

Finally, assumption 3) has led to the conclusion that the couplings of £N° N
would have the same flip-to-nonflip ratio as &N’ N> which is known to vanish,
in agreement with (1.5). Similarly the A,N° N’ coupling should behave like the p
coupling, ¢.e. should predominantly flip the nucleon spin (*).

Some of these predictions have been tested.

1) The coupling strengths ocN°.N°, NN can be observed in backward
dispersion relations of the isospin even amplitudes of nN° scattering (®?). One
finds the estimates

(1'7) Jaxxorn = 69 j: 4 ’
(18) G:.]ﬁf’).N’gtmr =301 28 ? G:.?}’.N’gmn =—70 90

with an error which is hard to assess. Inserting g ..~ —5, §,.. ~ 12 we only
see that the orders of magnitude agree and that the vanishing of the helicity-
flip coupling is in agreement with (1.4) and (1.5).

2) The coupling A, NN has been estimated by using & combination of
backward and forward dispersion relations in the photoproduction amplitude.
The coupling constants are calculated in terms of electromagnetic and pionic
coupling constants of baryon resonances. One finds that the flip-to-nonflip
ratio is related to the magnetic vs. electric ratio of the multipole couplings
of the A-resonance and therefore turns out large, as predicted () (see Ap-
pendix A, 5)).

3) For the couplings oyy and fyy there is an estimate based on finite-
energy sum rules in pion Compton scattering (11). Here one finds

(1.9) Jopy ™ 0.9,
(1.10) g2 ~ 1.3, 08~ —0.04.

(*) Both statements agree with what one would conclude from the flip-to-nonflip ratio
at t=m?2 or m’ (which is — (2m/v=8)(f1_/f+,) > 2K*~—0.12 or 2K?~ 3.7, respec-
tively) if one assumes a smooth extrapolation to ¢=0.

(¢) H. GoOLDBERG: Phys. Rev., 171, 1485 (1968); J. ExcELS and G. HOHLER: Karlsruhe
preprint (1970); J. ENGELS: Nucl. Phys., 25 B, 141 (1970); J. L. PETERSEN and
J. Pi3ur: CERN preprint TH 1375 (1971).

(*) H. G. Scuraick: Karlsruhe Thesis (1970); R. Strauss: Karlsruhe Thesis (1970).
() H. KreiNXerT and P. H. WEi1sz: Lett. Nuovo Cimento, 2, 459 (1971).

(11) B, ScureMPP-OtTO, F. ScHREMPP and T. F. WaLsu: Phys. Lett., 36 B, 463 (1971).
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However, this work needs stronger assumptions than the determinations pre-
sented before. In particular it uses the smoothness of the couplings along the
the Regge trajectory in order to determine the on-shell constants. Since this
smoothness is part of the assumptions to be tested there is need for an estimate
of these couplings via direct methods like 1) and 2).

It is the purpose of this paper to present a complete discussion of these
coupling congtants making combined use of forward and backward dispersion
relations in Compton scattering. Apart from the above-mentioned determina-
tion of s N°N, £NN and A, NN couplings, this method has been successful
in the ecalculation of the coupling constants to nucleons ('*) and baryon
resonances (1314), Therefore we believe it worth-while to investigate also the
vertices oyy, fyy, Ayyy using this method. In addition we shall obtain once
more results on o N°N, INN and A, NN couplings and also be able to give
estimates for nyy and myy.

The method proceeds as follows. Among the invariant Compton amplitudes
free of kinematic singularities and constraints we pick those which, by Regge
arguments, obey an unsubtracted dispersion relation in the forward as well
as in the backward direction. Via these dispersion relations we calculate the
value at the point common to both directions, the threshold point s = m?, =10
in two ways.

One way is by integrating along ¢ = 0 and picking up only s- and w-channel
absorptive parts and the other is by integrating along the curve 6 = 0 so that one
obtains contributions from the #-channel cut as well as the s- and #-channel
cuts. Since the resulting values have to be the same we obtain a sum rule
relating the integrals over the absorptive parts of the ¢-channel to those of the s-
and #-channel. These integrals are assumed to be dominated by o, f, n, 7, A,
megons in the {-channel and by baryon resonances in the s- and u-channel.
The resonance couplings are known quite well from multipole analyses of photo-
production. Therefore we are able to express the meson couplings in terms of
multipole moments of the resonances.

TFor amplitudes which in the forward direction need subtractions due to the
exchange of a pomeron or the A, or = trajectory, we shall write a supercon-
vergence relation in the backward direction which turns out to be possible in
all cases.

(12) J. Enxcers, G. HOHLER and B. PETERSsON: Nucl. Phys., 15 B, 365 (1970); H. Ba-
NERJEE, B. Durta-RoY and 8. Maruik: Letl. Nuovo Cimenio, 1, 436 (1969); Nuovo
Cimento, 66 A, 475 (1970); H. BANERJEE and B. Durra-Roy: Phys. Rev. D, 2, 2414
(1970).

(13) J. Baacke and H. KLEINERT: Leit. Nuovo Cimento, 2, 463 (1971); DPhys. Lett.,
35 B, 159 (1971).

(14 J. Baacke and H. KLEINERT: Nuel. Phys., 42 B, 301 (1972).
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2. — Kinematics and resonance contribution.
A covariant basis for the Compton process
(2.1) N(p) y(k) < N(p) (k)
has been given by PrANGE (*)(*). If one denotes the scattering amplitude (**) by
(2.2) (p' K| T|pky = (k" )u(p") T u(p)s, (k)
then 7* can be written as

(2.3) ™ — ZGBiQi.‘”

i=1

with the covariants

P prr
in= T ’
NeN»
Qé“, = Nz b
ww  PEN*—PYNe
Y0 CR
(&4 PP PK
Tu Pry
f":—PTr y-K—m Pe Q"
Ne N PK
5 = e V'K—m? 5
P'uNvY 4 P*N#
Hy .
6 '\/IDTJV-?‘ /”7’5('}’ K) .
Here K, P’ and N are combinations of the particle momenta:
! 'PK 4
(2.5) P,u EP#_'R’";K# ’ Nuz_g,uvgap * KeAe (€012 = 1)
with
(2.6) P=%(p"+p), EK=j#+k, d=p—p.

{(*) R. E. PRANGE: Phys. Rev., 110, 240 (1958).

(*) We perform only a slight modification to have it orthogonal.

(**) Our convention is §=1—(2r)*id4(P,—P)T =1+ i(27)* 64 P,— P,)f and the
gtates are normalized according to {(p’|p> = (p,/m)(2=)38(p'—p), &' |k> =2ky(27)383(k"—K).
Hence do/dR2,, = |(m/4aW)f|2. Our y-matrices are the same as those of S. Grasio-
ROWICZ: Elementary Particle Physics (New York, 1966).
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Obviously P’, N and A can be used as an orthogonal set of independent vectors
with square lengths

P2 = ;2 (K*P*— (PK)?) = —% (su —m*) ,

(2.7) ;
N* = 4K(EP*— (PR)Y) = — (u—m?),

A2 = —4K2=1{.

As a consequence the covariants @, form an orthogonal basis with respect to
the scalar product

(2.8) Q@ =11 (((rp") + m)Q(r-p) +m) @) .
Their squares are

o=@ —2p =2 (m—g),

= §=—2(1“ﬁ)(P2K2—(PK)2),

Q: = — 4(P*K*— (PK)Y) .

6

Given an arbitrary Feynman graph, its contribution to the amplitudes B;
is most easily calculated by using the scalar products (2.8) and (2.9). For a
dispersion-theoretic analysis the amplitudes B, are, however, not a convenient
choice because of kinematic singularities and constraints. A set of amplitudes
free of both is provided by the decomposition (1¢)

(2.10) ™ =34, %"

with

F =_g,l'l.w — Kzg,uv_ZKpKv’

Ly = F K[y (y-K)y* — ' (y-K)yyr] — PE(Kry” - K2 p#)

(2.11) + (y-K)(E*P” 4 P“K")
Ly = m(y-K)gw — (PK)ger — § K2 (pryr — p*y*) +

+ $ K¥(y-K), p"] -+ § [y, (- K) 1KY —m (K> + ye K) - (KPP 4-PrE?)

(%) W. A. BARDEEN and Wvu-K1 Tu~NG: Phys. Rev., 173, 1423 (1968).
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Ly = Kx{ynP? 4 Pry) — (PE)(Key + yiK) —
— (y-E)(EP» + PrEY) + (PE)ge(y-K) —mEg» + 2mE+IC,
P = K2PuPr— (PK)(K*P* - Pr K7y —
—}(PK*— (PK)?) ¢ + PR K,

Ly = PrP(y-K) — 3 (PE)(y* P + Pry”) +
@11) § 4 HPE) r(yE)y — (- E) ] + 7 Koy’ — ) +
+ 5 (PE)gwr—} Pogen(y-K) + K*E(p K) +

m

T (Fy? -y Y) — o (RuPr - PAE) —

— 2 A (y-K), 1 — 2 I, (p-K) 1K

.

Notice that due to crossing symmetry k<> —%', 4,,,; are symmetric, while
Ag, are antisymmetric under the exchange s<»> 4. The connection of B,

(2.12) M=
13 (7
_—— —_ 0 0
4 4 0 0
0 0 mt 0 0 0
4
s—u i s—u i s—u m " 0
dm2—1{ 4 dme— it 4 4
- S — mi su — m? $— U s$—U t
+m4m2--t M ameE — 0 4 4 T4
su — mt su —m*
— 0
3 3 0 0 0
1 1 8§ — U
= 2 _ — {(4dm? — —
0 0 0 8(4.m 1) 8( m 1) 2

() Notice that these relations are consistent with those of ref. (%) if one changes the
overall sign in their egs. (4.6), (4.7). The reason for the overall sign is that ref. ('5)
defines M, like our T, , but compares it with the amplitude F,, of HEARN and LEADER (6),
which is defined opposite to our 7,,. For A, thereis no sign change. The authors claim in
a footnote (2°) to have found an error in ref. (16}, but they must have overlooked the fact
that HEArN and LEADER (!?) contract the photons as F = sj(k')'ﬁ(p’)F“”u(p)s#(k), i.e.
opposite to the natural order of the indices u». Note that Bardeen and Tung’s helicity
amplitudes eq. (51) and (52) contain some printing errors. Compare our eqs. (2.14).
(*y A. C. HEARN and E. LEADER: Phys. Rev., 126, 789 (1962).
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with an inverse

(2.13) M=
2 4
—_— 0 0 0 0
t su —mh
2
—— 0 0 0 __* 0
t su —mt
4
0 — 0 0 0 0
mi
11 os—u s—u 1 s—u dm(s — ) t
2m 4m2—1t  2m*t 2m  2(su—m?) (dm? —t)(su — m?) sy — m?t
1 s—u s§—u 1 §—1u dm(s — u) {
2m 4m2—1t  2mi*i  2m 2(su—m*) (4m? —1)(su —m*) su—mt
2 ___ ——
0 0 4im*—1 . 2m 9 8§— U
su — mt su — mt su — mt

By making use of these transformation rules it is an easy, albeit laborious,
task to calculate the contributions of the simplest Feynman graphs.

a) For the exchange of a nucleon one has an amplitude
K ,
(214) Tr=(s—m) (e?”—z—w"%z) ((p) + () +m)-
K K
. v P pVH 2)—1 v o .
(ey +2m 10 k,,) + (4 —m?) (ey +2m o k,,)

((yp) — (k) +m) (ey“—%io“lki) )
where (*)

(2.15) e=3(1+7), K=KI1+EK7.

Projecting out the amplitudes B, and transforming to 4, via (2.13) one finds
that A, can be written as a sum of three terms

(2.16) A, = R[(m*—s) + (m*—u)] +
+ R[(m2— s — (m2— u)™] 4 B (m* — s)(m® — )]

with the residues given in Table I (?%).

(") K,=(K,+ K,)j2=—0.068, K,= (K,—K,)/2=1.858.
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TABLE 1. - Restdues of nucleon exchange.

29

R yiny R
4, —(2Ke + K?)/2m 0 4me?
4, (2Ke - K2)/2m? 0 de(e + K)
4, 0 (2Ke + K2)[2m 0
A, K?/2m?> 0 4e(e 4 K)
A 0 0 —8Ke/m
dq 0 — K2/m? 0

b) For the exchange of a w’-meson in the ¢-channel one has

1 1 ,
(2.17) T — m—ngn‘N’.N’gﬂYY ﬁ-‘?‘—_t 7/)/5 T3 S'ulekﬁkn

and finds (*)

v 2 1
(2.18) Ay = g GmNN Iryy mk—1

For v exchange one has to replace =— v in this formula and 47— A:.

¢) The exchange of ¢ gives

2 1 , ,
(2.19) T# = — goyy Yoo — —5—— (k' kg, — K k,) ,
Mg Mg —1
hence
(2.20) A = 4
. 1= mc(mi —t) Joyy JoNN «

d) The exchange of an f-meson yields after some tedious algebra (**)

‘ Joyy s {2 |
R :{z G (v 4 g) +
£ ¢ D 2t @ | 1
(2.21) + 24m2m§[(;77§_2) Giyy T (;n?_l Gy | Grreoe {—md’
. 292 ) _ 1
Az = _mm:f; GEN‘.N‘ gé'ly-{m P m? H

{*} We use the standard isospin decomposition.
(**) Here v = (s —wu)/4m = pg/m.
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(2.21) ;
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v 1

= =2 L G
£
3 2 gYY t_mi )

oL ._tggm o L

2 mm; 7Y t—m?d’
5= — g0, G

2 3 YY 22

m mf — t

A8 =0,

Finally, in order to obtain the contribution of A, exchange one just has to
replace f— A; and 4A°— A”,

The s-channel helicity amplitudes can be calculated with the Jacob-Wick

phase

2.22)1 7.

convention (photon = particle 2) yielding

[flﬂ(lcos ) fi=
= 2[(s —m?*)* + m 1] A, — m(su —m*) A; — [(s —m?)* —m?t] 4,,
fo= ( 4LW sin g)_lf2 =
= t(s + m2) Ay —mt(s — m3) A, + 2[(s — mAP — (0 —m4)] 4,

mp? sng cos 0) [i=24,+24,,

o~
Il

(szsmgcosze) fa=—2mAd, ——(s—{—mZ) s—mA,,

HI

(sp cesag) [i=24,+mA; + 4,,

~

Conver
term o

(2.23)

0

0

fsg(;fpzslna 6) fo= (s +m?) A; + m(s —m?) 4, + 2m?24, .

sely the invariant amplitudes 4 = (4,, ..., 4;) can be expressed in
f the amplitudes fz (Fiyoers fo) by A = Mf with a matrix
1

M—4whmw'
—1 s+ m?)+2(s—m?)? 0 0 —1

1 (s+m*)s—u) 0 0 4(s—m?) 41

m m m

1 — (8 + m?)t 0 0 t

0 0 2m(s —u) m(s—u) -+ (s2—mH) 0

0 0 — 8(8 — m?) — 8m(s —m?) 0

0 0 — 4mt 2[(s —m?)2 — m2t] 0
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This procedure allows for a simple caleulation of the contribution of an
arbitrary s- and #-channel resonance to 4. If s is close to a resonance N
of mass m?, T behaves as

2 { . !
O20) Ty s = oo el (k) e2¢(k) KN (P VA [V 5(p + )Rl

§—m,

(V¥ + @) AnlPIN(P) An> 4] oz 42200

with the intermediate states at rest, the nucleon momenta running in the Z-
positive direction and the photon momenta in the negative direction. Let
us define the current vertices (%)

Ty = N0 + Q31PN (D) D & k) =+ 67,

(2.25) .
s =N+ NP ek)=+6,

with the parity property

(2.26)  Ipaun, =— (=) NI, w—ipi—t—iy = P o3 yaoay

(for 4, =+1, J=1%, n=1),

where n =7"(—)""* is the normality of the resonance state. Then we can
write for the gix helicity amplitudes

(@) dy,4(0),
nG)  dy3(0),
2mm, GG d-33(0),
T GG Ay 4(0),

(G4)°  dg_40),
n(GY)  d_g4(0) .

(2.27) f=

(*y The third independent current vertex Iy.;,=<{N*(p+ q)3lj"|N(p ) 1> e(0) = — GO
does not contribute for real photons with ¢?*=0. For the connection of these G’s
with the definitions of form factors see ref. (8).

(*¥) H. KLEINERT: Springer Tracts in Modern Physics, Vol. 49 (1969), see Appendix D.
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This leads to a vector f in the forward direction (*)

46)*,
AW n () T+ 1),
1
! 2G+G'\/(J—%)(J+%)J; ©
~  dAmm
— 2 1 -
(2.28) mi—s| — O VI—DI+,
1 2
prey (G+)°,

W P] 1
SO S T— DI+ DT+,

and in the backward direction

4@ I+,

4W n (G-)°,
1 _
—mp2G+G VI—HI+3),
~ 4mm.
— (__\—} n 1 _ J 1
(2.29) J=) mi—s|  panG e VI— DI+ ;f"‘,

—;ﬁ(aﬂzu— DI+ DT+ )6,

w
—-2—9; n (G+)2.

If we make use of the matrix (2.19) we arrive at contributions to 4 in the

(*) Here we use the fact that if we define a modified rotation function

6, —14+47] 6, —11-4"]
aih(0) = (cos -2—) (sin -2~) div(6)

1 V(J+ T — ANt
A— i} (T+ AT —A)!

one finds for

Az 2 @ (0) = ()M A50) = (—)F

and
() = (=)~ @ 2(0) = (=] _1.(0) .
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forward direction

m

(2.30) A, = i)

T+ %)W{—n @+ 2 e VI }

¥
T+ D (06— S @ VT DT +3 5 @I+ D)

(J + 1) Wn(G-),

(G-)° —2pnG+G ViI—HT+ 3) + ———

g{nG+G“\/(J—%)(J+ 5H—

—2((6-)" — (6",
and in the backward direction

(=)}
My Pa(m, — 5)

(2.31) A=

—W{%(G‘)2 +2 % GrEVI—HI+3) + %(G+2)} ,

3W2+m?

ey 422 S e e Vir—puF DT e

W{n(G—)z —2 %cﬁ GVI—HI+3) + n(G+)2} ,

2 B - B 21
0+ D@ S e V=BT i @ 5= DI+ D),

—+ )p{ne”fa VII—H+ )—%(Gﬂz%(«f—-%)(ﬂ—%)},

B 21
W(GJ“) g(J“ ) Cha %)} .

—2(J+%>{(G—)2—%naw"«/u‘—%)(J+ D+

For the special cases of Roper and A resonances these expressions simplify
somewhat and are listed in Appendix B.

Notice that since A, are amplitudes free of kinematic singularities and
constraints with definite symmetry, the contributions close to the resonance

8 ~ Il Nuovo Cimenifo A.
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poles in the s- or #-channel can be written in the form

1 0 1 1 0
@) A= fof) = (e ) 4 (0= )

. 1’274357
"= s,86.

With these preparations we are now ready to present the derivation of the
sum rules.

3. — The sum rules.

From crossing symmetry it follows that A4,, 4,, (1/(s—wu))4,, A, and
(1/(s —u)) A5 are functions of »* = (s —wu)*/16m* and ¢ only. If the asymp-
totic behaviour is sufficiently good we can write a forward dispersion relation
for the value of any of these amplitudes at the threshold point (¥*, t) = (0, 0):

=2}

1 f Im Ay, 0)

(3.1) A(0, 0) == - dv.

T e — 2
0

In the backward direction we observe that 12 is a good funection of ¢:

1

Hence, if 4—0 for {— co, 4(0,0) can be calculated once more via a disper-
sion relation

@©

(3.2) A(0,0) =2 f fm At(,’f(z')’ ) av.

—c

Equating both integrals we obtain our sum rule

-] o 0

2730\ f ’2 Traly gt
(3.3) %fImA(”B(t )’t)dtlefwdvrz_}fImAt(’viii),t)dt,’

t'—1 7 p'd —ypt 7
0 (] -0

which expresses pure meson contributions on the left-hand side in terms of
the difference of forward and backward contributions of s- and #-channel
resonances on the right-hand side. For this reason we shall call (3.3) a
« forward-backward sum rule ».
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Let us see which of the amplitudes allow for such a sum rule. The agymp-
totic behaviour can be estimated in forward direction by making the standard
assumption that the f-channel helicity amplitudes are controlled by the meson
Regge trajectories exchanged in the #-channel, 4.e.

¢
le \pﬂ vy — =8

One finds that for s — co, the invariant amplitudes
1
3.4) (40402 40 40 0, 2 4

behave according to

(3'5) (S“c, So‘t’ 8“'—2, S’xt_ , 80‘;"'2 Stxt"‘ﬂ) .

For the isosinglet amplitudes A® the pomeron trajectory can be exchanged
such that «, =1, and 4,, A, are no good candidates for an unsubtracted
dispersion relation. For isovector amplitudes A*, the leading trajectory is 4,
with «, ~0.5. Thus also here 4, and 4, need a subtraction.

In the backward direction the baryon trajectory with o, &~ 0.2 dominates
the high-energy behaviour. From the s-channel helicity amplitudes (2.14)
we see that

1
.6) (s iy Ay 2ty A=, 4, )
behave as
(37) (tfxs—%’ tfxn—%, tfxn—%’ t“B—%’ t“B_i, t“s—i) .

For the purpose of dispersing in ¢, 4,— 1 Ag is not yet a good combination
since it is of mixed symmetry in s <>u%. Therefore we form the symmetric
combination

t
A
2(s—u) '

(3.8) A+

which obviously has the same asymptotic behaviour in the backward direction
but is a function of »* and ¢ only.
Ag a result the following amplitudes can be used for our sum rule (3.3):

1 1 t
(39) P A&y A59 Aay A4 +

s—u §— 2(s—u)A°’A4’

with decreasing degree of confidence. If we use a Michelin type of notation
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for characterizing the expected quality of the sum rules we can grant the first
rule three stars, the next three rules two stars and the rule for A, one star.
The corresponding rapidity of convergence of the dispersion integrals is shown
in Table II.

TaBrE II. — Amplitudes used for our sum rule, the number of stars grading their quality,
and the corresponding speed of convergence of isoscalar (3) and isovector (v} sum rules as
expected from Regge exchange.

Num- Amplitudes Forward Forward Backward
ber of behav- behav- behav-
stars iour 4* iour A? iour A4?
* % % (1/(3‘—”’))146 52 g—2.5 1.8
*k Ay, (Hs—w)dy, Ayt (H2s—w) A, 57 518 -1
* A, g1 g-1.5 0.3
* tA5’ (t/(s_u))AG’ t(A1+ mAZ) 0 0 =03

The amplitudes (3.9) do not yet, however, exhaust all possible candidates
for which we can write our sum rule (3.3).

If an amplitude A behaves according to ¢ 3, it can be multiplied by an
additional factor of #, and 74 is still expected to obey an unsubtracted disper-
sion relation in the backward direction. In the forward direction, on the other
hand, t4 will vanish identically. Thus also ¢4 should satisfy (3.3).

Obviously the resulting sum rules are exactly the same as would be obtained
by using the fact that ¢4 has a well-determined low-energy value at t =0
(since it receives contributions only from the nucleon Born term) and inserting
this value directly in the backward dispersion relation (3.2). From the list of
agymptotic behaviour given in (3.7) we see that

?
(3.10) tds, s _uAea {4, + mA,)

qualify for these sum rules. Since the asymptotic behaviour is only %3 we
should not expect them to saturate rapidly. Thus they do not deserve more
than one star (see Table 11). The contributions of the different resonances to
the unsubtracted dispersion relation are calculated in the following way:

a) t-channel resonances. Here we simply use our Feynman graphs (2.17)-
(2.21), set t=0 in the pole denominator and t=m2, y=v,(m?) in the numerators,
where m, is the mass of the {-channel resonance. Thus, if A denotes any of the
crossing-symmetric amplitudes (3.9) or (3.10), we can write for the left-hand
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side of (3.3)
Lh.s. = Z——l— res A .

m, tmmy
b) s-channel resonances. There are two type of pole terms

1 1
P;!':Es—m2 +u—m2’

_ 1 1 1
P Es—u(s—mz_ummz)'

Both have an unsubtracted form in the forward direction. Thus at threshold,
s =m?, u = m? they contribute

2
mz_m2’
n
1
2 2 °
fmn—m

P;i- ,F.th =
(3.11)

P;Lv',th= -

In order to disperse in the backward direction we rewrite

2(mt—m?) +1
C (s—m2)(u—m)’
1
(s —m2)(u —ma)

P =

(3.12)

_P; —
Now for 6 =m, s and u satisfy the equation

(3.13) {S} — —% == %\/t(t—é&mz) :

w
As a consequence the denominators give rise to a simple pole at

1

b=ty =—— (mt —m),
i.6.
pr_ _ 2(mE—m?) ;H’
3.14) (t—1,)my
p____ 1
(t—taym;

Obviously P~ has an unsubtracted form such that at threshold

B 1 1
(3.15) P, lB,th = tome = (m? — m?)? y
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The symmetric pole term P, on the other hand, has an unsubtracted form
if one replaces t by ¢, in the numerator. Thus one obtains at threshold

1 m? -+ m?
(3.16) Phlon == s s
Therefore the integral over the s-channel resonances at the right-hand side
of our sum rule (3.3) is given by

(3.17) r.h.s. = ZP lrnTes A — ZP |, thres = ZA” >Aan —EAF_B,

s.=m n

where we have denoted the forward and backward contributions of the reso-
nance m, as

(3.18) A" =P yF wTes A,

B 8 -mn B

and their difference by
(3.19) Ay =A,— A7 .

Here A stands again for any of the crossing-symmetrie combinations of ampli-
tudes.

¢) The nucleon pole. The calculation of contributions of this form needs
gpecial care gince it has poles and double poles right at threshold due to the
presence of massless photons. Therefore we calculate our sum rule along a
line of very small negative = —¢* instead of the forward direction and
equate with the backward dispersion integral at the point (%):

t 1
(3.20) t=—¢g?, 3:m2—§—— EVt(t—an).
Congider for example
1 1
. Pr= .
(3.21) s—m2+u—m2

Dispersing at fixed ¢t = —&* we find at the point (%)

(3.22) Py, = — .

m2

In the backward direction, P is identically equal to

(3.23) Pty=—
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and therefore does not contribute to an unsubtracted dispersion relation at

all. Hence

(3.24) P, —=o0.

The odd pole term as well as the double pole contribution

b 1 (1 1
Cs—ul\s—m?: w—m? (s—m)(u—m?)’

on the other hand, yield due to the identity

1 1 1
25 =—-
(3.25) (8 —m®)(u — m?) t (s—fm,2 +
a factor 1/e? in (3.22), 4.e.
- 1
P IF.* - e2m3 °

In the backward direction, P~ now has a pole at ¢ = 0:

1

tm?

P, =

giving in an unsubtracted dispersion relation at the point (%):

1

Flow ==

t.e. the same contribution as P, . Asa result,the contribution of the nucleon
Born term to the right-hand side of our sum rule (3.3)is for the amplitudes 4,

1

me’

— pt
Az‘lBuF,th — -Ri

1
s —u

Ai’F—B.th =0 ’

I we multiply all amplitudes A, by ¢t we find

SU 1
tAilF—B.bh = Ri W ’
t _1
s _ﬁu-AF—B,thl = E; me’

The explicit contributions are listed in Table III.

1=1,2,4,5,
t=23,6
1=1,2,4,5,
1=3,6
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TABLE 1II. — Contributions of the nucleon Born terms to the right-hand side of our forward-
backward sum rules.

;F—B.f.h A?F—-B.th tAgF-B,th tA:')F—B.th
1 1 2 2
1 -—‘_“(K:‘I’Ks_}‘Kp) '—"‘“(KsKv_i"-Kplz) — —
2m3 m? m m
1 K? *+ K 1 KK,+ K 2 2
2 m( 3+Kv+ p) El( s v"l‘ 1:/2) "'172(1+-Kp) ;n—g(]-_'_Kp)
! 3 0 0 ! K+ K4+ K I(KK + K2
S—1 %’g( s v+ p) -')')’F’ sy a/ )
| N 1 2 2
4 %&(Ks“‘Ku) 'G;EKSK‘U ﬁ(l_l‘K:n) q_n_2(1+K’)
4K, 4
5 0 0 - -~ K,
1 1 2
6 0 0 T (Kf+ K:) '__4K3Ko
§—u m m

It is amusing to note that nucleon and Roper poles do not contribute to
the amplitudes (3.9). The amplitudes multiplied by ¢, on the other hand,
receive a large nucleon contribution.

4. — The multipole couplings.

Let us prepare our input data for the baryon resonances. We have to
determine the electromagnetic couplings G*, G~ from the current multipole
analyses of photoproduction of pions. For this purpose we first note that
the helicity amplitudes of the photoproduction process Nmw< Ny (') F AxANy
can be expanded in terms of amplitudes of total angular momentum ac-
cording to

1
(41) rg’—}.;'}‘p,l'mly 2vaq

3 (27 +1) el [ By s 34,6

If one passes to states of definite parity (—)'*%, i.e. on the photon side to

(4.2) |TM; 5,15 =[[JM L F [JM—3—1] v2,
(4.3) JM; — 3,15 =[JM—11>F |[JMI—-1]V2,

(*) We use here the CGLN conventions, .e. do, /A2 = (¢/k*)|F |2, where k*, q are
the c.m. momenta of the photon and pion, respectively. Thus with our definition of T':

8 =1—(2m)2i04(P;— P) T, F = —\k*|q (m[dn W) T.
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and on the pion side to
(4.4) =M, 5 =[lJM$ £ JM—3]V2

of angular momentum J = 41 and parity (—)*' = (—)"**, we can form the
combinations
P = QR0 §1%

(4.5)
FiE = (| F(W)|—4%, 1) .

The CGLN multipole amplitudes are then related to these F't by

1] 112 2
1 [ /“r '
/1% — |l _V_Y g+
.6) : -
S 1 1—1
&k _ . - _ I
2VE*gIM = |7 |
1] 141
A/ 1% —_ | -
2VEk qlE;_ \/Q .5. -I- l—llﬂ*

The combinations of electric and magnetic multipoles appearing on the right-
hand side are almost directly the amplitudes 4,., B,, listed in the analysis
of photoproduction of WALKER (1?). We find

1 —
Vg ! B =v24.,
! F”H)— =v2Au10-
2V k*q
0 1 1
WieT Fy = — 7 VU+2) B,
1 1
ZN/ETQF”H)_ \72\/3(1 +2) Biyy-

On the other hand, close to a resonance m_, F'* can be expressed in terms
of the collinear matrix elements of the pionic current between nucleon m and

(*) R. L. WALKER: Phys. Rev., 182, 1729 (1969).
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resonance m , both running in the z-direction with helicity A,
g (£) = {p'm F 3[72(0) | pm J 1>

and the vertices [ introduced before. One finds for Wa m,

_AnW 1 e ¢ i oa
T D E W i
(1.8) dnW 1
AT E ¢ ; 1 +

Comparing with (4.7) we obtain at the resonance position the simple rela-
tion ()

e m 1 2 .

ImA - - = 26~
mdv M) =7 . 27 11 T7 1mm(2)2G7,
V2 m 1 2,
Im B m,) = e = g (3)(— R 2GT) .
erH( ) Wl +2) dmwm, 2J + 1 .’ (&) )

Up to a phase 7, the pionic coupling jmm (§) can be expressed in terms of the
partial width 7™, Thus

e 900 +1) VT

qgm

Joma(3) = CGV

where CG denotes the Clebsch-Gordan coefficient for the decay channel under
consideration. Hence we find

2
ImA,, (m,) =770G%_ eG

(i+1)—

Im B, (m,) — 5 CG
() =1 W+ 2)x

1%
y = V4n%q(2J+1)F/V P‘“.

Our input values of A, , B, are taken from Walker’s original analysis (1°).
For amplitudes which have not been determined by WALKER we use the values

where » stands for (*)

(*) We have cross-checked our calculation by going through the elastic unitarity rela-
tion of HEarN and LEADER (*7) (their eqs. (4.14)-(4.18)) and inserting H,,, M, according
to the formulae (4.8). We find agreement except that the last of their equations (4.18)
needs a sign change. Due to our narrow-resonance approximation, our formulae carry
a correction factor I'JI;y with respect to their elastic unitarity.
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found by TAXASAKT (%) in his fits of pion production in the backward direction,
In addition there exists a recent fit of photopreduction of neutrons (21). These
authors find a large coupling of the neutral Roper resonance. Since there is
independent evidence for such a large coupling (13-22) we prefer to use this value
rather than the small Walker value. Our choice of input is listed in Table IV,
together with the resulting values of G+ (up to the unknown phase factor 7).

Taere IV. — Multipoles of s-channel resonances used for the evaluation of s-channel con-
(ributions to F-B sum rules. The author marks W, T and C refer to the analyses of
WALKER (1), TAxASAHI (?°) and CARBONARA ef al. (21), respectively.

Reso- JP I Mass Width (MeV) Multipole yp—mtn YO —> TP
nance (MeV)  total elastic amplitude
P, 3t 3 1236 120 120 Ay 1.00 W 1.00 W
B, —243 W —243 W
P, ¥ 3 1471 204 122 A, —0.25 W —1.06 C
Dy, 3~ 1 1520 102 73 A, —0.20 W —0.25 T
B,- —1.32 W — 115 W
84y r 1 1561 180 72 Ayr —0.65 W —0.80 W
8,y 1 3 1630 160 43 A, —045 T —0.32 T
D, 5 1 1652 134 54 Ay 0 0
B, 0.141 W 0.141 W
Fi 3t 1 1672 104 69 Ag- —0.20 T —0.22 T
B, —0.60 W —0.50 W

5. — Quantitative discussion of the sum rules.

We are now ready to present the final form of our forward-backward sum
rules. The nucleon contributions are given in Table III. For the contributions
of the s-channel resonances we take the multipole mements shown in Table IV
and ingsert them into the formulae for the residues of the amplitudes 4, of
egs. (2.30) and (2.31). These residues are combined with the factors P of
Sect. 3 and summed up in eq. (3.17). The resulting contributions are listed
for forward and backward directions and their difference, separately, in Tables V
and VI. In these Tables we have used the nucleon mass as a unit mass.

(3) F. Tarasar1: Tokyo preprint INS-J-126 (January 1971).

(21) F. CARBONARA, L. F10RE, G. GIALANELLA, E. LobpIi-RizziNi, G. MaNTOVANI, M. Na-
POLITANO, A. P1azza, A. Prazzorr, R. RiNzivirLo, V. Rossi, G. SusinNo and L. VoTaNo:
Lett. Nuove Cimento, 3, 697 (1970).

(*2) A. Proia and F. SEBASTIANI: Lett. Nuovo Cimenio, 2, 560 (1971); 3, 483 (1970);
Universitd di Roma, preprint No. 363,
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TABLE V. — The contributions of the baryon resonances to forward-backward sum rules for the ialar
Amplitude Asymptotic behaviour N E
F B
g2 1.3 F 10.8223 —0.404
A -
s—u B 10.8798 —0.404
F—-B 0 — 0.0575 0 -
48 51 113 F 9.4523 0 -
B 7.4481 0 -
F—B 0 2.0042 0 -
51 1-1.9 7 — 41592 0.31]
A3 L
s—u B — 4.4513 O.31jt
F—B 0 0.2922 0
s {18 F 7.8908 0.590!
T B 4.4856 0.590
F—B 0 3.4052 0
45 s~1 $-9-3 F 7.8908 0.5901
B 6.1843 0.414
F—B 1.71 1.7065 0.175%
. AL 0 o3 F 0 0 ﬁ
s B 3.42 — 3.3973 0.350
F—B —3.42 3.3973 _0'351'
143 0 {-03 F 0 0 o
B 7.16 — 2.3257 0
F—B —17.16 2.3257 0 -
|4 0 {03 F 0 0 0 R
ST B —2.61 14900 —0.274i
F—B 2.61 — 1.3900 —0.274
83 + mAs) 0 £=0.3 F 0 0 0 ﬁL
B —17.78 11.8161 0 j*
F-—-B 7.78 —11.8161 0
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amplitudes. For comparison the forward and backward contributions are listed separately.

520 1561 1630 1652 1672 Total
(mg=1)
0.2337 —0.2844 —0.1509 0.0037 0.0198
0.4682 —0.2844 —0.1509 —0.0197 —0.1040
-0.2345 0 0 —0.0234 0.2138 —0.0548
-3.0078 0 0 —0.0295 —0.6268
-2.1388 0 0 +0.0791 0.9405
-0.9590 0 0 —0.1086 —1.5673 —0.6307
0.0177 —0.23665 —0.1311 0.0000 0.1268
+0.3666 —0.23665 —0.1311 —0.0033 0.08916
0.3843 0 0 0.0033 —0.0765 0.6033
19643 0.5032 0.3048 0.0227 0.3771
0.8572 0.5032 0.3048 —0.0394 0.3288
11071 0 0.0000 0.0621 0.7058 5.2802
19643 0.5032 0.3048 0.0227 0.3771
1.0929 0.3424 0.2029 —0.0535 —0.4734
0.8714 0.1608 0.1019 0.0762 0.8505 5.6523
0 0 0 0 0
0.4713 0.3215 0.2039 +0.0281 0.2895
0.4713 —0.3215 ~0.2039 —0.0281 —0.2895 —0.7445
0 0 0 0 0
2.1531 0 0 —0.1122 —1.4033
-2.1531 0 0 0.1122 1.4033 —5.4719
0 0 0 0 0
0.3691 0.2675 0.1772 0.0047 —0.1330
—0.3691 —0.2675 —.0.1772 —0.0047 0.1330 0.809 0
0 0 0 0 0
~3.5362 0 0 —0.07617 0.9214

3.6362 0 0 0.0767 —0.9214 —1.3446
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Numerically the sum rules become for the isoscalar amplitudes:

8

A
1) **kx —2  0=—10.06,

S§—U

2) **x A7,  0.40¢2 Gy = —0.63,
A; (1-2) gy(1) _

3) *%x o, 0.05057" Gl = 0.60,

[2
4) *x A - STeE=m AL, 0.2002,.G%x—5.3,

B) * A3, 0.20¢5., Gixn = 5.6 ,

A5

6) ¢
) P

0=—0.74,

) * tA: 0.74 g%, Gl = —b.5 ,

AS
8) * ts_j’u, 0.0990." Gy = + 0.81,

0 * dibmd),  0.13gHY GHY 02687 Gl —

m m
— 205NN Gnvy :m—n —4 Eﬁgcwgu.m\“ = —1.34.
Sum rule 1) is excellently fulfilled but empty.
Sum rules 2) and 4) together give for the ratio

(5.1) GRG0 = —0.0569,

which is in excellent agreement with the prediction of f-meson dominance of
the gravitational tensor, and certainly also with (1.8).
Sum rule 4) by itself says

(5.2) g2 G ~ 27 .

vy N

Combining this with the estimate (1.8) of |Gi%y| ~25 +3 we obtain the re-
sult

(5.3) oy A 1.1,
which agrees very well with the calculation from finite-energy sum rules in pion
Compton scattering (eq. (1.10)).

The third sum rule, on the other hand, gives

(5.4) gAP R ~ 12
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such that
(5.5) gr ¥ L,

Yy
This does not agree completely with the value (1.2) obtained from f dominance.
However, gi-® has only one third of the size of the estimates (1.10) and (1.2)

for g2, so the qualitative prediction that the f-meson couples predominantly
to the s-channel helicity-nonflip amplitude is confirmed.

Our flip-to-nonflip ratio is

(5.6) Iig 1950 ~ 0.5/1.1 .

The sum rule 5) for A, gives the same information as that we just obtained
gince the next sum rule 6) is in moderate agreement (though void of informa-
tion) (*) and 4) is just a combination of 5) and 6) deserving a higher degree
of confidence. The rule 7) for t4, yields

.7 92,6 — — 1.5 ,
which agrees in sign but not in magnitude with sum rule 2). From our TableV
we see that the different resonances contribute large terms of alternating signs.
This is due to the fact that the factor ¢ increases the weight of higher reso-
nances in such a way that the sum can be made to converge only by changing
signs. In the meson channel the weaker of the two coupling constants of the f
to nucleons, G}y, enters. So probably f will not dominate significantly, the
t-channel integral with a weight factor ¢ stressing too much the higher-mass
region. For this reason we shall ignore the result (5.4).

Finally the sum rule 9) for #(4, -+ mA4,) can be simplified somewhat if we
use the fact

(1-+2) @
Gw.N‘ = Gw«w

suggested by (5.1).
Then

m m
(5.8) — 28,508 Ty poa 4 o Jovy Jorw A — 1.47 4 0.13 g7 Gy .
n c

Let us see what this relation implies for the radiative coupling of o. If we

stick to our own prediction (5.5) and insert g7 PG¥% ~ 12; the right-hand

side becomes approximately zero. In this case

m m
(5.9) — 28000 Gy . ~ 4 -~ Joyy Ja X -

(*) See, however, our discussion at the end of this Section.
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TaBLE VI. — The contributions of the baryon resonances lo forward-backward swm rules for

Amplitude Asympt. beh. N B
¥ B
1 525 13 F 0 0.361
43
§—1% B 0 0.361
F—B 0 0 0
Ar 715 {13 F 0 0
B 0 0
F—B 0 0 0
§-13 {18 F 0 —0.28
:H]
s—u B 0 —0.28
F—RB 0 0 0
§~L.8 {18 F 0 —0.5%
AT B 0 — 0.5
F—B 0 0 0
Ay §-1.8 {-0.3 F 0 —0.52
B 0 —0.37
F—B —0.111 0 —0.156
A 0 {03 F 0 0
s—u B 0 —0.313
F—B 0.222 0 —0.313
tdy 0 {03 F 0 0
B 0 0
F—B —7.16 0 0
1A 0 t-0.3 F 0 0
s—u B 0 0.245
F—B 5.58 0 —0.243
t(A? + mAY) 0 £—0.3 0 0

—B 7.58 0 0
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sovector amplitudes.

49

520 1561 1630 1652 1672 Total
(my=1)
0.0359 0.0582 —0.0495 0 0.0049
0.0368 0.0582 —0.0495 0 0.0241
0.0009 0 0 0 0.0290 0.028 1
~0.2194 0 0 0 —0.0541
-0.1515 0 0 0 0.1115
~0.0679 0 0 0 —0.1656 —0.2335
-0.0039 0.0484 —0.0430 0 —0.0012
~0.0184 0.0484 —0.0430 0 —0.0063
0.0145 0 0 0 —0.0075 0.0070
0.1602 —0.1029 0.1001 0 0.0357
0.0910 —0.1029 0.1001 0 0.0539
0.0693 0 0 0 0.0896 0.1589
0.1602 —0.1029 0.1001 0 0.0357
0.1096 —0.0700 0.066 6 0 —0.0719
0.0507 —0.0329 0.0335 0 0.1076 —0.1087
0 0 0 0 0
-0.0371 —0.0658 0.0669 0 0.0360
-0.0371 0.0658 —0.0669 0 —0.0360 0.5352
0 0 0 0 0
01525 0 0 0 —0.1663
-0.1525 0 0 0 0.1663 —17.1462
0 0 0 0 0
0.0185 —0.0548 0.0582 0 —0.0094
~0.0185 0.0548 —0.0582 0 0.0094 5.3219
0 0 0 0 0
03691 0 0 0 0.1146
0.3691 0 0 0 —0.1146 7.8345

4 — Il Nuovo Cimento A.
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The value of g, .., is known quite well from the Primakoff production of v-mesons:
|gnw(m/mn)|~ 0.36 (see Appendix A). The % NN’ coupling, on the other hand,
could be close to the SU; value (%)

1 V3 r o2
(5.10) g'n!N’-N’ = *Tg (1 —4 F_—i:_—D) gﬂ.‘LN’N’ = ’g‘ Je NN fOI' ﬁ = -:—3- ’

but recent determinations (24) find also larger values of
(5.11) Popre & 10 .

If we assume the value for g_y) &~ —13 as suggested by (1.7) and the o-model
we can estimate

0.05
(5.12) o ~Y 1

Hence ¢, is small in both cases, much smaller than the estimate (1.9) from
pion Compton scattering and verifying the result (1.1) of Ward identities.
If we had over-estimated g;~* in our result (5.6), this would not change the
picture much. It would inerease the first value roughly by 50 % and the second
value by 25%, %.e. ¢, remains very small.

For the isovector amplitudes the sum rules we obtain are

v

A
1) *kx 8__““, 0 = 0.028,

2) *x*x A7, 0.37g5N G =—0.234,

A'v
3) *x o :u , 0.046 g2 G vp = 0.007 ,
¢
4 xx Al g Ay, 0184 gLy Gilyn =016,
5) % Ay, 0.184 g2 Gy = —0.11,
{A?
6) * LI 0=0.54,
s§— U
7}y * tAg , 0.72 gg)"(? G(AZ.)_N-N =—"11,
A'v
8) x i _*“'u , 0099020 =5.3,
9) * 14, +mAd,), 0.122 ¢4 2 QL — 0.242 g0 G0 —

m
— 2 G s Jryy po = 7.84 .

T

Again, 1) is well fulfilled but empty.

(2*) A. E. S. GrReEN and T. Sawapa: Nucl. Phys., 2B, 267 (1967).
(#4) G. ScmierHoLZ: Nucl. Phys., 7B, 483 (1968).



COMPTON SCATTERING AND THE COUPLINGS OF i, o, 1, A, AND 7 ETC. 51

As in the case of the f-meson we can combine sum rules 2) and 4) to obtain
the ratio
Gioxa

(5.13) ~—1.3.

G
Hence the nonflip-to-flip ratio is
(5.14) GGy 7 — 0.3 .

The numerical value of this ratio is not exactly the same as the one found
in photoproduction (*) (a2 0.1). However, there the saturation is done only
with a nucleon and the A-resonance and does not deserve as much credibility
a§ the present estimate. Both estimates agree, however, in predicting a dom-
inant s-channel helicity-flip of A, exchange at the nucleon vertex.

Sum rule 3) can be used together with the estimate

(5.15) 6Ly | ~ 6

obtained from photoproduction (*°) to predict a small s-channel helicity-flip
coupling of the A, to photons:
(5.16) 9072 | &~ 0.025 .

Asyy

The helicity-nonflip part of A,yy, however, is found from 2) to be larger:

(5.17) |98, A~ 0.1,
Thus A, couples only weakly to photons and conserves s-channel helicity ().
The following one-star sum rules 5), 7) and 8) are all found to give results
different from the three- and two-star rules. The reason is, apparently,
that the A,-meson couples too weakly to photon and nucleon vertices (much
weaker than f) to allow it to dominate the ?¢-channel contributions in only
barely convergent dispersion integrals. The situation is expected to be dif-
ferent only for the last sum rule, where a low-lying pion pole can balance the
baryon resonances. Looking at (5.15) and (5.16) we see that the A, contribu-
tion in sum rule 9) can be neglected and we remain with

m
(5.18) —2gﬂy,mgn77/n-z— =1T7.8.

kg

(*} TUsing smoothness along the Regge trajectory and vector-meson dominance assump-
tions one is led to predict s-channel helicity conservation of the p-n photoproduction
of p%mesons. Experimentalists should test this result.
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Ingerting g_y ) = 13.5 we obtain

(5.19) —0.041 ,

Ireyy =
which has the correct value and sign (experimental value =—0.037) (*).
Notice that the nucleon by itself makes up almost all of the s-channel con-
tribution:

m
_ZngNgnwﬁ" = 2(2 -+ Kz,) =17.6.

T

This result is reminiscent of a calculation done by PAGELS (27), also for Comp-
ton scattering, but under completely different assumptions. PAGELs finds, for
example,

— 20mNN Gryy LN (e —u2 —1) ~ 3.15,
M
which agrees in sign but is off in magnitude by a factor of two.

At this point we should also like to mention a superconvergence type of
calculation done by other authors for the Compton amplitude along the line
# =0 for certain combinations of helicity amplitudes (?8). There one finds

— Gy = 0.039 - 0.007 ,

where the first number comes from the nucleon and the second from continuum
corrections.

From the standpoint of determining the meson coupling constants in the
t-channel from the values of the electromagnetic multipoles of the baryons
in the s-channel we have called our sum rules 1) and 6) empty. They represent,
however, quite welcome consistency tests of our input data. Particularly
interesting are the isoscalar amplitudes. They receive very little contribution
from higher resonances. If we assume a saturation in terms of N’ and A reso-

(*) See ref. (*) for a test of the sign. Notice that the coupling constant F= g, ./m,
of ADLER has the same sign as ours. Therefore the Steinberger (26) result of the triangle
graph with a single nucleon loop of isospin § is gry. = — (1/472) (Mg /mn) (Graen/ga) ~
A~ — 0.04 in rough agreement with experiment (see Appendix A,3)). In reading Gilman’s
paper on the sign of F one has to be careful since he defines his F opposite to Adler’s.
From his relation I = — (1/2a2)(gxn/mxgs) We see, however, that he also uses In NN
opposite to Adler’s (see Appendix A,3) for this definition).

(#®) T'. GiLmaN: SLAC PUB-591 (1969) and to be published (1970) (see also S. OxUBO:
Phys. Rev., 179, 1829 (1969)).

(*%) J. STEINBERGER: Phys. Rev., 76, 1180 (1969).

(*") H. PAGELS: Phys. Rev., 158, 1566 (1967).

(*®) 8. R. CHoupuURY and R. RaJaRaMAN: Phys. ERev., 169, 1218 (1968).
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nances only, we are able to express the coupling completely in terms of the
nucleon magnetic moments. In this way we find from £43/(s —») that the
B+ M, ratio of the electromagnetic coupling of the A-resonance is very small:

Ey|My~—6%.

The smallness of E,./M,, stems from an extreme sensitivity of the A econtribu-
tion to K. [M,,, which is shown in detail in Appendix B. From A}/(s — u)
one finds that the magnetic moment of the A-resonance has to be(29)

¢, ~ 3.5
in order to balance the nucleon contribution, which iz in excellent agree-
ment with experiment (3?).

In this context it is worth-while to recall that 4, also allows for super-
convergence relation in the forward direction which provides for a similar
consistency check of the electromagnetic couplings. Historically, this rela-
tion was first derived by DRELL and HEARN (31} as a sum rule expressing the
anomalous magnetic moment of the nucleon in terms of a swm over resonance
multipoles. In this ease this sum can also be written as an integral over the
photoabsorption cross-section (*):

2m2e ond.v
o =f;[o(v,1>—a(v,—1)].
0

Here o(v, 1), (v, —1) are the cross-sections for absorbing a photon of helicity
4+ or—1 on a nucleon of helicity %.

In the narrow-resonance approximation our input data yield the anomalous
magnetic moments

It is interesting that the result for the neutron is better than that for the
proton, which is wrong by 20 %,. Since the Roper resonance contributes consid-

(2*) W. W. Asm, K. BERKELMAN, C. A. LicCHTENSTEIN, A. RamMaNaUskas and R. H.
SIEMANN: Phys. Leit., 24 B, 165 (1967).

(3 Compilation of coupling constanis and low enerqy parameters, in Springer Tracts
in Modern Physics, Vol. 35 (1970).

(*) 8. D. DreLL and A. HEARN: Phys. Rev. Lett., 16, 908 (1966).

(*) Since F(s—m?*?4; is equal to the difference of the helicity amplitudes

f%.lzé.l_f%.—l.%.d .
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erably in the neutron case we consider the good result for K as an indication
for the correctness of our large input value of

My—>"r— 114D .

6. — Conclusion.

By a systematic application of forward-backward dispersion relation we
have been able to obtain many estimates on the coupling constants of the
important mesons exchanged in the #-channel of Compton scattering. These
estimates agree, to a large extent, with theoretical expectations.

The predictions for the couplings of fyy and ftN°N’ show roughly the prop-
erties predicted from f dominance of gravity, in particular s-channel helicity
conservation. The vertex A,NN flies predominantly the nucleon helicity in
accordance with exchange degeneracy of A, and meson. The A,yy vertex,
on the other hand, is predicted to conserve s-channel helicity. (Also it is found
to be very small.) The radiative decay of oyy comes out extremely small in
agreement with ¢ dominance of the trace of the energy-momentum tensor.

Our calculation has been done with a sharp-resonance approximation. From
this we expect errors of at least 10 %. The errors coming from the uncertainty
of the multipole amplitudes are probably larger than that. In addition, the
assumption of meson dominance of the ¢-channel contributions will bring along
errors of (10=20) %, even for the best sum rules. As a consequence, the exact
numerical values should not be taken too seriously. What we believe in is
roughly the size of our results with, say, 509, errors possible in the worst
cases. If the meson contributions are large and the higher resonances add
little, the error bars are expected to be somewhat smaller. An example is
the myy coupling which agrees extremely well with experiment.

We are looking forward to a thorough phase-shift analysis of Compton scat-
tering which can be inserted in our dispersion relation in order to obtain better
estimates on the contribution of the baryon resonances. On the f-channel side,
however, an improvement will be very hard since the background is difficult
to determine. We know from the same kind of analysis of N scattering
that the intrinsic uncertainty coming from the meson side of the sum rule is
the major problem in the application of this method.

% ok %

One of the authors (T.H.C.) wishes to thank the Deutsche Forschungs-
gemeingchaft for generous support and the Institut fiir Theoretische Physik
der Freien Universitdt Berlin for its warm hospitality.



COMPTON SCATTERING AND THE COUPLINGS OF f, ¢, v, A, AND © EIC. 35

APPENDIX A

Couplings and widths.

1) o: f—gﬁyvaNN—[—gc,Wz F Fuv,

The ¢-model predicts goww = — gy = — m/fr ~ —10.
On the other hand, ¢ dominance of 6 gives gonwn A (1 /M) gerr (Which be-
comes in the g-model again — m/f, since there gope = — (M[fx)(1— fjml) ~

Rt —Mg[fz). Using the experimental width Iy, A 400 MeV (with mass & 700)
and accepting the sign of the o-model we have ¢gm &~ —5.5. Then the de-
termination (1.7) from =N backward scattering amounts to gsyy~ —13, in
rough agreement with the first part of the o-model prediction.

The radiative coupling corresponds to a width of

m
Loy = f 6 gZ—;' A~ 0.11¢%,, keV .,

While ¢ dominance of ¢ predicts I, =0, the finite-energy sum rule estimate
gives g,y ~ 0.45 corresponding to Paw ~ 22 keV,

2) n: P = gn NN nNN+ Invye o 2 Sagya o*AFf EVA" Eoyag = 1.
The n NN coupling is unknown. SU:,, gives the relation

1
gmw=—\-7§( 4F+D) JreN -

Assuming the F/D ratio % one finds the rough estimate (v/3/5)gryw ~ 5.
The wyy coupling leads to a width of

G
YA ﬁ et Z;‘; At 230 qyy GEV .

Experimentally, [T, = (2.63 4-59) x379% keV. Hence |g,. |~ 0.21. Some
people prefer to use the dimensional couplmg F, = gnyy[m, ~ 0.33 (GeV)1

3) m: The coupling is written the same way as above. Here gy = 13.4
is well known. For wyy one finds from the experimental width of 7.8 eV
(27=10.84-1071%8), |gryy| = 0.037 or |Fyr.,|~ 0.274 (GeV)~'. From construc-
tive interference with the photoproduction amplitude one concludes that — gr..,
has the same sign as gpxy Which we choose positive (*).

(*) Defined by £ = grnn NiystNT.
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(2) (1-2)

g v g v
4) f: Z= __624:_7”:;]‘# FuoF°, + ezﬁ—i- Op I g O, F0% fir
N (68w i3 ys + 87, 4m — Gore 0, By AmFI N,

The prediction from f dominance of gravity gives Givw ~ 9, Giwx = 0. The

determinations from backward dispersion relations (1.8) lead to G{fx ~ 25 44,
Gifewr ~ — 6 + 8,
The fyy couplings enter the fyy width as

m 1 912 2 1 ~2)2
Firv= g o (05 + 5o ) ~ 264 (03 +g o)

Therefore the £ dominance prediction of gy ~ 1.6, giny” = 0 gives Iy~ TkeV.

B) A,: For A, we can write a similar coupling as for f. Here the com-
bined use of forward and backward dispersion relations in photoproduction
gives the estimates ('°)

(2) (1+2)
GA,.N’N’ ~ 6 ’ GA,.N’.N’ ~0.

APPENDIX B

The expressions (2.28) and (2.29) of the forward and backward ampli-
tudes 4, and A, close to the poles can be simplified for the special cases:

1) 4+ resonances of mass M.

There G =0, Gy = ((M—m)/V2Mm) K, and

—1/2m
1/2m2
1 4 Mm 1/2m
M2—s (M+m)*| 1/2mM
0
—1/mM

If the isospin of the resonance is 4, K2 has to be replaced by (K, -+ K2)/2 =
= K; + K, in the amplitudes A* and by (K:—K)/2 =2K,K, in Av. If it
is £ only one A* receives a contribution; A» =0,

With the aid of the factors P*[,,, and P*|;, derived in Sect.3 the con-
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tribution to the unsubtracted dispersion relation (3.3) is given (see (3.17)} by

A, 1/2m?
s - uA3 0
— _41”_~ K2,
4, MM +m)*|  1/2Mm
A, 0
s —1u

If we multiply the amplitudes by ¢ we find their contribution to be
1

P4 o3 ™)
1
oA, i LMY
1 1
sw-uA3 . dm | gy K.
M(M + m)?
1
i A, s (Me—md)
i A, 0
t 1
s—uA“ T Mm

As discussed in Sect. 3, however, only some of these amplitudes behave
sufficiently well to justify inserting them in (3.3).

2) §* resomance of mass M.
Ingerting » =—1 and J=3 in (2.28) and (2.29) one obtains

2M{(G—)Z + % G+ G—\/g} ,

M[ o ME_ . M, .,
—2 oo+ E B eremva+ Lanl,

A m “‘ZM(G_)27
T MM —s)p? M o e MP3mE
(G)'f*ZEG ¢ \/3+2—m“(6+) ;

4 M 2
1—){-—G G \/3—ﬂ(G+)}’

—2{(G)* — (6D,
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and
M{ G-) —2p(}+G—\/3—1— G+)}
M _ 3M2 4 m? 2
7—n-{ 2-—G+G \/3+—2PE—(G+)},
M{ LAYV R G+)}
m
A, = —
2 M(M?—s)p?
| E B
2l - gt g-v3— G+2},
(e 52 6ra-va— 3L (@)
Hora-va 42 @y’
p M ’
: M P 0

The momentum and energy factors are at the resonance position

_Mzwmz E—M2_|_m2
P=""y - = ToM

respectively. It turns out that these mass factors render A extremely sensitive
to the electric-quadrupole moment of the A-resonance. The magnefic and
electric couplings of A are usually defined by (*)

v__ L P
G+ = ~y 3 m = (V3G + Gy)
_ 1 »p _

Experimentally one finds G small compared with G,. The standard statement
given in analyses of photo- and electroproduction is F, /M, ~—4.6% (*).
Using the relations among the multipole amplitudes M,., #,; and G+, G as
derived in Sect. 4 we see that

1 Gy _ By

V3G My’
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If we call this ratio ¢, we can rewrite A, in the form

Gy
4r= SmE(Mz—mg).
— M-
2M{M+m932—M m68_3 m}7
m m

Qg2

M{“M’-{—Mzm + Mm? —m3[3

r m(M®— m?)

M3 4 M2m2 4+ Mm?+ m? 3M—4Mm—m?

4{—3e?—6e+1}.

T m{M? —m?) be +- m(M + m)
2 M(3e 4+ 1),
M(M +3m) m M—2m
4{ We—m F T M—m T M+m}’
SM+m
8{—m382+M_m68+m}’

29

2

For A, the mass factors become quite lengthy. In order to keep them brief

we shall abbreviate the expression

Xy M™ + oty M ...+ oty MM 4 atgm®

by an (n +1)-tuple [ot,, oty Otp—gy -ery gy &%). Then

Gy
As=— 8mAM?* — m?)

{13, 4, 8136 +[1, 0, —116¢ + [3, 4, — 2}

_1_{[3, 0,6,4,01,, [1,4221]  [3-51, —3]}
m2 [1’ 07 "‘“1] []-s 0’ '_1] [1’ 1] ’

—%Z {13, 4, 313e* —[1, 0, 116c —[3, —4, 3]},

2
~ I {7, 6,1]3¢*—[—1, 2, 1]6& 4 [b, —6, 31}

1 [57 _65 '—8’ _6’ _1] [37 27 0’ 27 1] [“_1, 57 _37 3]}

— 3e2 |- 6e ,

M2{ i, 0, —1] [, 0,—11 o TR,
3M—+m | 1 3

8{M”~m23 _M—m68_M+m}’
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Inserting the physical masses we are led to the following expression for the
A contribution to the forward-backward sum rules (m=1):

A, A 168.8¢*— 4.15&— 5.10
A, —197.0¢% + 80.14c — 0.053
4,
po— o —118.2¢* + 1.11¢ + 0.56
A, S O8M| 449032 —0.31
A — 03.2¢% - 87.2¢ 46
Sf_‘ﬂ . —156.452—20e — 0.6
and
tA, — 9.2 g2— 44g— 1.5
tA, —112.9 & 4+135.66 — 1.5
1A,/(s — u) @&, 404 &2— 16.4e— 3
tA, T 8M 50.532— 81.2¢— 1.4
tA —161.9 £+ 151.4¢ -+ 10.4
tAgf(s—u) |ra 72.8 e2— 13.1¢e+ 4.3

The large factors in front of &2 teach us that Nature has very carefully avoided
bringing our sum rules out of balanece by keeping £ very small. This can be
seen best if we take sum rules 1) and 6) in which no well-known low-lying
mesons appear. Thus in A4;/(s —u) the nucleon does not contribute at all
and the higher resonances contribute very little. The term oc 2, however,
enters with a factor 156. The value e &~ —59%, which we have Inserted is
small enough to satisfy the sum rule. It is amusing to note that if one were to
assume saturation with N and A only the A contribution would have to van-
ish and one would predict an E/M ratio of ¢ = —6.4%,. Consider the other
amplitude #4;/(s —u). Also here higher resonances can be neglected as we
can see in Table V. The nucleon, however, shows a large contribution. If we
ask the A-resonance to balance completely the nucleon contribution, we find
for the H/M ratio of ¢ =—4.6% a magnetic moment of G, = 3.5 which
agrees extremely well with experiment (). In the case of our theoretical
prediction ¢, = —6.4%, we would find G, = 3.4.

® RIASSUNTO (%

Si usa la tecnica di uguagliare le relazioni di dispersione non sottratte nelle direzioni
in avanti ed all’indietro alla soglia allo scopo di ottenere regole di somma per le ampiezze

(*) Traduzione a cura della Redazione.



COMPTON SCATTERING AND THE COUPLINGS OF f, g, n, A, AND 7 ETC. 61

invarianti dello scattering di Compton. Supponendo che £, 5, & @, A, dominino la parte
asgorbitiva del canale f, e che le risonanze barioniche saturino gli integrali sui tagli
dei canali s ed u, si riesce ad esprimere le costanti di aceoppiamento di questi mesoni
al fotoni ed ai nucleoni in termini delle ampiezze multipolari elettromagnetiche delle
risonanze barioniche. Si confrontano i risultati con le stime ottenute con altri metodi.

KomnToHOBCKOE paccesHHe M KOMCTAHMTBI CBSI3H f, 6, 7, Ay © © ¢ QOTORAMH H HYKJIOHAMH,

Pesiome (). — MBI ucnone3yeM TEXHHKY OpHPABHMBAHUSA Ge3BLIMATATEILHBIX AHCIED-
CHOEHBIX COOTHOIICHM ) HampaBJIeHWH BIeped W Ha3alx Ha IOpore, YTOOBI MOIyYuTH
OpaBHia CyMM I/ MHBAPHAHTHBIX aMIUTHTY] KOMOTOHOBCKOTO paccessmsa. Ilpeamona-
rag, 4o f, o, 7 m 7w, A, JOMHHHEPYIOT B a0GCOpOLMOHHON YacTH i-kaHaka ¥ OapHOHHBIC
PEe30HANCHI HACKUIIAIOT HHTET PAITHI CBEPX $- M #-KaHANBHBIX Pa3Pe30B, MBI MOXEM BHIPA3HTH
KOHCTAHTHI CBSI3H 3THX ME30HOB ¢ (OTOHAMH M HYKJIIOHAMH 4Yepe3 3JeKTPOMAarHHTHBIS
MYJIBTHIONBHEIE AMIUIMTYObl OAPHOHHBIX PE30HAHCOB. IlONMydYeHHBIE 30€CH PE3YJIETATHL
CPaBHHMBAIOTCA C OLICHKAMM, IOJYYSHHBIMH APYTHMH METOIAMH.

(") Ilepesedeno pedaxyuei.



