
Nonperturbative effects onTc of interacting Bose gases in power-law traps

O. Zobay,1 G. Metikas,2 and H. Kleinert3
1Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

2Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
3Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

sReceived 11 November 2004; published 27 April 2005d

The critical temperatureTc of an interacting Bose gas trapped in a general power-law potentialVsxd
=oiUiuxiupi is calculated with the help of variational perturbation theory. It is shown that the interaction-induced
shift in Tc fulfills the relationsTc−Tc

0d /Tc
0=D1shdâ+D8shdâ2h+Osâ2d with Tc

0 the critical temperature of the
trapped ideal gas,â the s-wave scattering length divided by the thermal wavelength atTc, and h=1/2
+oipi

−1 the potential-shape parameter. The termsD1shdâ andD8shdâ2h describe the leading-order perturbative
and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how
an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of
the â2h contribution is qualitatively explained in terms of the Ginzburg criterion.
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I. INTRODUCTION

The realization of Bose-Einstein condensationsBECd in
dilute atomic vapors has renewed interest in the critical prop-
erties of weakly interacting Bose gases and, in particular,
their transition temperatureTc. Important recent work in this
area concerns the role of the external trapping potential. For
the homogeneous Bose gas, the shift inTc caused bys-wave
contact interactions is in leading order completely due to
long-wavelength, critical fluctuations that have to be de-
scribed nonperturbatively. It is now established that these
fluctuations lead to a linear increase of the critical tempera-
ture with thes-wave scattering lengtha, if the particle den-
sity is fixed f1–4g. A harmonic trapping potential, on the
other hand, suppresses the critical long-wavelength fluctua-
tions and reduces the fraction of atoms taking part in non-
perturbative physics at the transition point. As a result, the
leading-order shift inTc can be calculated by simple pertu-
bative methods, for instance the mean-fieldsMFd approxima-
tion to the Landau-Pitaevskii equationf5,6g. Interestingly,
the shift here is a decreasing linear function of the scattering
lengtha.

Work on the critical temperature of Bose gases has so far
been mainly concerned with homogeneous and harmonically
trapped systems. As outlined above, in these two situations
very different physical mechanisms determine the shift ofTc.
This observation naturally motivates an investigation of the
crossover between the two cases. In this paper we shall in-
terpolate between these limits by studying the condensation
in a general power-law potential, whose parameters can be
varied continuously. In this way we shall obtain a deeper
understanding of how the increasing inhomogeneity of the
potential suppresses the critical fluctuations and changes
nonperturbative into perturbative physics. The power-law po-
tentials under study are given by

Vsxd = o
i=1

3

EiU xi

Li
Upi

, s1d

with Ei andLi denoting energy and length scales. If all pow-
erspi are set equal to 2, we recover the harmonic potential,

whereas in the limit of allpi diverging, Vsxd approaches a
box shape characteristic of the homogeneous Bose gas.

First investigations of the crossover behavior of the criti-
cal temperature in these potentials were recently reported in
Refs.f7,8g. In Ref.f7g, the shift inTc for these potentials was
determined within mean-field theory in the thermodynamic
limit. Extending earlier first-order calculationsf9,10g, it was
shown that up to second order in the scattering lengtha, the
MF shift has an expansion

Tc − Tc
0

Tc
0 = D1

sMFdshdâ + DsMFd8 shdâ2h + D2
sMFdshdâ2 + osâ2d

s2d

with Tc
0 the critical temperature of the noninteracting gas, and

â;a/lTc
the scattering length measured in units of the ther-

mal wavelengthlT;Î2p"2/kBTm for particles of massm at
a temperatureT. The exponent of the second term is twice
the shape parameter of the potential

h = o
i=1

3
1

pi
+

1

2
, s3d

so that 2h grows from 1 to 4 as the shape changes from
homogeneous to harmonic. The coefficientsDsMFd8 shd and

D1,2
sMFdshd are, respectively, given explicitly or through simple

quadratures. These results provided some insight into the
crossover in the behavior ofTc between homogeneous and
inhomogeneous potentials. However, since mean-field theory
does not account for critical fluctuations, it can only provide
a rough first estimate, especially in the quasihomogeneous
regime, and needs to be improved by more sophisticated
methods.

One possible pathway for taking critical fluctuations into
account was explored in Ref.f8g, where the shift inTc was
calculated with the help of a renormalization groupsRGd
method initially developed for studying the harmonically
trapped gasf11g. The results were found to be in good quali-
tative agreement with mean-field theory. As a main advan-
tage, the RG approach employed in that work gave a simple
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and transparent tool to compute the critical temperature for a
wide range of potential shapes and interaction strengths. A
disadvantage was, however, that the results were mainly nu-
merical and rendered only limited physical insight into the
system. Furthermore, the calculation required several unsys-
tematic approximations which are difficult to improve.

The purpose of this paper is to present a more systematic
approach to the problem by making use of field-theoretic
variational perturbation theorysVPTd. VPT is a powerful re-
summation method for divergent perturbation seriesf10g,
which has been extended to quantum field theory and its
anomalous dimensions in Refs.f12,13g. It has led to a pre-
diction of the critical exponents of superfluid helium with
unprecedented accuracyf13,14g, as confirmed for the expo-
nenta of the specific heat of helium by satellite experiments
f15g.

In the context of BEC, field-theoretic VPT has been ap-
plied successfully to determine the shift of the critical tem-
perature of the homogeneous Bose gas from a five-loop per-
turbation expansionf16g, extended recently to six and seven
loops in Ref.f17g. In the present work we shall describe the
trapped Bose gas in the thermodynamic limit, in which the
trap is so wide that we may apply, as in Refs.f7,8g, the
local-density approximationsLDA d. The system is treated as
locally homogeneous at any pointx with an effective chemi-
cal potential meff=m−Vsxd, where m denotes the global
chemical potential. In this way, we can make contact with the
high-order perturbative loop expansions that were derived in
Refs. f16,17g for classical three-dimensionalf4 theories of
homogeneous systems. Because of dimensional reduction
f18g, the effective classical theoryf10,19g can be directly
used to describe critical properties of thesquantum-
mechanicald Bose gas below second order in the scattering
length f1,2g.

In this work we shall combine the high-order loop expan-
sions with the LDA to derive a perturbative expansion for the
particle number of the trapped system in powers ofâ
=a/lT. From this expansion we extract, with the help of
field-theoretic VPT, the critical particle number and the shift
of Tc. The main results are:sid for small â, the shift ofTc is
shown to exactly follow a behaviorsTc−Tc

0d /Tc
0=D1shdâ

+D8shdâ2h+Osâ2d in generalization of the mean-field result
s2d. The term proportional toâ2h represents the leading non-
perturbative effects, whereasD1shd can be calculated pertur-
batively as discussed in Refs.f7,9g. The second-order contri-
bution, which we will not study in detail, contains terms
proportional toâ2 andâ2 ln â. sii d We compute the coefficient
D8shd for h,1 using VPT, and in this way arrive at a quan-
titative description of the behavior ofTc below second order
in the scattering length.siii d Following Ref. f6g, we give a
qualitative explanation for theâ2h behavior ofTc based on
the Ginzburg criterionf20g.

The paper is organized as follows. In Sec. II, the physics
of ideal Bose gases in power-law potentials is briefly re-
viewed. In Sec. III we show with the help of general scaling
arguments why the critical temperature obeys a law of the
form s2d, and give a physical interpretation for the appear-
ance of the nonanalytic term. Section IV contains the calcu-
lation of the nonperturbative coefficientD8shd, and illus-

trates the behavior of the critical temperature by means of a
numerical example. Summary and conclusions are given in
Sec. V.

II. IDEAL BOSE GASES IN POWER-LAW TRAPS

In this section we summarize some known properties of
ideal Bose gases in power-law traps that are needed later.
The notation follows Refs.f9,21g. We consider a system ofN
ideal bosons of massm trapped in the power-law potential
s1d characterized by the shape parameterh introduced in Eq.
s3d. We define the characteristic volume by

Vchar
2sh+1d/3 = 8S"2

m
Dh−1/2

p
i=1

3
IspidLi

Ei
1/pi

, s4d

whereIspid;Gs1/pid /pi andGszd denotes the usual gamma
function. The quantityVchar provides an estimate for the vol-
ume occupied by the one-particle ground state in the trap.

For calculations in the local-density approximation it is
useful to convert spatial integrations involving the trap po-
tential into energy integrations according to the rule
ed3xffVsxdg=ed«r̃s«dfs«d. In this way, we can easily deal
with power-law potentials of any type. The densityr̃s«d is
the area of the equipotential surfaceVsxd=«. As shown in
Refs.f7,8g, r̃s«d is given by

r̃s«d =
Vchar

2sh+1d/3

Gsh − 1/2d
S m

"2Dh−1/2

«h−3/2. s5d

As announced above, we shall treat the thermodynamic
limit, in which N andVchar go to infinity at fixedN/Vchar

2sh+1d/3.
The equation of state for the ideal Bose gas above the con-
densation point is then given byf22,23g

N =
1

s2pd3/2S m

"2b
Dh+1

Vchar
2sh+1d/3zh+1szd, s6d

where b;1/kBT denotes the inverse temperature,m the
chemical potential, andz=expsbmd the fugacity. The Bose-
Einstein functions zlszd;ok=1

` zk/kl are polylogarithmic
functionsf24g. The spatial density distribution of the gas is
determined by the relation

nsxd = lT
−3z3/2sebfm−Vsxdgd. s7d

The condition for Bose-Einstein condensationN
=ed3xnsx ,m=0d can be obtained from Eq.s6d by settingz
=1 or directly from Eq.s7d and readsf21g

N =
1

s2pd3/2S m

"2bc
0Dh+1

Vchar
2sh+1d/3zsh + 1d, s8d

where we have replacedzns1d by Riemann’sz function
zsnd=on=1

` 1/nn, andbc
0=1/kBTc

0 denotes the inverse critical
temperature of the ideal gas.

III. GENERAL BEHAVIOR OF CRITICAL TEMPERATURE

We now turn to the interacting Bose gas where we as-
sume, as usual, that the interaction is effectively a delta-
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function potential which is completely characterized by the
s-wave scattering lengtha. In the local-density approxima-
tion to the thermodynamic limit, the trapped particle number
N at given temperatureT and chemical potentialm can be
calculated from the integral

NsT,md =E d3xntrsx;m,Td < E d3xnhomfm − Vsxd,Tg,

s9d

wherentr is the trapped particle density andnhom the density
of the homogeneous gas. As we briefly explain at the end of
this section, we expect the LDA to be applicable if the con-
dition lTc

2 /a!Vchar
1/3 is fulfilled, wherelTc

denotes the thermal
wavelength at the condensation point andVchar is defined in
Eq. s4d. Obviously, for a fixedlTc

this condition can always
be met by making the trap wide enoughsand increasing the
particle number accordinglyd.

In the following, we want to apply Eq.s9d to explain why
the critical temperature follows a behavior as indicated in
Sec. I. A more detailed calculation will be presented in Sec.
IV. Consider the perturbation expansion of the homogeneous
densitynhom in powers ofâ=a/lT

nhomsT,Dmd = nhom
s0d sT,Dmd + nhom

s1d sT,Dmdâ + nhom
s2d sT,Dmdâ2

+ Osâ3d, s10d

whereDm;mc−m is the negative distance of the chemical
potentialm from its critical valuemc at temperatureT. Our
definition of Dm ensures that it is positive above the transi-
tion.

The omitted higher-order terms in the expansions10d de-
pend on the details of the particle interactions. Being inter-
ested in contributions below second order, we can disregard
these details and work only with a contact interaction. Note
that in Eq.s10d we have neglected logarithmic terms appear-
ing at second and higher order inâ. These terms enter via the
critical chemical potentialmc which contains a contribution
proportional to â2 ln â f6g. As the calculation of Sec. IV
shows, the omitted logarithmic terms are not relevant for
determining the shift inTc below second order.

From Eq.s10d, we can convince ourselves that there must
exist a perturbative second-order contribution to the critical
particle number. This justifies the inclusion of a term propor-
tional to â2 in the general expression for the shift inTc, as
mentioned at the end of Sec. I. Indeed, since the expansion
s10d becomes arbitrarily accurate when we go sufficiently far
away from the critical region, we can split the spatial integral
in Eq. s9d into a part near the trap center and a remainder:

NsT,mcd =E
VsxdøV0

d3xnhomfmc − Vsxd,Tg

+E
Vsxd.V0

d3xnhomfmc − Vsxd,Tg. s11d

Here, V0 denotes an energy above which the perturbative
expansion of the density becomes accurate. Inserting the ex-
pansions10d into the second integral, we see thatNsT,mcd
contains a contribution which is of second order in the scat-

tering length. Since the expansion fornhom contains a term
proportional toâ2 ln â as mentioned above, there will also be
such a contribution in the exact second-order resultscompare
to Ref. f6g for the harmonic cased.

The expansion coefficientsnhom
s0d andnhom

s1d in the perturba-
tion seriess10d remain finite in the critical limitDm→0.
From Eq.s9d we thus obtain well-defined perturbative con-
tributions to the critical particle number in zeroth and first
order in â. The zeroth-order contribution is just the critical
particle number of the ideal gas. However, all other coeffi-
cientsnhom

sid , i ù2, are infrared divergent in the critical limit of
Dm→0 where they behave like 1/ÎDmi−1. Nevertheless, as
shown in Refs.f16,17g, we can make use of resummation
techniques to extract information about critical properties
from the expansion. If we focus on effects below second
order in the scattering length, it is sufficient to consider only
the leading divergencenhom

si,divd at each order, i.e.,nhom
sid

=nhom
si,divd+ofsDmdsi−1d/2g. This leads to the power series

Dnhom
div sT,Dmd ; o

i=2

`

nhom
si,divdsT,Dmdâi = âo

i=2

`

biS â
ÎbDm

D i−1

.

s12d

Above the transition where the chemical potentialm is
smaller thanmc so thatDm.0, we insert Eq.s12d into Eq.
s9d and obtain the leading-order divergent contribution to the
trapped particle number

DNdivsT,Dmd =E d3xDnhom
div fT,Dm + Vsxdg

= âE d3xo
i=2

`

biS â
ÎbfDm + Vsxdg

D i−1

.

s13d

Converting the spatial integral into an energy integral with
the help of Eq.s5d and performing this integral with analytic
regularization, we obtain

DNdivsT,Dmd = AE d««h−3/2âo
i=2

`

biS â
ÎbsDm + «d

D i−1

= CsDmdho
i=2

`

biS â
ÎbDm

D i Gsi/2 − hd
Gsi/2 − 1/2d

= sDmdhh1S â
ÎbDm

D , s14d

where irrelevant constants have been absorbed into the coef-
ficients A and C. Note that the factorsGsi /2−hd in the co-
efficients cause divergences forh→1. We ignore this issue
for the moment and defer its discussion to Sec. IV. The main
property of Eq.s14d is that the functionh1 in the final ex-
pression depends only on the ratioâ/ÎbDm. If the number of
particles is to remain finite in the critical limitDm→0, the
limiting behavior of h1sâ/ÎbDmd must be h1sâ/ÎbDmd
~ sâ/ÎbDmd2h. It follows that the criticalDNdiv behaves like
â2h.
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Combining this result with the perturbative first-order
contribution mentioned above, we find that the changeDNcrit
in the critical particle number at fixed temperature is given
by

DNcrit

Ncrit
0 = C1shdâ + C8shdâ2h + Osâ2d, s15d

with Ncrit
0 the critical particle number of the ideal gas, and

C1shd, C8shd proportionality constants depending on the po-
tential shape. From this behavior we immediately deduce the
change of the critical temperature at fixed particle number to
behave like

DTc

Tc
0 = D1shdâ + D8shdâ2h + Osâ2d s16d

with coefficientsD1shd and D8shd which follow trivially
from C1shd andC8shd fcompare with Eq.s25d belowg.

To discuss the physical contents of Eq.s16d we anticipate
some of the results of Sec. IV, and schematically show in
Fig. 1 the behavior of the critical temperature at a fixed,
small value ofâ as a function of the potential shape param-
eterh. The full curve shows the combined perturbative and
nonperturbative contributions, whereas the dashed curve dis-
plays only the perturbativeslineard term. In the homogeneous
limit we have 2h=1, so that the shift below second order in
â is purely linear as we expect from earlier studiesf1,2,25g.
In this case, both contributionsfi.e., D1shdâ and D8shdâ2hg
are of comparable size at any value ofâ.

The situation changes when we enter the inhomogeneous
regime where 2h.1. As displayed in Fig. 1, for sufficiently
small, fixedâ and growingh the nonperturbative contribu-
tion D8shdâ2h rapidly becomes very small compared to the
perturbative term. This kind of behavior is independent of
the detailed form ofD8shd fnote that in Fig. 1, we ignore the
sunphysicald divergence of our approximations16d in a nar-
row vicinity of h=1; as discussed in Sec. IV, this is expected
to be remedied in a higher-order expansiong. Equations16d
describes quantitatively how the growing inhomogeneity of
the potential reduces the influence of critical fluctuations on
the transition temperature.

Following the arguments of Ref.f6g, we can also give a
physical explanation for the appearance of theâ2h term by
estimating the fraction of atoms actually taking part in non-
perturbative effects. For simplicity, consider the potential
Vsxd=oiV0uxi / r0ug. Treating the Bose gas above the transition
point as classical, we find the mean-square width

kxi
2l = r0

2 Gs3/gd
sbV0d2/gGs1/gd

, i = 1,2,3, s17d

i.e., the cloud radius behaves like

rcloud,
r0

sbV0d1/g . s18d

From the Ginzburg criterionf20g it follows that nonpertur-
bative effects only arise atslocald chemical potentialsmeff,
for which

mc − meff &
"2a2

mlT
4 . s19d

Invoking the local density approximation, this means that the
nonperturbative region around the trap center has a radius of
about

rnp , r0S "2a2

mlT
4V0

D1/g

. s20d

The fraction of atoms within this nonperturbative spatial re-
gion is given by

S rnp

rcloud
D3

, S a

lT
D6/g

. s21d

However, not all atoms within this region actually take part
in nonperturbative physicsf6g. From the homogeneous sys-
tem we infer that only a fractiona/lT are actually involved
in these effects. For the trap, this means that the fraction of
“nonperturbative” atoms scales like

a

lT
S rnp

rcloud
D3

, S a

lT
Ds6/gd+1

= S a

lT
D2h

, s22d

which explains the appearance of the nonanalytic term in Eq.
s15d.

At this point, it is also convenient to explain the estimate
for the validity of the LDA given above, again following the
arguments of Ref.f6g. Nonperturbative effects involve fluc-
tuations with wavelengthslT

2 /a and larger. For the LDA to
be applicable, the sizernp of the nonperturbative region
around the trap center should thus be much larger thanlT

2 /a.
Since Eq.s20d can be rewritten as

rnp , S a

lT
D2/g

Vchar
s2/g+1d/3,

by using Eq.s4d, this condition immediately implies that
lT

2 /a!Vchar
1/3 . In other words, the extension of the ground

state has to be much larger than the minimum length scale
lT

2 /a for critical fluctuations. With the help of Eq.s8d, we
can also rephrase this statement as follows. With condensa-
tion taking place at temperatureT, the trap has to be suffi-

FIG. 1. Schematic diagram of shift inTc for a fixed small scat-
tering lengthâ as a function of the potential shape parameterh. The
upper curve shows the full result below second order according to
Eq. s16d, the dashed lower curve only displays the perturbative
contribution linear inâ. The nonperturbative contribution decreases
fast with growing inhomogeneity.
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ciently wide, so that the critical atom number fulfills the
condition

aN1/s2h+2d @ lT.

IV. CALCULATION OF CRITICAL TEMPERATURE

After the general discussion of Sec. III, we now turn to
the actual calculation of the nonperturbative coefficient
D8shd. Our result will be approximate in two ways: first, we
use some approximations to calculate the coefficients of the
weak-coupling expansion for the trapped particle number.
Second, the number of terms is limited to seven, and the
evaluation via VPT leaves an error. However, due to the
stability and the typically exponentially fast convergence of
VPT, our results should provide a satisfactory representation
of the true behavior.

To simplify the notation for the following calculations, we
introduce the reduced homogenous density function:

ffbsmc − mdg ; lT
3nhomsbmd = lT

3nhomfbmc − bsmc − mdg.

s23d

This quantity implicitly depends, of course, on the reduced
scattering lengthâ=a/lT, as indicated in the expansions10d.

Under the assumption of LDA,ffD+bVsxdg with D
=bDmù0 equals the reduced particle density of the trapped
Bose gas at pointx. ForD=0, it describes the critical density
profile in the trap. We now define the integral

IhsDd ; E
0

`

dvvh−3/2fsD + vd. s24d

Using Eqs.s5d ands23d, this can be recognized as a rescaled
version of Eq.s9d. The shift in the critical temperature for a
fixed particle number is then given byf7,8g

S Tc

Tc
s0dDh+1

=
zsh + 1d

Ihs0d/Gsh − 1/2d
. s25d

As sketched in the previous section, we shall first derive a
perturbative expansion forffbsmc−mdg in powers ofâ. For
D→0, the zeroth- and first-order terms of this expansion
remain finite, whereas the higher-orders terms suffer from
infrared divergences. The zeroth and first order can thus be
directly inserted into Eq.s24d and their contribution read off
at D=0. For the higher-order terms, we focus only on the
leading-order divergence. This leads to an expansion in
terms ofâ/ÎD+v. Inserting this result into Eq.s24d and per-

forming the integration overv, we obtain the weak-coupling
expansion forIhsDd fcompare with Eq.s14dg. This expansion
is finally resummed to find the coefficientD8shd.

Let us temporarily return to the more familiar unscaled
quantities to outline further details of the calculation. Using
the LDA and Eq.s5d, the trapped particle number is given by

NsT,md =E d3xnhomfT,m − Vsxdg

= S m

"2Dh−1/2 1

Gsh − 1/2d
Vchar

2sh+1d/3

3E d««h−3/2nhomsT,m − «d. s26d

We now expressnhomsT,m−«d in terms of the Green function
of the interacting homogeneous system:

Ghomsk,vn;m,Td =
1

ivn − f«k − m + "Ssk,vn;m,Tdg/"
,

where «k ="2k2/2m with momentumk, vn=2pn/b" with
integern are the Matsubara frequencies, andSsk ,vn;m ,Td is
the proper self energy. This leads to

NsT,md = − S m

"2Dh−1/2 Vchar
2sh+1d/3"3

Gsh − 1/2db"s2pd3 E d««h−3/2

3X

k

1

ivn − s«k − m + «d/" − osk,vn;m − «,Td
.

s27d

The symbolXk with k=sk ,vnd denotes integration and sum-
mation over all momenta and Matsubara frequencies. The
last term in Eq.s27d is conveniently rearranged to

X

k

1

ivn − f«k − sm − «d + "Ss0,vn;m − «,Tdg/" − fSsk,vn;m − «,Td − Ss0,vn;m − «,Tdg
. s28d

In this expression, we use the “mass-renormalized” Green
function

G0sk,vn;m,Td =
1

ivn − f«k − m + "Ss0,vn;m,Tdg/"

as the free Green function for a perturbative expansion. In
this way, we obtain two different contributions to the trapped
particle numberNsT,md=Ns1dsT,md+Ns2dsT,md, namely,

sid the zero-order term

FIG. 2. Diagrams contributing toNs2d up to order â4. The
crosses denote the joining of two Green functions.
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Ns1dsT,md = CE d««h−3/2
X

k

1

ivn − f«k − sm − «d + "Ss0,vn;m − «,Tdg/"
s29d

with C the prefactor in front of the integral of Eq.s27d and
sii d higher-order contributions pictured by the Feynman

diagrams in Fig. 2 up to five loops. Using the zero Matsubara
frequency contributions of these diagrams, we will calculate
a perturbation series for the leading infrared-divergent
contribution nhom

s2,divdsT,md to the homogeneous density.
From this we obtain the second contributionNs2,divdsT,md
=ed3xnhom

s2,divdfT,m−Vsxdg to the trapped particle number. We
note that the nonzero Matsubara frequency modes are ex-
pected to contribute only in second order inâ to the critical
particle numberf1g.

First we discussNs1dsT,md. The relevant diagrams for the
perturbative evaluation of Eq.s29d are shown in Fig. 3 up to
three loops. As in Fig. 2, ann-loop diagram contributes to
order ân−1 to the perturbation series. The contributions of
zeroth and first order inâ are very easily calculated. Since
they are convergent in the limit ofD→0, we find up to first
order in â:

Ihs0d = Gsh − 1/2dzsh + 1d + âE
0

`

dvvh−3/2

34F1/2svdfzs3/2d − F3/2svdg + . . .

= Gsh − 1/2dzsh + 1d + Gsh − 1/2dC1shdâ + . . . s30d

This expression is equivalent to the first-order mean-field
results of Refs.f7,9g. The perturbative contribution is non-
zero in the homogeneous limith=1/2 f7,16g.

The higher-order diagrams are divergent in the limit of
D→0. We shall not use the whole set of diagrams for our
calculation, but restrict ourselves for simplicity to the
Hartree-FocksHFd approximation in which we take only dia-
grams into account that consist purely of simple bubbles
ssuch as the first four in Fig. 3d. Unfortunately, it seems
difficult to estimate the consequences of this approximation
or to even go beyond it, but we expect that it captures the
main features of the actual behavior. At any rate, the HF
approximation is interesting in itself since the resummation
can be done exactly and provides a nice illustration of our
approach. We also find that it leads to the result already
obtained in Ref.f7g by a very different derivation. It should
be remarked that our calculation shows that the HF approxi-
mation, which is equivalent to the so-called “mean-field” de-
scription ssee, e.g., Ref.f7gd, already includes nonperturba-
tive effects.

In general, the HF approximation for a contact interaction
consists of writing the proper self energy as

Ssk,vn;m,Td = −
2g

"2b

1

s2pd3X

k8
Gsk8,vn8;m,Td, s31d

with g=4p"2a/m f26g. Inserting this expression into Dys-
on’s equation for the Green function and iterating the proce-

dure we see that the Hartree-Fock approximation is equiva-
lent to summing over all pure-bubble diagrams as mentioned
above. Alternatively, we shall work out the bubble series
directly. The starting point is the mean-field equation for the
homogeneous density

lT
3nhom= F3/2s− bm + 2bgnhomd, s32d

whereFnsxd=znse−xd, which is equivalent to the HF theory.
With our scaled quantities, this equation reads

fHFsD + vd = F3/2sD + v − bmc + 4âfHFd

= F3/2hD + v + 4âffHFsD + vd − zs3/2dgj, s33d

where we have inserted the lowest-order equationbmc
=4âzs3/2d valid for small â f6g. The right-hand side is now
expanded in powers ofâ:

fHFsD + vd = o
n=0

`
s− 1dn

n!
F3/2−nsD + vds4âdnffHFsD + vd

− zs3/2dgn. s34d

Solving this implicit equation by iteration yields

fHFsD + vd = F3/2sD + vd − 4âF1/2sD + vdF̄3/2sD + vd

+ s4âd2FF1/2
2 sD + vdF̄3/2sD + vd

+
F−1/2sD + vdF̄3/2

2 sD + vd
2

G
+ s4âd3F− F1/2

3 sD + vdF̄3/2sD + vd

−
3F−1/2sD + vdF1/2sD + vdF̄3/2

2 sD + vd
2

−
F−1/2sD + vdF̄3/2

3 sD + vd
6

G + Osâ4d, s35d

where the subtracted functionF̄nsxd;Fnsxd−zsnd vanishes at

FIG. 3. Diagrams contributing toNs1dsT,md up to orderâ2. The
sunset subdiagram is taken at the external momentump=0.
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x=0 for n.1. The individual terms in Eq.s35d correspond to
the HF diagrams in the perturbation expansion for the homo-
geneous densityswith the nonzero Matsubara frequencies
taken into accountd. The first two terms once more give the
previous expansions30d. Using the Robinson expansion for
znsxd f10,27g:

znse−xd = Gs1 − ndxn−1 + o
k=0

`
1

k!
s− xdkzsn − kd, s36d

we find that the terms of ordernù2 in Eq. s35d diverge like
âsâ/ÎD+vdn−1 in the limit sD+vd→0, due to the leading
Robinson termGs1−ndxn−1. Focusing attention upon this
leading divergence, we replace each functionFnsxd by its
Robinson term. This step corresponds to dropping the non-
zero Matsubara frequency contributions from the diagrams
of Fig. 3. With the help of a computer algebra program, we
obtain in this way from Eq.s35d the following series expan-
sion of the divergent part of the density:

fHF
sdivdsD + vd = −

p3/2s4âd2

ÎD + v
+

p5/2s4âd4

4sD + vd3/2 −
p7/2s4âd6

8sD + vd5/2

+
5p9/2s4âd8

64sD + vd7/2 + . . . . s37d

Inserting this expression into Eq.s24d, we can easily perform
the integration overv with the help of dimensional regular-
ization. Note that it is crucial to carry out this step for a finite
D.0, since otherwise all integrals would vanish according
to Veltman’s ruleed««a=0 for all a f10,13g. The result of
this calculation is

Ih;HF
sdivd sDd = Gsh − 1/2dGs− hdDh

3o
nù1

sh − n + 1d ¯ sh − 1dh
n!

S16pâ2

D
Dn

,

s38d

which is easily recognized as the series expansion ofGsh
−1/2dGs−hdfs16pâ2+Ddh−Dhg. In the critical limit D→0,
this becomes

Ih;HF
sdivd s0d = s16pdhGsh − 1/2dGs− hdâ2h. s39d

We see that due to the resummation procedure all diagrams
in the perturbation series effectively contribute to the
leading-order nonperturbative shift of the critical particle
number.

The same results39d was also found in Ref.f7g using a
completely different approach. There, it was pointed out that
this contribution can be derived from the behavior of the
critical trapped density within a region around the trap center
where 0øbVsxd& â2. This is the nonperturbative regime by
the Ginzburg criterionf20g. Here, in contrast, we use the
perturbation expansion, which is valid far away from the trap
center, to obtain the same result.

We now turn to evaluatingNs2dsT,md, i.e., the second con-
tribution to the trapped particle number which is determined
by the diagrams displayed in Fig. 2. For the calculation, we
shall make use of the high-order perturbative loop expan-

sions that were derived in Refs.f16,17g. These expansions
allow us to evaluate the most divergent contributionsnhom

s2,divd

to the homogeneous density, as defined above. Proceeding
along the lines indicated in the study ofNs1d, we usenhom

s2,divd to
first obtain a series expansion forNs2,divd and then to resum
the series to find the change in the critical particle number.
This time the resummation cannot be performed exactly,
which leads us to apply variational perturbation theory
sVPTd.

A problem in this procedure concerns the fact that Refs.
f16,17g do not calculatenhom

s2,divd in terms ofm as we need it,
but rather as a function ofj=−bfm−"Ss0,mdg sin other
words, we would need the diagrammatic expansion leading
to Fig. 2 to be carried out similar to Fig. 3, i.e., including
bubble contributionsd. In the following, we will ignore this
difference and approximate the exact expression

Ns2,divdfD = bsmc − mdg

= const .3 E
0

`

d««h−3/2lT
3nhom

s2,divdsbmc − D − b«d

s40d

by

Ns2,divdsDd < const .3 E
0

`

dj8j8h−3/2lT
3ñhom

s2,divdsD + j8d.

s41d

In this equationñhom
s2,divd denotes the divergent homogeneous

density as a function ofj, i.e.,nhom
s2,divdsbmd= ñhom

s2,divdfjsbmdg. In
Refs.f16,17g, ñhom

s2,divdsjd is calculated in terms of a high-order
perturbative loop expansion:

lT
3ñhom

s2,divdsjd = âo
i=3

`

biS â
Îj
D i−2

. s42d

From power counting, we expectb"Ss0,Dd to have an ex-
pansion of the formâ2Slslsâ/ÎDdl−2 for the leading-order
divergence. Using this expansion we see that the exact ex-
pression forNs2d and our approximation differ somewhat in
the higher-order coefficients of the weak-coupling expan-
sion. Since the results of the resummation are most strongly
affected by the lower-order coefficients, we neglect the error
introduced in this way. We expect that this simplification will
not change the main features of our results.

We thus insert the expansions42d into Eq. s41d. The co-
efficientsbl appearing in Eq.s42d are related to theals of
Ref. f17g by bl =384p3s24pdl−2al. Applying dimensional
regularization, we now perform the integration

1

Gsh − 1/2dE0

`

dvvh−3/2lT
3nhom

s2,divdsD + vd

=
â

Gsh − 1/2doi=1

`

biE
0

`

dvvh−3/2S â
ÎD + v

D i−2

= Dho
i=1

`

biS â
ÎD

D i−1Gsi/2 − 1/2 −hd
Gsi/2 − 1d

. s43d
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This result constitutes a weak-coupling expansion of
Ns2,divdsT,md. However, we have to consider the limitD→0
which is a strong-coupling limit. We assume that the inte-
grand in Eq.s43d has a strong-coupling expansionf10,13g

1

Gsh − 1/2dE0

`

dvvh−3/2lT
3nhom

s2,divdsD + vd

= â2ho
m=0

`

BmS â
ÎD

D−v8m

. s44d

The leading power ofâ is fixed by dimensional consider-
ations, i.e., by formally equating Eq.s43d with Eq. s44d,
since the result can only depend on the parameterâ/ÎD falso
see the discussion following Eq.s14dg. The subleading pow-
ers are multiples of the universal Wegner exponent govern-
ing the approach to scaling as shown in Refs.f16,17g. This
exponent reflects the influence from the anomalous dimen-
sions of quantum field theory.

Our task is now to determine the coefficientB0 of the
strong-coupling expansion. This will yield the leading-order
contributionNs2,divd to the shift inN. The result is obtained
from field-theoretic VPT in analogy to the calculations for
the homogeneous system in Ref.f16g. As in that reference
we perform two variants of the calculation, one by fixingv8
to have the known value 0.805, and one by determiningv8
order by order self-consistently. At first glance, this approach
still leaves grounds for scepticism, since the perturbation ex-
pansion obtained from the LDA is divergent in two ways.
First, the expansion coefficients grow factorially, so that the
radius of convergence is zero. Second, the series has to be
evaluated at a very large argument which goes to infinity
when approaching the critical point. Fortunately, these two
unpleasant properties are familiar from perturbation expan-
sions of critical exponents, for which it has been shown that
a resummation by field-theoretic VPT leads to the correct
results. We can thus also safely use this method here.

Within our approach, the change in the critical particle
number is finally obtained as an expansion

1

Gsh − 1/2d
Ihs0d = zsh + 1d + C1shdâ + fC18shd + C28shdgâ2h

+ Osâ2d s45d

with C1shd determined from Eq. s30d and C18shd
=s16pdhGs−hd as in Eq.s39d. The coefficientC28shd emerges
from VPT. In Fig. 4 we show the VPT calculation forC28shd
using the seven-loop data from Ref.f17g. The result with
self-consistent determination ofv8 sbold curved is compared
to the calculation with a fixed value ofv8=0.805. We see
that both curves agree reasonably well; the calculation of
C28shd thus does not depend too sensitively on the exponent.
For h*0.94, the self-consistent calculation ofv8 does not
converge anymore; one would probably have to extend the
resummation to higher orders to resolve this issue. More im-
portantly, however, we see that the results forC28shd diverge
in the limit of h→1. This behavior can be traced back to the
presence of theG functions in Eq.s43d. The same divergence
also appears in the coefficientC18shd. We will discuss the

significance of these divergences below in connection with
the calculation of the critical temperature.

In Fig. 5, we plot the final result, i.e., the shift in the
critical temperature, as determined from Eqs.s25d and s45d.
The figure reflects the characteristic qualitative features dis-
cussed in Sec. III and confirms our previous conclusions.
The shift is displayed as a function ofh for a fixed value of
â=a/lT=10−4. The full and the dash-dotted curves show the
complete result including all terms from Eq.s45d. The two
curves are, respectively, based on the calculation ofC28shd
with v8 kept fixed or determined self-consistently. The dis-
crepancy between these results can be considered an estimate
for the error in the calculation ofTc that is introduced by the
resummation procedure. Since the curves are almost indistin-
guishable, we can conclude that the resummation contributes
only a small inaccuracy in addition to potential further errors
introduced by the other approximations.

For the dashed curve in Fig. 5, the termC28shdâ2h has
been omitted; it thus displays the mean-field result below
second orderf7g. The dotted curve shows the perturbative

FIG. 4. Results forC28shd from VPT: sbold curved fixed v
=0.805;sdash-dottedd self-consistent determination ofv8. Note the
divergence ash→1.

FIG. 5. Shift of critical temperature as a function of the potential
shape parameterh for fixed a/lT=10−4: sfull curved Result includ-
ing all terms in Eq.s45d and C28shd calculated with fixedv8
=0.805; sdash-dottedd same as full curve but withv8 determined
self consistently;sdashedd C28shd omittedsi.e., “mean-field result”d;
sdottedd C18shd andC28shd omitted si.e., only perturbative termd.
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contribution due toC1shdâ. We see that the full and the
mean-field result closely approach the perturbative first-order
approximation long before values ofh around 1 are reached.
The divergence aroundh=1 introduced by the behavior of
C18 and C28 is restricted to a very small interval. Thus it is
reasonable to expect that the true behavior ofTc in this small
regime remains well described by the first-order approxima-
tion and that the divergence is only an artifact of our calcu-
lation. Furthermore, in Ref.f7g it was shown that within
mean-field theory this divergence is compensated for by a
pole in the second-order contribution to the critical particle
number. We can also expect the same behavior in the present
case, i.e., beyond mean-field theory.

V. SUMMARY AND CONCLUSIONS

We have calculated the shift of the critical temperature of
interacting Bose gases trapped in a general power-law poten-
tial of the typeoiUiuxiupi. The objective was to understand
how this shift changes when we pass from homogeneous to
harmonically trapped systems, interpolating between these
limits by changing the power of the potential. While the
homogeneous case is influenced strongly by nonperturbative
critical fluctuations, the harmonic case can be calculated per-
turbatively.

We have restricted our attention to the thermodynamic
limit, which allowed us to use the local-density approxima-
tion in which the Bose gas is assumed to be locally homo-
geneous at each point. In Sec. III, we gave justification for
this procedure. The main result is the shift formula

Tc − Tc
0

Tc
0 = D1shd

a

lT
+ D8shdS a

lT
D2h

+ Osa2d. s46d

It contains a linear, perturbative part, which is relevant for all
potentials, and a nonperturbative contribution proportional to

sa/lTd2h. For smalla/lT, the latter contributes significantly
only in the quasihomogeneous regime.

The presence of thesa/lTd2h term was derived from scal-
ing and resummation arguments, and we gave a simple
physical explanation for its appearance based on the
Ginzburg criterionf20g. Our results show how the growing
inhomogeneity of the potential reduces the significance of
critical fluctuations.

We also performed an explicit calculation of the nonper-
turbative coefficientD8shd. In spite of the approximate char-
acter of the calculation, the result should be quite accurate.
Our approach was based on the resummation of divergent
perturbation series with the help of field-theoretic variational
perturbation theory. In the course of the derivation, it was
shown that the simple Hartree-Fock approximation also con-
tains a nonperturbative contribution.

Finally, our study indicates that the higher-orderTc shift
in traps withh=1, for instance inoiUuxiu6 potentials, should
be particularly interesting and difficult to investigate. In the
limit h→1, we find a divergence in the coefficientD8shd
which governs the nonperturbative contribution proportional
to sa/lTd2. It remains to be investigated whether this diver-
gence is canceled by other genuinely second-order terms, as
it is expected from mean-field theory. For future work, it
might also be of interest to study the influence of other types
of external potentials on the transition temperature, such as
optical latticesf28g.
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