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The critical temperaturd. of an interacting Bose gas trapped in a general power-law potevitial
=3;U;i|x|P is calculated with the help of variational perturbation theory. It is shown that the interaction-induced
shift in T, fulfills the relation(T.—T9)/T2=D,(7)a+D’(7)a%7+ (% with T the critical temperature of the
trapped ideal gasa the swave scattering length divided by the thermal wavelengtir atand »=1/2
+Eipi'1 the potential-shape parameter. The teBré7)a andD’(7)a%7 describe the leading-order perturbative
and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how
an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of
the 427 contribution is qualitatively explained in terms of the Ginzburg criterion.
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I. INTRODUCTION whereas in the limit of allp, diverging, V(x) approaches a
The realization of Bose-Einstein condensati@EC) in ~ POX Shape characteristic of the homogeneous Bose gas.
dilute atomic vapors has renewed interest in the critical prop- st investigations of the crossover behavior of the criti-
erties of weakly interacting Bose gases and, in particularcal temperature in these po_tel_wtlals were recently 'reported in
their transition temperatur&.. Important recent work in this Refs.[7,8]. In Ref.[7], the shift inT for these potentials was
area concerns the role of the external trapping potential. Fdf€términed within mean-field theory in the thermodynamic
the homogeneous Bose gas, the shiffjrcaused bys-wave limit. Extending earlier f|rst-orde_r calculatlorﬁs,lo], it was
contact interactions is in leading order completely due tg>10Wn that up to second order in the scattering leagthe
long-wavelength, critical fluctuations that have to be de-MF shift has an expansion
scribed nonperturbatively. It is now established that these 1 _ 19
. . . i, c'c (MF)/ _\a ’ a2 (MF)[ _\a2 a2
fluctuations lead to a linear increase of the critical tempera- o - D1 (n)a+D{yg(ma+ Dy ()a” + o(a?)
ture with thes-wave scattering length, if the particle den- c
sity is fixed [1-4]. A harmonic trapping potential, on the (2
other hand, suppresses the critical long-wavelength fluctua-. . . .
tions and reduggs the fraction of atomg taking pgrt in nonxv'th TS the critical temperature of the noninteracting gas, and

perturbative physics at the transition point. As a result, theaEa/ AT, the scattering length measured in units of the ther-

= ./ 2 1
leading-order shift inl, can be calculated by simple pertu- Mal wavelengtivy= y2mA”/kgTm for particles of massat
bative methods, for instance the mean-fiéF) approxima- 2 temperaturd. The exponent of the second term is twice
tion to the Landau-Pitaevskii equatids,d]. Interestingly, e shape parameter of the potential

the shift here is a decreasing linear function of the scattering 51 1
lengtha. n= =+, 3
Work on the critical temperature of Bose gases has so far =P 2

been mainly concerned with homogeneous and harmonicallg0 that 2 grows from 1 to 4 as the shape changes from

n . -
very different physical mechanisms determine the shiff of ﬁomogeneous to_harmonic. The coeff|C|eﬁI§,|F>(77) and

This observation naturally motivates an investigation of theD(lh,/;F)(”) are, respectively, given explicitly or through simple
crossover between the two cases. In this paper we shall iffuadratures. These results provided some insight into the
terpolate between these limits by studying the condensatioffoSSover in the behavior dfc between homogeneous and
varied continuously. In this way we shall obtain a deepe,does not account for critical fluctuations, it can only provide
understanding of how the increasing inhomogeneity of theéd fough first estimate, especially in the quasihomogeneous
potential suppresses the critical fluctuations and change§9ime, and needs to be improved by more sophisticated

nonperturbative into perturbative physics. The power-law pomethods. ) N ) )
tentials under study are given by One possible pathway for taking critical fluctuations into

account was explored in Rd8], where the shift i, was
calculated with the help of a renormalization gro(RG)
@) method initially developed for studying the harmonically
trapped ga$ll]. The results were found to be in good quali-
with E; andL; denoting energy and length scales. If all pow- tative agreement with mean-field theory. As a main advan-
ersp; are set equal to 2, we recover the harmonic potentialtage, the RG approach employed in that work gave a simple

8 Xi Pj
V=2 E ||
i=1 i
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and transparent tool to compute the critical temperature for &rates the behavior of the critical temperature by means of a
wide range of potential shapes and interaction strengths. Aumerical example. Summary and conclusions are given in
disadvantage was, however, that the results were mainly nigec. V.

merical and rendered only limited physical insight into the

system. Furthermore, the calculation required several unsys- || |DEAL BOSE GASES IN POWER-LAW TRAPS

tematic approximations which are difficult to improve.

The purpose of this paper is to present a more systematic In this section we summarize some known properties of
approach to the problem by making use of field-theoretiddeal Bose gases in power-law traps that are needed later.
variational perturbation theor/PT). VPT is a powerful re- The notation follows Ref49,21]. We consider a system &f
summation method for divergent perturbation sefi#6], ideal bosons of mass trapped in the power-law potential
which has been extended to quantum field theory and itél) characterized by the shape parametémtroduced in Eq.
anomalous dimensions in Refd2,13. It has led to a pre- (3). We define the characteristic volume by
diction of the critical exponents of superfluid helium with

— 3
unprecedented accurafy3,14), as confirmed for the expo- V2713 8<h—2>7] V2 = 1(p)L 4)
nenta of the specific heat of helium by satellite experiments char m -~ Eillpi ’
[15].

In the context of BEC, field-theoretic VPT has been ap-wherel(p)=I'(1/p;)/p; andI'(z) denotes the usual gamma
plied successfully to determine the shift of the critical tem-function. The quantity/,, provides an estimate for the vol-
perature of the homogeneous Bose gas from a five-loop petime occupied by the one-particle ground state in the trap.
turbation expansiofil6], extended recently to six and seven  For calculations in the local-density approximation it is
loops in Ref[17]. In the present work we shall describe the useful to convert spatial integrations involving the trap po-
trapped Bose gas in the thermodynamic limit, in which thetential into energy integrations according to the rule
trap is so wide that we may apply, as in Refg,8], the  Jdf[V(x)]=/dep(e)f(e). In this way, we can easily deal
local-density approximatiofLDA). The system is treated as with power-law potentials of any type. The densjife) is
locally homogeneous at any pointwith an effective chemi- the area of the equipotential surfawéx)=e. As shown in
cal potential ueg=un—V(x), where u denotes the global Refs.[7,8], p(e) is given by
chemical potential. In this way, we can make contact with the 213 o
high-order perturbative loop expansions that were derived in Vehar (m)”— o732

I'(np-1/2)\ #? '

Refs.[16,17] for classical three-dimensional* theories of

homogeneous systems. Because of dimensional reduction .
As announced above, we shall treat the thermodynamic

limit, in which N and V., go to infinity at fixedN/V27V"3,

[18], the effective classical theoy10,19 can be directly
char

used to describe critical properties of th@uantum- ) i
mechanical Bose gas below second order in the scattering! '€ €quation of state for the ideal Bose gas above the con-

ple) = ()

length[1,2]. densation point is then given §22,23
In this work we shall combine the high-order loop expan- 1 m \ 71
sions with the LDA to derive a perturbative expansion for the N= W(%) VAR L(2), (6)

particle number of the trapped system in powers aof
=al/\y. From this expansion we extract, with the help of where B=1/kgT denotes the inverse temperatupe, the
field-theoretic VPT, the critical particle number and the shiftchemical potential, and=expBu) the fugacity. The Bose-
of T.. The main results ardi) for small 4, the shift of T.is  Einstein functions H(@=2,Z/K" are polylogarithmic
shown to exactly follow a behaviofTc-To)/T¢=Dy(7)&  functions[24]. The spatial density distribution of the gas is
+D’(7)a*7+0(a% in generalization of the mean-field result determined by the relation

(2). The term proportional té?” represents the leading non- 3 ~

perturbative effects, whered(7) can be calculated pertur- N(X) = N7 Lgo(eA17VN), (7)
batively as discussed in Refg.,9]. The second-order contri- The condition for Bose-Einstein condensatiomN

bution, which we will not study in detail, contains terms = [d3n(x, »=0) can be obtained from Ed6) by settingz
proportional tcd” anda? In &. (i) We compute the coefficient _7 diréctly from Eq.(7) and read$21]

D’(#) for p<1 using VPT, and in this way arrive at a quan-

titative description of the behavior df, below second order 1 m |71 2(5+1)/3

in the scattering length(iii) Following Ref.[6], we give a N= (2m)3"2 hz_ﬁo Venar  $(7+ 1), (®)
qualitative explanation for thé?” behavior of T, based on ¢

the Ginzburg criteriorf20]. where we have replaced, (1) by Riemann’s{ function

The paper is organized as follows. In Sec. II, the physic€(»)==j,1/n”, and 82=1/kgT? denotes the inverse critical
of ideal Bose gases in power-law potentials is briefly re-temperature of the ideal gas.
viewed. In Sec. Il we show with the help of general scaling
arguments why the critical temperature obeys a law of thg,; GENERAL BEHAVIOR OF CRITICAL TEMPERATURE
form (2), and give a physical interpretation for the appear-
ance of the nonanalytic term. Section IV contains the calcu- We now turn to the interacting Bose gas where we as-
lation of the nonperturbative coefficie’(#), and illus- sume, as usual, that the interaction is effectively a delta-
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function potential which is completely characterized by thetering length. Since the expansion fiay,,, contains a term
s-wave scattering length. In the local-density approxima- proportional tcd? In & as mentioned above, there will also be
tion to the thermodynamic limit, the trapped particle numbersuch a contribution in the exact second-order regaitnpare

N at given temperaturd and chemical potentigk can be to Ref.[6] for the harmonic cas)e

calculated from the integral The expansion coefficien Om and nhom in the perturba-
tion series(10) remain finite in the critical limitAu— 0.
N(T, 1) :f d3xn,(x; u, T) = f d3Xnnonf 1 = V(X), T1, From Eq.(9) we thus obtain well-defined perturbative con-

tributions to the critical particle number in zeroth and first
(9) order ina. The zeroth-order contribution is just the critical
par'ucle number of the ideal gas. However, all other coeffi-
|entsnhom, i =2, are infrared divergent in the critical limit of
—0 where they behave like 1Au'"1. Nevertheless, as

wheren, is the trapped particle density ang,, the density
of the homogeneous gas. As we briefly explain at the end o
thig secztion, W?/Q)ez(pect.the LDA to be applicable if the con- shown in Refs[16,17], we can make use of resummation
dition )\Tc/ A< Vehar IS fulﬁlled,vyhere)\.Tcdenotgs the.therr.nal techniques to extract information about critical properties
wavelength at the condensation point angis defined in - from the expansion. If we focus on effects below second
Eq. (4). Obviously, for a fixed\r_this condition can always order in the scattering length, it is sufficient to consider only
be met by making the trap wide enougind increasing the  the |eading divergencen"®™ at each order, i.e. nﬁ())m

particle number accordingly —n(i.div) (i-1)/2 ; ;

In the following, we want to apply Ed9) to explain why =Mhom +OL(AR) . This leads to the power series
the critical temperature follows a behavior as indicated in a3\
Sec. I. A more detailed calculation will be presented in Sec. AnfY (T, Au) = 2 nLAV(T Au)a =2, b( h)

IV. Consider the perturbation expansion of the homogeneous i=2 \VBAu
densityn;,,m, in powers ofa=a/\; (12
Mhom(T:A) = (T, Ap) + o (T, A ) A+ 0% (T, Au)a? Above the transition where the chemical potentialis
+ 033, (10) smaller thanu. so thatAx >0, we insert Eq(12) into Eq.

(9) and obtain the leading-order divergent contribution to the
where Au= u.—u is the negative distance of the chemical trapped particle number
potential u from its critical valueu, at temperaturd. Our

definition of Ax ensures that it is positive above the transi- ANYY(T, Ap) = f d3xANEY [T, A + V()]
tion.

The omitted higher-order terms in the expansitf) de- R i1
pend on the details of the particle interactions. Being inter- :éf d3x2 (#)
ested in contributions below second order, we can disregard iz \VB[Au+V(X)]

these details and work only with a contact interaction. Note 13
that in Eq.(10) we have neglected logarithmic terms appear- (13

ing at second and higher orderanThese terms enter via the Converting the spatial integral into an energy integral with

critical chemical potentiak. which contains a contribution the help of Eq(5) and performing this integral with analytic
proportional toa?Ina [6]. As the calculation of Sec. IV regularization, we obtain

shows, the omitted logarithmic terms are not relevant for

determining the shift inT, below second order. div 3/2n a -1
From Eq.(10), we can convince ourselves that there must ~ AN™(T,Au) :Af dee” %82, by Ao

exist a perturbative second-order contribution to the critical =2 \WBApte)

particle number. This justifies the inclusion of a term propor- a \ Tir2-»
tional to & in the general expression for the shift T, as =C(Au) 2 b( ) T2 =1/2
mentioned at the end of Sec. I. Indeed, since the expansion BAw/ T )

(10) becomes arbitrarily accurate when we go sulfficiently far 3
away from the critical region, we can split the spatial integral = (A,u)”h1< —) , (14
in Eqg. (9) into a part near the trap center and a remainder: VBAp

where irrelevant constants have been absorbed into the coef-
N(T, ) :f dXNpond e = V(X), T] ficients A and C. Note that the factor§'(i/2-7) in the co-
V=Vo efficients cause divergences fgr— 1. We ignore this issue
for the moment and defer its discussion to Sec. IV. The main
+ f *XMhonf it = V(X), T1.  (11)  property of Eq.(14) is that the functiorh, in the final ex-
VI=Vo pression depends only on the radiby SA . If the number of
Here, V, denotes an energy above which the perturbatwd)al'tldes is to remain finite in the critical |Imll,u,—>0 the
expansion of the density becomes accurate. Inserting the elimiting_behavior of hy(&/\BAx) must be hy(a/VBAw)
pansion(10) into the second integral, we see th(T, uc) o (aly BA,u)z” It follows that the criticaAN®Y behaves like
contains a contribution which is of second order in the scata?”.
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% Following the arguments of Ref6], we can also give a
Te physical explanation for the appearance of #& term by
01 ngt;rbaﬁve estimating the fraction of atoms actually taking part in non-

perturbative effects. For simplicity, consider the potential
V(X)=Z;Vo|x/ro|?. Treating the Bose gas above the transition
point as classical, we find the mean-square width

: : : ['(3/y)
0.5 1 1.5 2 2.5 Oy=ri—a0"— i=1,2,3, 7
T n T BV T (1)
homogeneous harmonic i.e., the cloud radius behaves like
FIG. 1. Schematic diagram of shift ify, for a fixed small scat- ro
tering lengtha as a function of the potential shape parameterhe I'cloud ™ ( Bvo)lly' (18

upper curve shows the full result below second order according to
Eg. (16), the dashed lower curve only displays the perturbativeFrom the Ginzburg criteriofi20] it follows that nonpertur-
contribution linear ird. The nonperturbative contribution decreasesbative effects only arise dtocal) chemical potentialgues,

fast with growing inhomogeneity. for which
h2a®
Combining this result with the perturbative first-order Mo = Meft < ——7 (19
contribution mentioned above, we find that the chaadk,; M\t
in the critical particle number at fixed temperature is 9iven|nyoking the local density approximation, this means that the
by nonperturbative region around the trap center has a radius of
AN R > > about
o =Ciuma+C'(na+0&), (15
Ngrit ( #2352 )1/7 (20)
r -~ rO .
with N2, the critical particle number of the ideal gas, and " MATVo

Cu(7), C'(7) proportionality constants depending on the po-rpa fraction of atoms within this nonperturbative spatial re-
tential shape. From this behavior we immediately deduce thGion is given by

change of the critical temperature at fixed particle number to

i r 3 a 6/y

behave like <_”P_> ~ <—> . (21
ATC 5 24D . o o 16 I cloud )\T
— = a+D’ a7+ a
I 1(7) () @) (16 However, not all atoms within this region actually take part

, i , . . in nonperturbative physid$]. From the homogeneous sys-
with coefficients D,(7) and D'(7) which follow trivially tem we infer that only a fractioa/\; are actually involved

from C,() andC’(#) [compare with Eq(25) below]. - in these effects. For the trap, this means that the fraction of
To discuss the physical contents of Efi) we anticipate  «nonperturbative” atoms scales like

some of the results of Sec. IV, and schematically show in

Fig. 1 the behavior of the critical temperature at a fixed, af 'p 3~ a L a 2 (22)
small value ofa as a function of the potential shape param- A\ T ejoud At T\

eter ». The full curve shows the combined perturbative and . ) )
nonperturbative contributions, whereas the dashed curve di¥nich explains the appearance of the nonanalytic term in Eq.
plays only the perturbativéinear term. In the homogeneous . . . . )

limit we have 27=1, so that the shift below second order in At this point, it is also convenient to explain the estimate
ais purely linear as we expect from earlier studize,25. for the validity of the LDA given abpve, again followmg the
In this case, both contributiorfge., D;(7)a and D' (7)3%7] argqments_ of Ref(6]. Nonpzerturbatlve effects involve fluc-
are of comparable size at any value#of tuations with wavelengthsy/a and larger. For the LDA to

The situation changes when we enter the inhomogeneol}€ applicable, the size,, of the nonperturbative region
regime where 2> 1. As displayed in Fig. 1, for sufficiently around the trap center should thus be much larger Xféa.
small, fixeda and growing# the nonperturbative contribu- Since Eq.(20) can be rewritten as
tion D’(7)a?” rapidly becomes very small compared to the ( a )2/y

Mp™

perturbative term. This kind of behavior is independent of N (VA
T

char ’
the detailed form oD’ (%) [note that in Fig. 1, we ignore the
(unphysical divergence of our approximatioid6) in a nar- by using Eq.(4), this condition immediately implies that
row vicinity of »=1; as discussed in Sec. IV, this is expected\3/a<V2. In other words, the extension of the ground
to be remedied in a higher-order expangidiquation(16)  state has to be much larger than the minimum length scale
describes quantitatively how the growing inhomogeneity of\%/a for critical fluctuations. With the help of Eq8), we
the potential reduces the influence of critical fluctuations orcan also rephrase this statement as follows. With condensa-

the transition temperature. tion taking place at temperatufie the trap has to be suffi-
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ciently wide, so that the critical atom number fulfills the -
condition -

aNY272 5 \p.
IV. CALCULATION OF CRITICAL TEMPERATURE

After the general discussion of Sec. Ill, we now turn to Ad |
the actual calculation of the nonperturbative coefficient * ><
D’ (7). Our result will be approximate in two ways: first, we \
use some approximations to calculate the coefficients of the
weak-coupling expansion for the trapped particle number. FIG. 2. Diagrams contributing ttN® up to ordera* The
Second, the number of terms is limited to seven, and therosses denote the joining of two Green functions.
evaluation via VPT leaves an error. However, due to the
stability and the typically exponentially fast convergence offorming the integration over, we obtain the weak-coupling
VPT, our results should provide a satisfactory representatioexpansion foi ,(A) [compare with Eq(14)]. This expansion

Sp=IOE

of the true behavior. is finally resummed to find the coefficiebt' (7).
~ To simplify the notation for the following calculations, we et us temporarily return to the more familiar unscaled
introduce the reduced homogenous density function: guantities to outline further details of the calculation. Using
the LDA and Eq.(5), the trapped particle number is given b
81— )] = Nnord But) = NaNond Bpsc = Blusc — ). f PRecp JVERDY
(23 N(T, w) = f A% Mhond T, = V(X)]
This quantity implicitly depends, of course, on the reduced P
scattering lengti=a/\, as indicated in the expansi¢h0). — (E)" 1 2(7+1)/3
Under the assumption of LDAf[A+BV(x)] with A K2 [(n-1/2) &

=BAn=0 equals the reduced particle density of the trapped
Bose gas at point. ForA=0, it describes the critical density % f dee ™30Tt — €). (26)
profile in the trap. We now define the integral

dov 732 (A +v). (24)  of the interacting homogeneous system:

1
iwn = [ex =+ RE(K, 0n; 1, IR

% We now express (T, u—¢) in terms of the Green function
1,(4) f

0

Using Eqgs.(5) and(23), this can be recognized as a rescaled ~ Gnom(K, @n; £, T) =
version of Eq.(9). The shift in the critical temperature for a

fixed particle number is then given §y,8] where g, =A%k?/2m with momentumk, w,=27n/BA with
T\ ‘1 integern are the Matsubara frequencies, &t , w,; u,T) is
(—°> = g’(?]—) (25)  the proper self energy. This leads to
TO 1 (O/T(=1/2)

7-1/2 V2(7}+l)/3h3 ,
— —3/2
As sketched in the previous section, we shall first derive a N(T,u) = = (ﬁ) (7 - 1/2)gh(2m)° f dee”
perturbative expansion fdif 8(u.— )] in powers ofa. For

A—0, the zeroth- and first-order terms of this expansion ><$ 1
remain finite, whereas the higher-orders terms suffer from kKiog— (e —u+e)h-2K,onu—gT)
infrared divergences. The zeroth and first order can thus be 27)

directly inserted into Eq(24) and their contribution read off

at A=0. For the higher-order terms, we focus only on theThe symbolik with k=(k,w,) denotes integration and sum-
leading-order_divergence. This leads to an expansion imation over all momenta and Matsubara frequencies. The
terms ofa/ VA +v. Inserting this result into Eq24) and per- last term in Eq.(27) is conveniently rearranged to

1
%iwn— [ex — (u—8) + 20,0 -, DA - [2(K,0p; -, T) - 20,04 0 — €, T)]

(28)

In this expression, we use the “mass-renormalized” Greeas the free Green function for a perturbative expansion. In

function this way, we obtain two different contributions to the trapped
- . 1 particle numbeN(T, u) =NY(T, u) +N(T, 1), namely,
oK, @ni . T) = e — u+ 120, 0; 0, T) /72 (i) the zero-order term
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NO(T,u)=C f dee 32 $- L (29

kio,—[ex— (u—¢e) +h2(0,0p; u— &, TR

with C the prefactor in front of the integral of E27) and dure we see that the Hartree-Fock approximation is equiva-
(i) higher-order contributions pictured by the Feynmanlent to summing over all pure-bubble diagrams as mentioned
diagrams in Fig. 2 up to five loops. Using the zero Matsubarabove. Alternatively, we shall work out the bubble series
frequency contributions of these diagrams, we will calculatedirectly. The starting point is the mean-field equation for the
a perturbatior(l2 dsszries for the leading infrared-divergenhomogeneous density
L v .
contribution n (T,u) to the homogeneous density. N2Mhom= Fasa(= Bit + 289Mom). (32)

hom
From this we obtain the second contributit?® (T, u)

= [N 29T, u=V(x)] to the trapped particle number. We WhereF,(x)={,(e™), which is equivalent to the HF theory.
note that the nonzero Matsubara frequency modes are e¥Vith our scaled quantities, this equation reads

pected to contribute only in second orderaro the critical fue(A +0) = Fap(A + 0 — B + 48f )

particle numbef1].

First we discusN(T, u). The relevant diagrams for the = Fa{A +v + 48[ fe(A +v) = {(3/2)]}, (33
perturbative evaluation of E¢29) are shown in Fig. 3 up to
three loops. As in Fig. 2, an-loop diagram contributes to
order 8" to the perturbation series. The contributions of
zeroth and first order i@ are very easily calculated. Since

where we have inserted the lowest-order equatin,
=4a{(3/2) valid for smalla [6]. The right-hand side is now
expanded in powers Gt

they are convergent in the limit & — 0, we find up to first (
order in&: fur(A +v) = E F3/2—n(A +0)(48)"[fe(A +v)
(0= (9= 12+ 1) +a f oy ™2 - @R (34
0

Solving this implicit equation by iteration yields
XAF15(0)[{(3/12) = F3p(v)] + ...

=I(n-12i(n+1) + (- 1/2Cy(pa+... (30

This expression is equivalent to the first-order mean-field +(4&)2|:Fi/2(A+U)F3/2(A+U)
results of Refs[7,9]. The perturbative contribution is non-
zero in the homogeneous limi=1/2[7,16]. =

The higher-order diagrams are divergent in the limit of + F‘1/2(A+U)F3/2(A+v)]
A—0. We shall not use the whole set of diagrams for our 2
calculation, but restrict ourselves for simplicity to the
Hartree-FockHF) approximation in which we take only dia- + (4@)3{_ F3(A+ U)Ea/z(A +v)
grams into account that consist purely of simple bubbles
(such as the first four in Fig.)3 Unfortunately, it seems
difficult to estimate the consequences of this approximation

fue(A +0) = Fap(A +v) = 48F (A + 0)Fy(A +0)

_ BF_yA +0)Fap(A +0)Fd5(A +v)

or to even go beyond it, but we expect that it captures the 2

main features of the actual behavior. At any rate, the HF —

approximation is interesting in itself since the resummation _ F1/2(A +0)F55(A + ”)] +0(@Y, (35
can be done exactly and provides a nice illustration of our 6 ’

approach. We also find that it leads to the result already

obtained in Ref[7] by a very different derivation. It should Where the subtracted functih,(x) =F(x)~(») vanishes at
be remarked that our calculation shows that the HF approxi-

mation, which is equivalent to the so-called “mean-field” de-

scription (see, e.g., Ref.7]), already includes nonperturba-

tive effects.
In general, the HF approximation for a contact interaction
consists of writing the proper self energy as Q p=
29 1
K, u, T Gk’ ,wp;u,T), (31
(K, 0n;p,T) = ﬁzﬂ(Z )35 (K" on s, T) (31 A0 Al A2

with g=4n#%a/m [26]. Inserting this expression into Dys-  FIG. 3. Diagrams contributing tN¥(T, ) up to orderd? The
on’s equation for the Green function and iterating the procesunset subdiagram is taken at the external momeimtat
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x=0 for »>1. The individual terms in Eq35) correspond to  sions that were derived in Refgl6,17]. These expansions
the HF diagrams in the perturbation expansion for the homoallow us to evaluate the most divergent contributioﬁg,i“’)
geneous densitywith the nonzero Matsubara frequenciesto the homogeneous density, as defined above. Proceeding
taken into account The first two terms once more give the along the lines indicated in the studyNf?, we usmﬁ;gf") to
previous expansiol30). Using the Robinson expansion for first obtain a series expansion ff29V and then to resum
(%) [10,27: the series to find the change in the critical particle number.
This time the resummation cannot be performed exactly,
which leads us to apply variational perturbation theory
(VPT).

A problem in this procedure concerns the fact that Refs.
[16,17 do not calculaten'>4" in terms of u as we need i,

but rather as a function of=-g[u-%2(0,u)] (in other

o1
M) =TA-x+ 2 (X% =K,  (36)
k=0 K
we find that the terms of order=2 in Eq.(35) diverge like
a(a/VA+v)" ! in the limit (A+v)—0, due to the leading

i - V_l i 1 1 - . - .
Robinson termI'(1-»)x""". Focusing attention upon this 45 we would need the diagrammatic expansion leading
leading divergence, we replace each functieytx) by its ¢4 Fig. 2 to be carried out similar to Fig. 3, i.e., including
Robinson term. This step corresponds to dropping the noryypple contributions In the following, we will ignore this

zero Matsubara frequency contributions from the diagramgjifference and approximate the exact expression
of Fig. 3. With the help of a computer algebra program, we 2.
NLA = Blpe = w)]

obtain in this way from Eq(35) the following series expan-
sion of the divergent part of the density: o .
= const . X f dee™¥2\3nZW (B, - A - Be)

f(div)(A fo)=- 773/2(451)2 7T5/2(4é)4 B 7_r7/2(4é)6 .
HF VA +v 4(A + 0)3/2 S(A + U)5/2 (40)
571_9/2(45)8 (37) by

t =5t ... .
64(A+U)7/2

Inserting this expression into E4), we can easily perform
the integration ovev with the help of dimensional regular-
ization. Note that it is crucial to carry out this step for a finite (41)

A>0, since otherwise all integrals would vanish according, tnis equationﬁ%gf") denotes the divergent homogeneous

N(Z,div)(A) ~ const. X f dg/ g/ 77—3/2)\T3f"’n§126g1iv)(A + g’) .
0

to Veltman’s rulefdee®=0 for all « [10,13. The result of : : - (2,div) _=(2,div)
this calculation is density as afl’(’;,%ti'v?” cﬁ €+ Mhom (’8.’“) Mhom [g(’g.’“)]' n
Refs.[16,17, T~ (&) is calculated in terms of a high-order

19M(A) =T( = 12T (= A"

> (7/-n+1)"'(77-1)77<16;7<’312>“,

perturbative loop expansion:

. AOC a i-2
vgee=asn( L)
i=3  \V§&

n=1 n! (42)

(38)

which is easily recognized as the series expansioil' (af
-1/2T(-p)[(167a2+A)7-A"]. In the critical limit A—O0,

From power counting, we expe@>.(0,A) to have an ex-
pansion of the forma®s,s(a/yA)'~? for the leading-order
divergence. Using this expansion we see that the exact ex-
pression forN® and our approximation differ somewhat in

this becomes
(dv) s the higher-order coefficients of the weak-coupling expan-
Iphe(0) = (16m) T (5~ 11T (- m)a“”. (39 sjon. Since the results of the resummation are most strongly

We see that due to the resummation procedure all diagranfdfected by the lower-order coefficients, we neglect the error
in the perturbation series effectively contribute to theintroduced in this way. We expect that this simplification will

leading-order nonperturbative shift of the critical particle "0t change the main features of our results.
number. We thus insert the expansidd?) into Eq. (41). The co-

The same result39) was also found in Ref(7] using a  €fficientsby appearing ;” Eq(|4_122) are related to theys of
completely different approach. There, it was pointed out thafRef: [17] by b=384m(24m)"“a. Applying dimensional
this contribution can be derived from the behavior of thereégularization, we now perform the integration
critical trapped density within a region around the trap center 1
where 0< BV(x) < a?2. This is the nonperturbative regime by m
the Ginzburg criterio[20]. Here, in contrast, we use the K 0
perturbation expansion, which is valid far away from the trap 3 > % a3 \i2
center, to obtain the same result. =———— > f dvv”‘3’2< —)

We now turn to evaluatinl®(T, w), i.e., the second con- I(n-12)i5 Jo VA+v
tribution to the trapped particle number which is determined % a \"rGi/2 - 1/2 - )
by the diagrams displayed in Fig. 2. For the calculation, we =AY bi(__) —77
shall make use of the high-order perturbative loop expan- i=1  \VA I@i/2-1)

f dov 332V (A + )

(43
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This result constitutes a weak-coupling expansion of 0
NZdv(T, ). However, we have to consider the lindit— 0 chm
which is a strong-coupling limit. We assume that the inte-

grand in Eq.(43) has a strong-coupling expansifi0,13] -100¢

1 * )
d 77—3/2)\3n(2,d|v) A+
F(n—1/2)f0 o o (4 *+) -200/

* a -o'm
= ‘2772 Bm<__) . (44) 05 06 0.7 0.8

300
mo  \VA 03 06 07 08 09

. - . . . n
The leading power ofi is fixed by dimensional consider-

ations, i.e., by formally equating Ed43) with Eq. (44), FIG. 4. Results forCy(») from VPT: (bold curve fixed w

since the result can only depend on the paran@fteA [also  =0.805;(dash-dottefiself-consistent determination af . Note the

see the discussion following E(L4)]. The subleading pow- divergence as— 1.

ers are multiples of the universal Wegner exponent govern-

ing the approach to scaling as shown in Réi6,17. This  significance of these divergences below in connection with

exponent reflects the influence from the anomalous dimenthe calculation of the critical temperature.

sions of quantum field theory. In Fig. 5, we plot the final result, i.e., the shift in the
Our task is now to determine the coefficieB§ of the  critical temperature, as determined from E(®5) and (45).

strong-coupling expansion. This will yield the leading-orderThe figure reflects the characteristic qualitative features dis-

contributionN®" to the shift inN. The result is obtained cussed in Sec. Ill and confirms our previous conclusions.

from field-theoretic VPT in analogy to the calculations for The shift is displayed as a function gffor a fixed value of

the homogeneous system in REE6]. As in that reference a=a/\;=10"% The full and the dash-dotted curves show the

we perform two variants of the calculation, one by fixi@§  complete result including all terms from E5). The two

to have the known value 0.805, and one by determimiig curves are, respectively, based on the calculatioCgty)

order by order self-consistently. At first glance, this approachyith «’ kept fixed or determined self-consistently. The dis-

still leaves grounds for scepticism, since the perturbation excrepancy between these results can be considered an estimate

pansion obtained from the LDA is divergent in two ways. for the error in the calculation of, that is introduced by the

First, the expansion coefficients grow factorially, so that theresummation procedure. Since the curves are almost indistin-

radius of convergence is zero. Second, the series has to Bgishable, we can conclude that the resummation contributes

evaluated at a very large argument which goes to infinityonly a small inaccuracy in addition to potential further errors

when approaching the critical point. Fortunately, these twQntroduced by the other approximations.

unpleasant properties are familiar from perturbation expan- For the dashed curve in Fig. 5, the tei@(7)a%” has

sions of critical exponents, for which it has been shown thaheen omitted:; it thus displays the mean-field result below

results. We can thus also safely use this method here.

Within our approach, the change in the critical particle 2
number is finally obtained as an expansion 104 ATc ) \
0
C
—————1,(0)={(n+1) + Cy(n)a+[Ci(n) + Cyn]a%" :
=172 A0)={(7+ 1)+ Cy(m)a+[Cy(n) + Cy(n)] L
+0(8%) (45) )
with  Cy(n) determined from Eq.(30) and Ci(7) 3l
=(16m)"T'(-7n) as in Eq.(39). The coefficienC(7) emerges
from VPT. In Fig. 4 we show the VPT calculation f@;(7) -4
using the seven-loop data from R¢L7]. The result with 5|
self-consistent determination af (bold curve is compared
to the calculation with a fixed value af’=0.805. We see -6
that both curves agree reasonably well; the calculation of -7 . . . .
C,(n) thus does not depend too sensitively on the exponent. 0.5 0.6 0.7 0.8 0.9 1

For =0.94, the self-consistent calculation ef does not

converge anymore; one would probably have to extend the [ 5. shift of critical temperature as a function of the potential
resummation to higher orders to resolve this issue. More IMshape parametey for fixed a/\t=10"% (full curve) Result includ-
portantly, however, we see that the results@(z) diverge  ing all terms in Eq.(45) and Cj(7) calculated with fixede’

in the limit of »— 1. This behavior can be traced back to the=0.805; (dash-dottefisame as full curve but witlw’ determined
presence of th& functions in Eq.(43). The same divergence self consistently(dashedl C,(#) omitted (i.e., “mean-field resulf;
also appears in the coefficie@;(7). We will discuss the (dotted Ci(7) andCj(7) omitted (i.e., only perturbative terin
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contribution due toC,(7)a. We see that the full and the (a/\;)?7. For smalla/\y, the latter contributes significantly
mean-field result closely approach the perturbative first-ordeonly in the quasihomogeneous regime.
approximation long before values gfaround 1 are reached. ~ The presence of th@/\1)?” term was derived from scal-
The divergence aroung=1 introduced by the behavior of ing and resummation arguments, and we gave a simple
C; and C; is restricted to a very small interval. Thus it is physical explanation for its appearance based on the
reasonable to expect that the true behavioFgh this small ~ Ginzburg criterion[20]. Our results show how the growing
regime remains well described by the first-order approximainhomogeneity of the potential reduces the significance of
tion and that the divergence is only an artifact of our calcu<ritical fluctuations.
lation. Furthermore, in Ref[7] it was shown that within We also performed an explicit calculation of the nonper-
mean-field theory this divergence is compensated for by &urbative coefficienD’ (7). In spite of the approximate char-
pole in the second-order contribution to the critical particleacter of the calculation, the result should be quite accurate.
number. We can also expect the same behavior in the prese@ur approach was based on the resummation of divergent
case, i.e., beyond mean-field theory. perturbation series with the help of field-theoretic variational
perturbation theory. In the course of the derivation, it was
shown that the simple Hartree-Fock approximation also con-
V. SUMMARY AND CONCLUSIONS tains a nonperturbative contribution.

We have calculated the shift of the critical temperature of; Finally, our study indicates that the higher-ordershift

interacting B t di | | il traps with»=1, for instance irt;U|x;|® potentials, should
Intéracting Bose gases trapped in a general power-iaw potey, particularly interesting and difficult to investigate. In the

tial of the type;U;|x|P. The objective was to understand limit »—1, we find a divergence in the coefficiedt (7)

how th'§ shift changes when We pass frOT” homogeneous R?/hich governs the nonperturbative contribution proportional
harmonically trapped systems, interpolating between thest% (a/\7)?. It remains to be investigated whether this diver-

limits by changing the power of the potential. While the ence is canceled by other genuinely second-order terms, as
homogeneous case is influenced strongly by nonperturbativ; y 9 Y ’

critical fluctuations, the harmonic case can be calculated pe#- IS expected frpm mean-field theor'y. For future work, it
trbatively. might also be of interest to study the influence of other types

We have restricted our attention to the thermodynamicOf external potentials on the transition temperature, such as

limit, which allowed us to use the local-density approxima-optlcal lattices{28].
tion in which the Bose gas is assumed to be locally homo- ACKNOWLEDGMENTS
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