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I. INTRODUCTION

The observation of the scaling properties of the
structure functions Wl+and sz of deep inelastic electron
nucleon scattering [1] has been taken by many people as
an indication for an approximate scale invariance of the
world.It was pointed cut by Wilson [2], that in many field
theories it is possible to assign a dimension d to every
fundamental field, which proves to be a conserved gquantum
number as far as the most singular term of an cperator
product expansion at small distances (x-y) -+o0) is con-
cerned++. Later it was shown, at the canon;cal level, that
in many field theories the dimension of a field seems to
be a good quantum number even in the terms less singular at
small (x—y)u, as long as they all belong to the strongest
light cone singularity (i.e. (x-y)?%-0) [3].

The assumption that this type of scale invariance on
the light cone be present in the operator product ex-
pansion of two electromagnetic currents has provided us
with a rather natural explanation of the observed scaling
phenomena.

We should like to mention, however, that this‘ex-
planation cannot account for the precocity with which
scaling is being observed experimentally in energy regions,
in which resonances still provide prominent contributions
to the final states [4]. If there are really fundamental
constituents, called partons, building up all our hadronic
world, as for example some spin % fields, it is hard to
imagine how photons at present energies and virtual masses
should manage to see an instantaneous, in-coherent snapshot

+See the lectures by C. Callan and M. Gell-Mann.

Neglectlng weakly singular logarithmic factors log(x—y)z/m2
which turn up to any finite order of perturbation
theory.
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of those partons even though dynamics is still quite active
in gluing them together in the form of rather long living
resonances.

Intuitively it is obvious that the scale invariant
region should not set in before all masses of important
resonances have been exceeded by the photon's virtual mass
and energy. It is easy to illustrate this point in soluble
models in which structure functions are built up completely
in terms of a string of baryons contained in an infinite
component local field [6,7].

Experiment cannot, at present, resolve this question,
especially, since nature appears to go over very smoothly
from the scale violating resonance region to the scale in-
variant parton limit.

Since in theoretical physics we are permanently look=-
ing for the simplest possible picture of nature we shall
anyhow accept the hypothesis that the world be, in some
sense, maximally scale symmetric and adhere to it, until
we run into a direct clash with experiment.

In these lectures we shall search for consequences
of such a possible underlying scale invariance of the world
in the domain of low energy physics.

The presence of masses in nature tells us that scale
invariance must be broken considerably in nature. This
situation is familiar from the long experience we have had
with the chiral SU{3)xSU(3) current algebra. Also for this
group complete symmetry would force all baryons to be mass-
less. Nature has avoided this fatal consequence by means
of the presence of pions as almost-Goldstone bosons. Does
a similar situation hold also for scale invariance?

In order to answer this question we shall use exact-
ly the same technigues that have been developed for the

study of the consequences of current algebra.

Acta Physica Austriaca, Suppl. IX 35



536

Typically, these techniques deal with the following
structure of operators:

1) There exist some currents j“i(x).

2) Their charges Qi(xo)=fd3xjg(x) generate some well defined
group transformations when applied to certain local
fields at equal time

i[Qi(Xo), 6 (x)] = 6 o(x) . (1.1)

3) Their divergences A(x)z33j(x) are local fields dominated

by a single meson.

In current algebra itself, assumption 2) is formulated in
a stronger form. Among the other local fields ¢ (x), there
have to be necessarily also the currents j“i(x) themselves,
and the time components of the currents have to form the
Lie algebra of the group transformations 6¢. For the general
techniques, to be applied below in the case of broken scale
invariance, this stronger form is not needed, though.

The principal consequence of the first two assumpt-
ions consistsin the following statement.

The N+1 point functions

T lyixgceaxg) = <ol P (y) o) (xq) oo (x)) |0 (1.2)
satisfy the Ward identities
10¥e¥ (yixg...xg) = 1<o|T(a(y) ¢! (x)) ...¢N(xN)) lo> +

i 8 (y=x1) <0| T (801 (%)) 92 (x,) .. -¢" (x )} o> +  (1.3)

+ 8 (y=xy) <o T (1 (1)) 02 (x,) . . .86Nx)) o>
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The terms on the right hand side can conveniently be re-
written as

. . - 1
1A(y,xl...xN) + S(y xl)d G(xl...xN)

+
. (1.4)
N
If one goes to the Fourier transforms
(2ﬂ)“6”(q+2pi)1(q;pl...pN)
N
: (1.5)

z dedxl...de e r(y;xl,...,xN) etc.

the Ward identity (WI) takes the form

N
u . = i .
q ru(q,pl...pN) = 1A(q,p1...pN)+ z

6rG(plf""pr+q,.o-pN) .
r

1

(1.6)
There are very few cases where the Ward identity

can directly be tested by experiment+.

Trhe most famous example is the Ward identity relating the
amplitude of two axial vector currents between nucleon

» ' B
b3=i[dx et9 x<N(p')|T(AS(X)A3(O))IN(p)> to the

ba
3A 3A g;d.to
the matrix elements of vector current and I term i~ =

]
x ([0°,28%1+(ba)) by q* q"<>2=:P2 -1 £P2C(qr4q)¥/2
x <N(P')IV§|N(p)>+<N(p')|Zb |N(p)>. The isospin odd part

of this relaticn is directly measurable in neutrino and

electron scattering on nuclei. Recall Tba =

ba TN-+7N
= 1 2?2 A 2,4 .
q.%fuz(” T WE=a) /E Sut Ton aa

q2-u2

states 1
corresponding amplitude of the divergences 1

X

x Nle

35%
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If only the function T is unknown, it may be eliminated
by going to the point q”=o+. Here one obtains the low-
energy theorem (LET)

N

O = 1A(0ipPy+« P + z d(r)G(p R I (1.7)
1 N re1 1 N

However, also the amplitude A(o;pl...pN) is usually hard
to measure. It is for this reason, that assumption 3) is
introduced. With assumption 3) the value 8(0ipy-.-py) 1is
the off shell continuation of an amplitude involving a
physical meson of mass u with the ¢? dependence given by
a simple pole term 1/ (g2-p?).

In many cases, the amplitudes occurring in (1.6)
refer to processes which are hard to perfbrm in any
laboratory. For those cases there is another way of ob-
taining physical consequences from the Ward identity,
called the hard-meson technique. One simply parametrizes
the amplitudes in terms of vertex functions and propagators
of particles which one expects to be prominent in the low-
energy region. Then WI and LET provide us with relations
among these parameters [7].

This technique has been shown to be completely
equivalent to the method of effective Lagrangians [8].
Here one introduces separate fields for all those particles
whose properties one would like to relate by means of Ward
identities. Theﬁ one constructs a Lagrangian involving
these fields.

*a possible pole at qu=o can always be eliminated by,
infinitesimally modifying some internal masses. For
example, the single nucleon pole in the Ward identity
for nN scattering disappears upon taking the electro-
magnetic mass difference into account.
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The field transformations 8¢ are introduced and a current
ju(x) with the property (1.1) is found following standard
Lagrangian methods. The only technical problem arises in
satisfying assumption 3): In order that 3j(x) is domi-
nated by a single particle only, the Lagrangian has to be
chosen approximately invariant under 6¢. This can be done
by standard group theoretic techniques. Then any n-point
functions involving j" (x), calculated via standard Feynman
graphs, will satisfy the correct Ward identities (1.6).

In order to investigate what physical consequences
can be derived from the assumption of an approximate scale
invariance of the world we shall introduce a current Du(x)
generating certain scale transformations on local fields.
In analogy with the situation in broken chiral symmetry
(PCAC) we shall assume the divergence of the dilatation
current 3D to be dominated by a single scalar meson called
o (PCDC). Ward identities will be derived, parametrized
in terms of particles and relations will be cbtained for
coupling constants involving this ¢ meson. Due to the
equivalence of this approcach to that of effective
Lagrangians{8] we shall illustrate most of our statements
by comparing with the situation in scme definite Lagrangian
models. We shall not talk about light cone aspects of
broken scale invariance which are the subject of other
lectures.

II. THE DILATATION CURRENT AND ITS BASIC PROPERTIES

Dilatations are defined as the transformation group
in space time

X =+ e X . (2.1)
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Accordingly, we shall call any representation of (2.1)
in the physical Hilbert space a dilatation by e, if it
transforms every local observable O(x) into another local

observable Ou(x) evaluated at e%x:

0(x) - Ou(eax) . (2.2)

charge D(xo)Efd3xDo(x) is the infinitesimal generator
of all such dilatations:

iD(x o -iD(x )a
e °  o(x)e © =oa(e°‘x). (2.3)

By taking o infinitesimal, one finds the commutator
i[D(xo), O(x)] = x30(x) + O'(x) (2.4)

where 0'(x) is again a local field (za/aa Oa(x)|a=0).
If O'(x) is a multiple of O(x):

O'(x) = d o(x), (2.5)
then O0(x} is said to have a definite dimension 4.

From (2.4) we can immediately see an important
property of the dilatation charge: The derivative with

+Notice that we want D, (x) to satisfy vector commutation
rules with the Lorentz generators Muv:

1[Muv,DA(x)]=(xuav-xvau)DA(x)+gkav(x)—gvxDu(x)
even though it will turn out to depend explicitly on xu

i.e.

%DA‘X)‘F“PU'DA(X” .
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+ .
respect to the explicit dependence on X, %uD(xo), satis-

fies the commutator:
i[85 D(x ), O(X)] =3 O(x) . (2.6)
u o} u

Since this is supposed to hold for all local observables

of the theory, we conclude

f\, _
3D(x) =P . (2.7)

s
From the equation of motion we therefore find

. _ g 9 = H-14d3
1[D(xo),H] = H 3t D(xo) = H Jd X 9D (x) (2.8)
i[D(xo), Pi] = Pi . (2.9)

These equations allow us to prove an important low-energy

theorem for diagonal matrix elements of 3D(x) without

using the general formalism described abovett¥,

dependence on X, of an operator A(x) is that part of the
total derivative auA(X) not obtained by commuting with
Pu: %uA(x)zauA(x)-i[Pu,A(x)]. A local operator O(x)
satisfies auo(x)=i[Pu,O(x)] and has no explicit depend-
ence on x .
™ In many L;grangian theories one can define a local energy
momentum tenscr euv(X) such that dilatations are gener-
ated by Du(x)=xveuv(xi. In these theories, (2.8) is trivi-
ally satisfied since avDu(xo)=euv. In addition one has
3aD(x)=6(x) (see Sect. VII). Our derivation is more general,
though.
**¥rhis low-~energy theorem could certainly be proved by the
methods leading to (1.7). For this particular case of elas-

tic matrix elements we prefer,however,the direct proof.
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If Ipa> denotes any state of total momentum p, with all
other gquantum numbers collected in the 1ndex a, which is
normalized by

(| = 3¢3 L.
<5 o |§a> 2p, (2m) %6 ‘E E)Ga'a N, (2.10)

then

<ga|8D|Ea> = 2p2Na . (2.11)

For a proof we simply take (2.8) between two diffent states
and find

. _ ' = 2 353 LI

ilp, po)<g a|D(xo)|Ea> 2pZ(2m) 3¢ (E g)éa.aNa

(2.12)
- (27) 383 (p'-p)<p'e' |3D|pe> .
n, " n, N

In this equation, momentum conservation makes sure that p'
n

and p are close to each other. Therefore we can expand
4"

1
Po"Po' ¥ 35 (p2-p'?) (2.13)

ZPO A

and the left hand side of (2.12) can be rewritten as

1 ] ]
ZPO<E g I[D,P2]12a> . (2.14)

But using Eq. (2.9) we have

i[D(xO),Pz] = 2p? (2.15)

+For many particle states, a contains continuous labels like
the relative momenta and §,', denotes continuous §-functions
For single baryon and meson states we shall use the normal-
ization Na=l/2m and 1, respectively.
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such that (2.14) becomes

2 3:3 "
ZE (27} 7§ (E E)ﬁa'a Na.

Inserting this back into (2.12) we obtain indeed (2.1l1).
This proof is only valid if the dilatation current

is not able to produce scalar mesons of mass zero. The

reason is that in such a case a pole is present in the

matrix elements of Du at g?+o0 and the definition of 3“:

N - 3
au z au 1[Pu, ] (2.16)

ceases to coincide with the naive derivative with respect
to the explicit dependence on xu. One can roughly des-
cribe the situation in the following way: In the matrix
elements of D(x )}, the local parts of D contribute like
(3)(E —p), the parts with linear X, dependence like 3, 6(3)(p
etc. If the local part has a 1/g? 63(p -p) pole, then some
part of it will be attributed by a of formula (2.16) to the

second term 8163(p -p) . Since we shall not be interested in
4" Q%

-P):
N

a world containing such a massless particle, we shall not
elaborate much more on this point. Only later, when we get

to specific models some more comments will be in place.

III. IS BuDu(x) DOMINATED BY A SINGLE SCALAR MESON?

Being equipped with a dilatation current we can now
embark on writing down Ward identities. Since n-point func-

. .. . +
tions containing 3D(x} are hard to measure in general ,

+Except for diagonal matrix elements, for which a balance
is sufficient! In theories where D =xVo and 3D=6, gravi-
tational interactions would in principle do. Prof. Weber
informs me that he does not have enough resolutions as yet.
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assumption 3) of meson dominance of 3D is necessary to
derive physical consequences. The meson would have to be

a scalar of isospin zero. The particle one tentatively
accepts for this purpose is the broad s-wave resonance

o (700) of width Foﬂ“%400 MeV which appears to be present
in nr scattering. Evidence for the existence of this
particle is rather indirect. Theoreticians have kept need-
ing it either to explain phenomenological fits of data or
to make sum rules come out right. Or they have predicted
it by unitarizing the =7n scattering amplitude. Among the

many examples one could give here we just mention

1) Dispersion theoretic treatments of the processes nn>mn

and na->NN prefer a o-resonance at [9,10]

momsotloo MeV, rommoorzoo MeV . (3.1)

The corresponding onnm coupling is:+

lg | % 3.4 £1.7 . (3.2)

gnmw

In addition, the ratic gcmr/gGNN can be estimated as [9]

m
[0

v * g
gmm/gUNN N (.9%.25) = (3.3)
The mass factor appears explicitly since the ratio
gcﬂﬂu/hoNN mc)ls rather insensitive [9] to the actual
value of the mass m_ .
2) In backward =N scattering, a t-channel nn resonance of

700 MeV would have to couple with a strength [11]

+ m
The onn and oNN couplings are defined by L=g 7; on2 +
- agnmTmw
+ oNN such t = 3(q2

9NN uc hat FO““ 4(gonn/4n}q‘
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4)

5)
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W +
9ynr Toyy & 69 4 (3.4)

in order to explain the energy dependence of the

amplitude close to threshold.

The low energy phase shift analysis of nucleon—-nucleon
scattering requires the exchange of at least one scalar
particle. The determinations of géNN vary from 31:16 to
190 [12].

Constructions of low energy =nn amplitudes satisfying
approximately crossing, analyticity, and unitarity and
fitting the experimental p-shape predict a pole around
420 MeV with Fcn“%400 Mev [13].

The Adler-Weisberger relation for =rn scattering is
saturated with the observed p (765), FOHN%IZS and £(1260),
Iﬁfmr +
mainder is due to a single s-wave resonance , this sum
rule reads (f“%.095 BeV) :

%150 resonances by only 60%. Assuming that the re-

g 2 g 2 g 2
2 pmM anm 1 frn _
BELERED + (D 4 gp ) 1 =1 (3.5)

The famous KSFR relation gpﬂn%md/wi'fﬂ)gives for the p-
contribution 50% while the experimental width of f makes

this contribution roughly 10%:

m
f
F o (3.6)

T

N v Y
Ig,q v 23:3 % V3

As a consequence, Ionn is about of the size

*That the missing part is of positive parity, can be con-
cluded from a combination of forward and backward dis-
persion relation written down for the amplitude at thres-
hold (see Banerjee et al., Phys. Rev. D2, 2141 (1970).
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O
é
1
w

(3.7)

corresponding to a width of 400 MeV at m0%700 MeV.
Combining this estimate with Eg. (3.4) we conclude

that I NN is not much different from gnNN(=13’5):

9NN A (3.8)

This result was predicted in the o-model [14], in which
the ¢ plays the role of being the chiral partner of the
pion (see Sect. VIII).

Suppose this o-particle dominates the divergence 3D.
In analogy to PCAC, one calls this hypothesis PCDC (partial
conservation of dilatation current).

In this case our low-energy theorem (2.11) allows
for a direct experimental consequence in form of a Gold-
berger-Treiman type of relation+. If mg/y denotes the

direct coupling of o to 3D {(analogous to <O|3A|ﬁ>=u2fﬂ)

m 3
<o|aD (o) |o> = «%— (3.9)

we find for matrix elements between pions

moa go'ﬂ"ﬂ' mU
<n(p*)|aD(o) |n(p)> = » 4= p'-p (3.10)
[+}
and between nucleons
m3 g
N(p') [aD(0) [N (p) > = =2 oNN_ (3.11)
mcz_qz

+Recall: There the matrix element cof 23A between nucleon
states is <N(p)|aA3|N(p)>=mgA while pion dominance gives
fﬂgnNN [1].
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Comparing with {2.11) at g?=o0 we conclude

_ oL
omn = ¥ 5 (3.12)
m
c
.
Ionn - Y @ . (3.13)

o]

Since y is unknown we can only test the ratio

g 2
arT - r?u‘; ~ .06 (3.14)
95NN G

which is experimentally %% .

Thus one or both of the matrix elements (3.10) and
(3.11) cannot be dominated by a single o-meson.

In the following section we shall show that the
assumption of o-dominance for 3D between pions is in con-
flict with the idea that pions are the Goldstone bosons of
the chiral symmetry. This property of pions enforces a
subtraction in the matrix element (3.10). This saves us
from a clash with experiment but destroys one prediction.

Since in this philosophy the role of the pions is
rather special one may hope that most other single particle
matrix elements are still unsubtracted and derive pre-
dictions from this assumption. For example, the vertex

9Dpp defined by

< (p',c") [3D(0) |0 (pre)> = Gla2Im e - ZH(g2)p' e pre’
p

(3.15)

has by oc-dominance the form factors+

Tror the coupling constants see Sec. V.
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3

g m

G(g2) = 3 Uip 2° (3.16)
mo =g
m3 m

H(g2?) = 3 oep B, (3.17)
mcz_qz

Comparing the diagonal elements with (2.11), we find

m
q
- — = 2m 2 3.18
Y gUDD mD mp ( )
or
mp
gOpp = =2 fn_ Y . (3.19)

No restriction is imposed upon hcpp. Similarly, for photons

the gauge invariant vertex reads

<Y(k'.e')|aoD(o)ly(k,e)> = F(qz)(k;kv-guvk'k)e;ev (3.20)
with+
m 3 g
F(g2) = - —% g2 —9YY 2 (3.21)
Y 2_.2 M
m_“-q o

From (2.11), the diagonal matrix elements have to vanish.
But this is true for any gOYY. A popular method of ob-

taining anyhow results on hcpp and g proceeds by

oYy

constants parametrizing a vertex are assumed to vanish

+
We use L =e?g 1/m (3 A s"A -3 aVa aV)
oYYy oYY o' vV ou v

that T = et g2 X . 2 .
such a oy m0/4 e gUYY/4ﬂ ~ .11 gOYY MeV
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except for those determined by low energy theorems (or
Ward Identities) . In this case we have hopp=o, gOYY=0,
and there is no radiative decay o+2y [15].

The latter statement can be tested in principle by
photoproduction of two pions on heavy nuclei via photon
exchange (Primakoff effect}:

At present, only phenomenological arguments are
available about the strength of this coupling. A finite-
energy sum rule analysis [16] of pion Compton scattering
estimates Fcyykzz keV correspondingto gcyy%.47. However,
the analysis contains many sources of uncertainties. An-
other estimate is obtained from the combined application
of forward and backward dispersion relations to nucleon
Compton scattering [17]. Here gOYY comes out zero con-
firming the assumption of maximal smoothness. We think the
latter estimate to be more reliable™.

If the first estimate is true, the og-meson should be

produced via the Primakoff effect with a cross section of

| r P _ P
o % 167a 22 21 1n (=P) % 8.5x10°° 22 I I mp . (3.22)
g ag a

Unfortunately, a very high angular resolution is necessary
to pick up the events of very small t which stick out
above the strong interaction background {(peak at BL%A of
width 24, where A % m02/2pi<<l).

+.. . . . . .
Since the input information is quite well known from
the analyses of photoproduction on nucleons.
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IV. WARD IDENTITIES FOR THE 3Dwnw VERTEX
AND THE THEOREM ABOUT A SUBTRACTION IN g2

The statement about the necessity of a subtraction
[18] in the 3Dnn vertex is basically due to the fact that
from PCAC the pion can be continued smoothly off mass shell
by using the divergence of the axial vector current 3A as

an interpolating field. All information on the 3Dnv system

is certainly contained in the vertex (kz-g-p):

t{g?;p?,k2) = de dy ei(qy+pX)<o|T(aD(y)BA"(x)aA”(o))|o> .
(4.1)

The crucial assumption which will be the basis of all the
future discussion is that 3A" has the definite dimension d.

Then the vertex 1 is subject to a low energy theorem (1.7)

o = iT(o;pZ,p2)+de eipx<olT((d+xa)aA(x)aA(o))|o>

+ de eipx<o|T(aA(x)daA(o))|o> . (4.2)

By defining a propagator of the field 3A

iA(p?) = Ieipx<o]T(aA(x)aA(o))|o>dx , (4.3)

this low-energy theorem becomes explicitly

~t(o;p2,p?)=(2d-4-p :—p)A(pz) = (4.4)

=(2d-4) & (p2) -2p24 (p2?) (4.5)
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where ¢ = ——

One conveniently introduces a reduced vertex function by

dividing the propagator A(p?) out of t:
2002 12y = ea—Li 2y a"Li2 2,02 32
It satisfies
2 2y = “l oy an2AT 202y A2
Fr(o;p4,p?) = (2d-4)4 “(pc)=2p<a “(p°)a(p°) . (4.7)

Due to the assumption of PCAC, 4({(p?) is, to a good approxi-

maticn, given by

A(p2) = X , 4.8
(pc) o2 ( )

where f_ is the decay constant of the pion (fﬂ%.095 BeV) .
If one goes to the pion pole, one finds from (4.7)

r(o;u?,u?) (4.9)

li
N
o
N
+h
=
I
L]

This is nothing else but the low-energy theorem (2.11),
since from the LSZ reduction formulas+, the on=shell
matrix element <w(p"|aD|n(p)> is just given by

<n(p') |aD|w(p)> = lim £ 2u%a"l(p'2)a"l(p2) «
q'2+p2 Ll

x 1{g%;p'?,p?) (4.10)

*For a nice exposition of this subject see the text book by
S. Gasiorowicz, Elementary Particle Physics, Jochn Wiley &
Sons, N. Y. (1967).

Acta Physica Austriaca, Suppl. IX 36
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= £ 2utr(g?;u?,u?) . (4.11)

The factor f zu“ appears in front since the properly
normalized 1nterpolat1ng field for the pion is "’f 12 dA.

Due to the PCAC assumption (4.8), the p? dependence
of (4.7) is completely determined. We find

£ 2utr(o;p?,p?) = 2u2+2(d-1) (p2-u?) . (4.12)

Since PCAC is expected to be a good approximation only for
g?> much smaller than some characteristic mass M2 (maybe
X10u?), the quality of the statement (4.12) will decrease
when p? leaves the mass shell. Correction terms of the
order O(|p2-u?|/M2) are expected to turn up.

Relation (4.12) tells us something guite interesting.
It says that the strong form of PCAC implies that the
dimension of 3A is necessarily one. If it were three, as
suggested by light cone discussions based on the guark model,

the vertex would behave as

fﬂzu“l“(o; p?,p2) = 4p?-2u2 (4.13)

showing a rapid relative variation when p? runs from zero
to uz.

However, we should not take PCAC that literally. We
think that the known amount of violation of PCAC in the

£ - oy

m gHNN il MZ

9
(4.14)

(1.16 1.28 - .12) BeV
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variations of amplitudes of the dimension of mass when
going from g?=u? to g2?=o. Therefore, it is not surprising
if small amplitudes of the size of a pion mass show rapid
relative changes in magnitude. It is easy to demonstrate
this point by means of a simple Lagrangian model (see for
example, Ch. VIII).

The result (4.13) is all the information that can
be obtained by using the assumption of 3A having a definite
dimension.

The nice thing about the vertex 3D3A3A is, however,
that additional information can be derived by considering
the properties of 3D under the chiral SU(2)xSU(2) group.
Clearly, if the commutators [Qs(xo),aD(x)] and [Qs(xo),BA(X)]
were known, an additional Ward identity could be derived by

multiplying the vertex
v, (q,p) = inx dy eiqu+px)<o|T(aD(y)Au(x)aA(o))|o> (4.15)

with pp.

What do we know about these two commutators?

For the first the answer can be given if one makes
only the very mild assumption that, apart from 35A, also A0
has a definite dimension. From current algebra this

dimension is necessarily equal to 3. We can then show that

i[3D(x), Q5(xo)] = (4-d)3A(x) . (4.16)

The proof based on a straight-forward use of the Jacobi
identity. Since it is rather lengthy it will be given in

the Appendix .

36*
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The second commutator is the famous I~term occurring in

many current algebra calculations:
I(x) = ilQg(x ), aA"(x)] . (4.17)

It usually is assumed to be a member of a (% %) re-
presentation of SU(2)xSU(2), together with BA", i. e.

ilQgix,), I(x)] = -8n"(x) . (4.18)

However, this point will not be of importance at this place.

With these commutators we find

a§<o|T(aD(y)A““(x)aA"(o))|o>

<o|T(aD(Y)aA“(x) 32" (0)) | o>

(4.19)
- i §(x)<o|T(3D(y)z(0)) o>
+ i(4-d) 6§ (y-x)<o|T(3A(x)3A(0)) |o> .
Hence 1 obeys the Ward identity
-p, 7" (@/p) = t(q?ip? k) 4o, 0 (a2)=(4=A) A ((g+p)2)  (4.20)
where A, . is the propagator —iJeiqx<o|T(8D(x)E(o))|O>dx.

The corresponding low-energy theorem at p=o yields an
equation for 1:

t(g?;0,9%) = (4-d)a(g?)-a ) (4.21)

spz (9
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implying for the reduced vertex I {gq?;o0,q?)

r(q2;0,q2) = -(4-d)A“l(o)+a'l(o)A’l(q2)A3DZ(qz) . (4.22)

Notice that at the point where all arguments are zero,

comparison of (4.22) and (4.7) yields

ABDZ(O) = da (o} . (4.23)

This result could have been arrived at as well by equating
the low energy theorems for the two point functions

<o|T(Au(x)aA(o))|o> (4.24)
and

<o|T(Du(x)z(o))|o> (4.25)

and by observing that due to (4.17), £ has the same
dimension 4 as J3A.
Obviously, if we want to derive any consequences we

have to parametrize the propagator A If 3D is dominated

aDL "’
by a single particle, this propagator should have the form

bopy(a?) = aif%‘i . (4.26)
o)

As can be seen in models, this assumption actually appears
to be somewhat weaker than that of o-dominance of 3D. The
reason is that the symmetry breaker I is expected to be a
smoother operator than 3D. Usihg Eg. (4.23), the comparison
of (4.26) with the PCAC form of A(o) Eg. (4.8), determines
(4.26) completely
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Bypg (a®) =4 Cz’ u . (4.27)

From (4.22) we obtain an explicit form for the I' vertex

1

63:527[((4—d)u2-dm02)q2—(4—2d)pzmoz]

£ 2u'T(g?50,q9%) =

(4.28)
This result can be combined with Eg. (4.12).
Since P(qz;pi,p%) has to be a symmetric function in pi,
p%, we find [18]

m 2
2.4 2.4 2 2y = 9 2m 2 2
£ ou'r(@%ip®/p,°) = ” z[a(q m . ) +b m_ ] (4.29)
q®-m,
with
2
— y
a = -1+(4-4d) —
0]
2
= ~ - B - 229,22 2
b = ~-1+(2-4d) moz + (1 d)(p12+p2 2y )/m0 . (4.30)

With the direct coupling strength mog/y between 3D and o
introduced before, this result amounts to an on shell ownn

coupling constant of [18]

L2
g = y{(1+(d-2) 5—7)- (4.31)

gnTw
g

The subtraction constant of

2
2 bp fmem 2 2y = - - B 2
fTT pir( iP1°/P, ) (1+(d-4) o 2)mCr (4.32)

+)
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is a measure for the breakdown of exact o—-dominance of 3D
between pions, just as the term (l—d)(p12+p22—2u2)/m02
breaks PCAC. Only for d=1 and m02=3mn2 are both hypotheses
exactly verified. In referring back to our earlier dis-
cussion on the significance of the condition of exact PCAC
Wwe just note that as soon as g? is somewhat away from the
pion mass and the matrix element fﬂzu“r(qz;piﬁpéb is not
close to zero any more, the relative PCAC breaking becomes
extremely small.

For example, close to the c-mass shell, qz%mi,r is

essentially proportional to b itself:

y
m
£ 2u*r(a?ip?,p,%) & ~—9ﬂ-—[~l+(2-d)+(l-pr12+p22—2u2)/m02]-

2 2
~m
! a

(4.33)
This vertex is independent of plz,pz2 within the
range of a few y? for any reasonable d between O and 4.

The hypothesis of o-dominance of 3D in the 3D3A3A
vertex, however, cannot be saved by such an argument, due
to the large mass of o.

At this place we should like to comment on the usage
of the term "subtraction" to denote a power of g? or p? in
the reduced vertex functions. It is important to stress
that within the hard-meson method we are pursuing, this
term has nothing to do with the true subtractions necessary
at high energy when dispersing in the corresponding variables.
In the hard-meson method, Ward identities are merely en-

forcing certain powers of g2, p?, etc. in the reduced vertex

p?, etc. The Ward identity tells us nothing about the

physical origin of these powers.
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V. THE QUESTION OF THE SIZE OF THE I-TERM

While our hope for universal o-dominance of 3D has
been destroyed in the last section, some models suggest
that the I-commutator appearing in Eq. (4.l6)may still be
dominated by a single pole at q2=m02. If this is so, then
the propagator (4.29) determines the strength of the direct
coupling

2

<o|z(0)|o> = ydf % & . (5.1)

Q

This formula allows us to express the famous I-term of
pion nucleon scattering (for the definition, see footnote+
on p. 5 of my lectures) in the following form [19]:

f 2U2
<N(p) [z (o} |N(p)> = g_,vd — . (5.2)

m 3
o]

But from our last result (4.32) we can substitute y by

g with only a few percent error

omT
fﬂ2u2
Oﬂﬂd 3

m
v (5.3)

<N(p) | (o) |N(p})> % IoNN 9

Y

N IoNN gcnﬂd x.5 Mev .

If one uses the estimate (3.4) for the o-couplings:

v +
9oNN Fgmn 69+4 (5.4)

one finds
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<N(p) | Z{0) |N(p)> ~ dx35 MeV .

Unfortunately, the value of the I-term cannot be measured
directly. An off-mass shell continuation is necessary in
order to arrive from the physical pion nucleon scattering
amplitude at the point where both pion momenta are zero.
For this purpose, Fubini and Furlan have developed a
dispersion theoretic method [20]. However, the dis-
continuities of the dispersion integrals are not well known
and require further approximations. Applying this method

to 7N and pion nucleus scattering lead to the estimates” :

N(p) | zto) [N(p)> & (3otioa] . (5.5)

It has been argued by Cheng and Dashen [24], that within
the PCAC approximation, the value of the I-term appears
with the reversed sign at the cn-mass shell point v=o0,
t=2u2 of the 7N amplitude. The argument is briefly the
following: Current algebra gives a low-energy theorem for

the amplitude

+
™ (v,t,q'2,q2) = AT (v,t,q'2,q2)+vBT (v,t,q'2,q?) (5.6)
12 2 2 12 2 sz
- at . 9la'9)alg”) LA Sttt L 9la'“)g(g”) 5_
m \)B -V m \)B -\

(5.7)
where vBE—qq'/2m=(t—qQ—q2V%nu g(g?) is the off-
mass shell continuation of the 7NN coupling constant (via
the interpolating field H=l/fﬁp2.BAﬂ), and %+, B+ are the

*For a criticism of the results of Ref.[21] see Ref. [23].
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amplitudes free of the ps nucleon pole. This low-energy

theorem is

¥ (0000) = a*(oo00) - 93£91 = - §i7<N(p)|z|N(p)> . (5.8)
m

On the other hand, any amplitude emitting a pseudoscalar
particle of q“=o via the field 3A vanishes. As a con-
sequence, ¥ has the so called Adler zeros [1]

( 2

&‘+(OIU2101U2) = A+(01U2101U2) - M‘%_'E—')" =0 . (5-9)

The crucial assumption is now, that from PCAC [24] the

amplitude

g({g'?2)g(g?)
m

¥+(o'q|2+q2'qn2'q2) = A(o,q'2+q2,q'2,q2) -

2 (5.10)

is a smooth function in g'?,g?. If we allow
for only linear variation in q'2,g?, the Adler zeros en-

force the on shell value

¥ (0,202,12,u2) = £5<N(p) | T[N (p)> . (5.11)
™

We do think that this argument is convincing. Certainly we
cannot exclude that ¥+(o,q'2+q2,q'2,q2) may in fact be a
smooth function of g'2,q%. However, the principle of PCAC
can certainly not be invoked for a proof. As a counter-

example consider the amplitude in the linear o-model which

2
mo gﬂNN

onn JoNN t—mo2 - m

%+(Vltrq'21q2) = =g (5.12)



561

with
m 2
= = =2 (1- 2 = - = - &
Youn = 7 F_U moi)' Iornn T "IN £ (5-13)

Due to PCAC, this amplitude has the Adler zero

¥ (o,u2,0,u2) = o (5.14)
and it is independent of g'Z,qg2.
However,

¥*(0,q'2+q2,q9'2,q2) (5.15)

picks up a q'2?,q2 dependence from the t-channel singu-
larities. If o was very low in mass, the non-smoothness of
¥+(o,q'2+q2,q'2,q2) would be arbitrarily large in spite of
exact PCAC. Since the particle is not very low-lying, one
may argue that one can include its effect by means of an
expansion linear in ¢'?,g?. However, as long as we do not
have a definite idea about the breaking cof PCAC we con-
sider this procedure as quite dangerous. If such breaking
terms are turned in, the expansion of F up to first order

corrections to PCAC is

+ I2+ 2 12+ 2 t 1
¥(o,t,q9'%,a%) = [(agral I +(ay+a) =151 (5.16)
where the I-term is contained in aO:

£ 2
™
<N(p) |Z[N(p)> = - —5 a, ¥ - 65a  MeV . (5.17)

On shell, %+(o,t,u2,u2) has been determined in =N analyses.
Let [25-28]
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4 t
T (D:t;uzruz) (AO + A, —%)

1 p2

= |

. (5.18)

Now the point is that Ao and Al are both of the same size+

AgxP Vv -1.4t.6 (5.19)
A‘fo Y 1.13 . (5.20)

There is no a priori reason why A, should have a weaker

g? dependence than AO in a theorylwith a slight breaking
of PCAC'T. If one takes the condition of the Adler zeros
into account, one can eliminate only one cof the four
parameters. If we leave ai as an unknown we can express
the others in terms of a! and the experimental quantities

1

A and A, in the form
0 1

| I -
a 2al-2Aa Ao

o 1l 1

—2ai+A (5.21)

| 1

t | -
ao+a1 AO+Al .

We see that only the sum of the PCAC breakers aé+ai is

determined by experiment.

How the breaking distributes among aé and ai is
completely model dependent.

Let p be the content of breaking in al!, i.e.

ai = p(A1+Ao)
(5.22)

M

al

o (1-0)(A1+A0) .

+Due to the nucleon contribution g?/m=27.3x1/y cancelling
almost completely A (0 o u? u2)%26.1x1/u.

T This can be checked for example by adding a PCAC breaking
term to the o-model.
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Then the I-term is obviously

f 2

L

<N(p) | Z|N(p)> (A+2R)-2p (A_+A,))

1
(5.23)

£2[ (1=p)T(0,2u%,u2%,u2)=pT (0,0,n%,u2)] .

The ad-hoc assumption p=o reduces to the result of Cheng
and Dashen

<N(p) | Z|N(p)> = £ 2 ¥t (0,2u2,u2,u2) = 65(.9%.6) Mev'.(5.24)

For arbitrary p we have

£ 2
<N(p}|z|N(p)> E (1t.6-2p (~.3%.6))

65[1+.6p) ¢.6(1-2p) ] MeV™ . (5.25)

H

About the value of p we do not know much. One should think,
though, that due to PCAC, aé and ai should be smaller than
a, and a,, respectively. Therefore we expect aé and ai to
have opposite signs and p could lie somewhat below zero

or above one.

Obviously, the large error bars leave the result
(5.25) completely consistent with the off shell extra-
polation values of Eg. (5.5).

A word of caution is in place here. The argument
raised before concerning the accuracy of the pole dominance
approximation for 3D can certainly be applied to the matrix
elements of I as well. In the beginning of this section
we justified this assumption for * by saying that models

suggest I to be a smoother operator than 3D. Unfortunately,

+
Our numbers are obtained by inspection of the data points
of Ref. [26] since Cheng and Dashen don't quote any errors.



564

due to the small factor uz/mC appearing in the coupling
strength of § with ¢ (Eq. (5.1)) inclusion of PCAC breaking
may make this argument completely irrelevant. In the o-
model, for example, one can show that a very small PCAC
breaking term (like —m0$w in the Lagrangian with m_%110 MeV)
whose magnitude is chosen to correct the defect of the
Goldberger-Treiman relation, can yield a subtraction con-
stant of -110 MeV in the f-term which is much larger than
the contribution of the o-pole. For the divergence 3D, on
the other hand, the coupling with ¢ is so large that bet-

ween nucleons m, can be completely neglected.

VI. THE DIMENSIONAL PROPERTIES OF THE
HAMILTONIAN DENSITY eoo(x)

Until now we have investigated the consequences of
broken scale invariance as they follow from the assumption
of certain fields having definite dimensions. We have not,
as yet, assumed anything about the detailed mechanism of
scale breaking except that 3D should be dominated by a
single c-meson. In this section we shall try to find out
whetherany simple breaking structure in the Hamiltonian
is compatible with experiment.

Consider the Hamiltonian density of the world eoo(x).
If it had a dimension four, the action would be invariant
under dilatation and 3D would vanish. In this case,
consideration of elastic matrix elements of Eq. (2.8) teache;s
us that all particles have to be massless+.

Since the real world is massive, there is at least one
term of dimension different from 4 which breaks the scale
symmetry of eoo(x). Is there any connection of this symme-

try breaker with the chiral breaking term? If we accept

+ . .

Excluding a zero-mass pole in Dy for physical reasons. We
shall discuss the problem associated with a Goldstone way
of breaking scale symmetry in Sects. VII and VIII.
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the standard ideas about SU(2)xSU(2) breaking in eoo' then

eoo can be split in an SU(2)xSU(2) conserving term 300 and

a local scalar operator ¥{x) belonging to a (% %) re-
presentation of SU(2), i.e.

[o.", 00" 2(x) 11 = E(x) . (6.1)

But then one can show that this field ¥(x) is identical
with the commutator term 1 (x) introduced in Eg. (4.18).
To see this one uses the equation of motion

i[QS‘HIH] = i[anleax %’(X)] = _ésﬂ' = -JdaxaAn (6.2)

and commutes with one more -iQ5“:
[63X[Qsﬂ,[Q5n,§(X)]] = Jd3xz(x) . (6.3)
From the (% %) assumption (6.1) one obtains

Jd3x(E(x)—z(x)) =0 . (6.4)

If the integrand could be shown to be Lorentz invariant,

we would have from a theorem [29] in field theory:

¥(x) = z(x) . (6.5)

Now %(x) is a scalar by assumption. That f(x) is also a
scalar can only be seen after a little work if we make the

very mild assumption that the commutator [aﬁ%x),aA”(y)]X —y
o}
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. +
vanishes (see App.).
As a consequence, 800 can be written as

u
eoo(x} = eoo(x) + I(x) . {(6.6)

If we assume 3A to have a definite dimension d+$4, then the
term I(x) has the same dimension and is necessarily one
of the breakers of scale invariance. Are there any more?
If the chiral structure is supposed to extend also to the
group SU(3)xSU(3)then this is certainly true.

It has been proposed that there exists a whole set
of 18 local scalar and pseudoscalar operators u, and Va

(a=0,...,8) transforming according to the (3,3)x(3,3) re-

presentation of SU(3)xSU(3) (i=l,...,8) [30]
[Rg" (x,),u®(x)] =-1 a*PC vC(x)
[o;t (x ), vP ()] = 1 atPC® uC(x) . (6.7)

In terms of these operators, the breaking of SU(3)xSU(3)
symmetry is supposed to be of the form

] (X)) = u = u_ + Cug (6.8)

O0SB (o]

where ¢ is some number. Now 8 (x) can be split into an

O0OSB
SU(2)xSU(2) symmetric term

S = =(1-/7 o) L(u-/7 u (6.9)

)
Y3 V3 8

and the % %) type of term

+Actually we need only the lowest Schwinger term to be absent
This is fulfilled in any Lagrangian model where 3A is equal
to the canonical pion field.
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= W_(c) (/2 u_+uy) . (6.10)

=L (/o) (I
1= 2=(/Z+c) ==(/2 u_+ug) s

Y3 Y3

From our assumption that [ has a definite dimension d and
from the commutators (6.7) it follows that all components
U Vv have the same dimension. We conclude that the whole
term u has a definite dimension d. It is an attractive
hypothesis that there is no other operator breaking scale
symmetry except for the terms S and f of definite dimensions
d breaking chiral SU(3)xSU(3) invariance [29,31].

Let us see the consequences of this hypothesis.
Suppose eoo can be decomposed into a term 6;0 of dimension
four and a term u of dimension d$4 breaking scale symmetry.
For the sake of the argument, let us also suppose that,
in addition, there is a scalar term §{x) present of dimension
d6#4. Our hope is that é can be a trivial c-number term of

d6=°'

As a first consequence of this assumption one ob-
tains the theorem that the divergence is completely

determined

D (x) = (4—d6)6(x) + (4-d)u(x) . (6.11)
The proof uses Eg. (2.8):

ifp(x ), H] = H - Id3x 3D (6.12)
inserting H=fd3x(e:O+6+u) gives on the left hand side

3 *
Jd x{(4+xa)600+(d6+x3)6+(d+x3)u]
(6.13)

= 3 ¥ - - 3
Jd x{eoo+(d6 3)8+(d 3)u]+xoaon Xeoo

Acta Physica Austriaca, Suppl. IX 37
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and on the right hand side

Jdax{[ezo+5+u] -~ aD(x)} . (6.14)

The operator BZO drops out and for the remaining integral
over scalar operators we can again use the theorem of
field theory quoted before+ to show (6.11).

Eg. (6.11) has a simple consequence. Since from Eq.
(2.11) 3D between vacuum states is zero we find [32]

(4-d)<o|s|o>+(4-d)<olulo> = o . (6.15)

Notice that complete absence of any §-term would imply
<o|u|o>=o0. In addition, Eq. (6.11) implies a simple low-

energy theorem for the propagator

~i8, 5.0 (g?) = Idx el9% 5| T (3D (x) 3D (0)) |0> . (6.16)

For this consider the vacuum expectation value

<o|T(Dp(x)aD(o))|o> (6.17)

apply the derivative with respect to xu and use

i[D(xo),BD(o)] = (4-d6)d56+(4-d)du . (6.18)

This yields:

bapyp (@) = (4-d,)d <of8|o>+(4-d)d<o|u]o> (6.19)

TIn going from Eqg. (6.4) to {(6.5).
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or, using (6.15),

bypap (@) = (4-d) (d—d6)<olu|o> . (6.20)

If the propagator A (o) is o-dominated, the left hand

aDaD
side can be expressed as

and is observable.

As a first result we can now conclude that in ad-
dition to u there is necessarily a term & (with d $4),
since otherwise Eq. (6.15) would force <o|u|o>=0 in con-
tradiction with experiment. Taking the existence of ¢ for
granted, the term on the right-hand side is known from
standard chiral low-energy theorems for the amplitude
<o|T(AE(x)8A“(o))|o>. By using the commutators of Eqg. (6.7},
one finds [32]

8t (o) = <o|zii|o> z ai<o|S[o> + bi<o|2|o> (6.21)
where
Y )
0 1 1,2,3
i _Jr+l . i _}r+l s .
a~ =9 Tt i b™ =4 >t » for i =<44,5,6,7 (6.22)
4 1 8
S L° )
and
r = -%c+‘/2 . (6.23)

37*
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These equations imply for S and I:

1 K 1
<o|Slo> = (r+2) (z37 4 (o) - 3= 2" () (6.24)
<olz]o> = A" (o) (6.25)
and for u=S+iI
-2 r+2 K
<o|ujo> = %E? A" (o) + =1 & (o) . (6.26)

Putting (6.26) together with (6.20) we find the result
+
[32]

r+2

K
o (o] . (6.27)

r-2 .7
ABDBD(O) = (4-d)(d-d6)[72; A (o) +

Since A“(qz) and AK(qZ) are usually assumed to be 7 and K
dominated, the expression in square brackets can be re-

written as

r-2 .m r+2 K . _rr—2 2 2 r+2 2 2
[“ff'A (o) + i AT ()] = [—-Z-FfTr m_ + T fK my 1 .

With the standard assumption about the Goldstone
nature of r and K mesons discussed in the introduction,

the parameter r is determined approximately by

m 2
r X et (6.29)

2 2
m -
K mn

TNotice that this result can be written in form of a spectral
function sum rule for the propagators involved, since

A(o) = jﬂiﬂil%li .

~H
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giving (6.28) the form
m 2

Lij 2_ 2 2 2_¢ 2
& [ 3 (3f1T 2fK ) + mK (2fK f1T )] . (6.30)

While the value for f_ is quite well known to be %.095 BeV,
the ratio fK/fTr could be anything between one and 5/4. These

particular two values make (6.30) come out as

2.2 -3 b, =
bR {4_7}10 BeV*; fK/fn = {z} . (6.31)

i

The left hand side, on the other hand, gives with

n, Y] -
g01T1T n 5’ mg \ 700-
m“ -3
-2 % 10x10 ° BeV" .
YZ

In order to obtain agreement with experiment, the factor
in front has to be

=

~n (4.5
(d-da)(4—d) " {2.1

} for {<t . (6.32)

™|
o e

We note that a c-number §-term with d6=o is certainly
compatible with experiment provided d is equal to 1,2, or
3, for which the factor (6.31) takes the values 3, 4, or
3, respectively.

For completeness we would like to mention also the
consequences if one assumes only the validity of the frame-

work of weak PCAC. In this case the parameter r has been
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determined from other considerationsto be [ 3]

We find, instead of (6.32)

(d=d ) (4=d) n A b . (6.33)

£
4.7 K _
3_‘:.} for ?: = |

We see that also in this case the absence of an operator
d=-term is compatible with d=1,2, or 3.

Notice that if we were dealing only with SU(2)=5U(2)
symmetry, we could obtain similar relations by assuming
the energy density to have the form

8, (x] = E;DIH] + 5(x) + L(x) (6.34)

with H;ﬂ, §, and £ having the dimension 4, dﬁ, and d, ra-
spectively. In this case our eguation (6.11) would read

aD = (4-d ) s+(4-d) L (6.35)

and the low-energy theorem (6.27) would become

bapaple) = (4-d) (d-d ) <o| L]o> = Il—d}{d—dﬁlaﬂln] (6.36)
or, saturated with single particles,

ad

= (4= o &g 2
= (d=d) (4 dﬁlf“ Pl (6.37)
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Here the right hand side would be very much too small
compared with mo“/y due to the absence of K-masses.
Physically this means that breaking of scale and
chiral symmetry can never be attributed to the same
source at the level of SU(2)xSU(2), since the cs-mass is
much heavier than the pion mass.
The average meson mass within the pseudoscalar octet
is, on the other hand, comparable with mO such that within
SU(3)xSU(3) the §-term could very well be a c-number.

VII. LAGRANGIAN MODELS FOR SCALE INVARIANCE

A welcome illustration for any theorem on broken
scale invariance derived from Ward identities is provided
by effective Lagrangian models in the tree graph approxi-
mation. We shall not go into the details of proving the
equivalence of both methods [5]. The mechanism will become
transparent when we discuss some specific simple models.

Let us first remark that given any Lagrangian L(¢,

) ¢) as a function of arbitrary fields ¢ and au¢' we can

always define a canonical scale current {36]

D (x) = 7 (x)d ¢(x) + x’ eiv(x) (7.1)

with eiv being the canonical energy mcmentum tensor

esv(x) = (R ex) -9, Lx . (7.2)

After guantization, the charge of this current has the

property of assigning to any dynamically independent

*The field ¢ stands representative for any set of different
fields. The derivative &L/63H¢ is conveniently written as
m,(x), such that np=m is the canonical momentum of ¢(x).
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component of ¢ the definite dimension d via the
commutator:

§¢ (x) = i[D(xo).¢(X)] = (x34d) ¢ (x) . (7.3)

——mm s o ——t o ——a am =

If we form the divergence of Du(X) and use the Euler-

Lagrange equations we find

_ oM v _ - st "
aD(x) = 3 (nud¢+x nuav¢ XUL) 6¢d¢+n (d+l)3 $—9 (x L)
“(SLa Lo+m 3% ¢) SLao+SE (a+1) M e-4L . (7.4)
oo 8077 5oty

Obviously, the first two terms do nothing but indicate the
dimension contained in any expression involving the fields
¢ and au¢. If L has the form

L =)L (7.5)
n

where Ln are pieces of dimension dn' then (7.4) yields:

= E(dn—4)Ln . (7.6)

If all terms in L have dimension 4, the dilatation current
is conserved.

It is obvious that the current D explicitly depends
on x . In fact, the derivative a w1th respect to the ex-

plicit dependence on xu is

c
vDu(X) = Buv(x) . (7.7)

n
d
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The canonical expression (7.1) for Du(x) has a form
completely analogous to the non-local cancnical current
of the total angular momentum

TR cu o _ cu
MY i B, o4k, 0 x 87, (7.8)

where ZAK are the Lorentz generators in the spin space of

the fields ¢*. The angular momenta

C
M, = Jd3x M“(x) (7.9)

generate Lorentz transformations via the commutation rule

i[MAK'¢(X)] = (XA BK - % BA - iZXK)¢(x) . {(7.10)

At this point one may recall that Belinfante [37] has con-
structed a modified energy momentum tensor eﬁv which has
the advantage of being symmetric and of allowing to bring
Eg. (7.8) to the more aesthetic form

W Bu _ Bp
Mo = X, 877 e S (7.11)
: . . ++
This tensor is defined by
* s
They commute like: 1
. _ e O
1[2)“(,2)“_] - g)\)\EKT' g = 1-1)
i.e. in the same way as the Lorentz generators MAK'
For Dirac particles EAK = %[YX'YK]' for vector mesons

(ZAK) af =1 (gAugKB_gABgKa)

++Using the equations of motion one can bring (7.12) to the
manifestly symmetric form

B _1,6.c o i.p

epv = Z(Buv+9vu) + 23 [ﬂuzov¢+ﬂvzpu¢] .
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8B = 9S + 3° x (7.12)
MV Hv pUV
where
i
X = - = T -1 I -7 £ .
JTRY 2[“p uv? "y pv¢ Ty pu¢] (7.13)

is antisymmetric in p and p. For this reason, 921 and egi
differ only by a divergence and possess the same spatial

integrals

- 3 B - 3 C
Pu Jd X eou [d X eop . (7.14)

It is natural to ask whether it is possible to find an
energy momentum tensor which allows us to write not only
the generators of the Lorentz group as (7.11), but also

the dilatation current in the simple form

D =x 8 . (7.15)

For this one rewrites (7.1} in the form

= oV B P_.P A_.v,B P A
Du X euv + nud¢+xle ) (Xpqu =x euv+vu 3 (xpukx Yy {7.16)
where
_ . v
Vu(x) = nu(x)d¢(x) iw (X)Z“v¢(X) (7.17)

+For all the details of this calculation see Ref. 36.
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Suppose now that the field virial vu can be written as the

. v
divergence of some tensor MV (x):

vu(x) = 3 cuu(x) . (7.18)

This is the case for a large class of Lagrangians. For
example, if a Lagrangian containing scalar, spin 1/2 and

vector particles with no derivative couplings, spinors

and vectors have o"’=o0 while scalar particles satisfy
, _ l o *
(7.18) with Oy T ngv¢ .

1

+ . _
Let Oy be the symmetric part of Oy (OUV:2(0 )) .

+
wv v
Then one may define a new improved energy momentum tensor

- 1 a2 40
8 =9 +35 3" 3 XAppv (7.19)

where

*Proof: The different contributions to vu are for scalars:

Hence:
1l v 2
= = —= 3 .
| v, (8u¢)¢ > (guv¢ )
Spinors:
n =iyy ,d = 3,1 =3 ]
" ’ 2! nv ALy IYv .
Hence:
_ 3. iz v :
v, = 3iv v, v+ FY oy [Yu:Yv]w .
Vectors:
"u = _Fuv' d=1, (Zuu)AK=i(guAgvK_gquvA) :
Hence:
v = -F ¢'+i PN (z ) 0" = o .

H TRV, uv’ Ak
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+
kauv - glp qu - gku Opv - gAv oup + guv OAp
1 + 1 +
= 39,,9,, ° KK +39,,9,, ° KK . (7.20)

It can easily be checked that euv can be used instead of
eﬁv to construct the whole Poincaré algebra Pu and MAK'
None of the space integrals are influenced by the additiocnal
tem in (7.19)7

This energy momentum tensor has indeed the desired
property of allowing for Du the representation (7.15).
By inserting euv in the expression (7.16) for the

dilatation charge cne finds

x*y . (7.21)

D =x"8 - 1 p(x xV)-3Y0 =3P (X
u IR puv TRY puUA

But none of the terms on the right hand side contributes
to the dilatation charge+. Therefore one can use (7.15) as
a new dilatation current.

The advantage of this energy momentum tensor is that

the divergence of the scale current becomes

u _ u - Ay
3 D“ = Gu (x) = 8 (x) (7.22)

such that the trace eu”signalizes directly whether a theory
is scale invariant or not.

Also theorems like (2.1ll) come out naturally in this
case. From conservation of euu it follows that for a state
at rest the so-called self stresses all vanish [38]

We exclude the unphysical case that Xipuv contains a scalar
pole of mass zero. In such a case surface terms could not
be neglected in partial integrations and sd3xe,, (x) would
not give the energy momentum operator P,=/d xégu(x)



579

<gale,, (o) [pa> = o; i=1, 2,3 . (7.23)

Therefore the trace has necessarily the same elastic

matrix elements as Enn hetween states at rest

gelo, e = <Ralogoleer = Jealoyylger = 22w, . (7.20

In addition ocne can see more transparently how the Gold-
stone mechanism of scale symmetry breaking operates.
Consider for example By for a scalar particle =:

i

<nip*)|e  |n(p)> = J£, 1 F (q®) + (g9, g’-q,q )F,(q®) (7.25)

whers

I = (p'HR) i S i PR
The mass normalization

ﬂI{Q]|Bnﬂ|WIE]* = 22 (7.26)

forces

Flinl =1. (7.27)
The trace of (7.25) gives

anipile *ln(p)> = (4u2-g2)F, (g?) +3q°F, (q?) (7.28)

verifying theorem (2.11) at gi=o.
Supposge Buu is equal to zero.
Then
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2 o2
F,(q2) = - 2L F (q?) . (7.29)
6q2

This equation suggests that we can have a scale invariant
world with massive particles if there is a pole in F2(q2)
at g?=o0. This pole is usually ascribed to a Goldstone
particle of mass zero. However, for scale invariance a
somewhat delicate problem arises. By going back to (7.25)
we notice that euv has several diseases, due to the fact
that the matrix elements

<n(g')|6uv!w(g)>

are not uniquely defined when right and left hand momenta
go to zero. In particular all self-stresses do not vanish
any more. For example, if El and P approach zero along

the z-direction, we find that the energy density does not

show any more the value 21?2 between states at rest but

cng e lnig)> = Ju2 . (7.30)

Second, among the self-stresses [38], only <n(g)|e33|w(g)>
vanishes as follows also from the original proof of Jauch
and Rohrlich® [38].

For the matrix elements <m(Q)|61;[n(Q)>, however, we find

instead - %pz which is necessary“to achieve
' H =
<n(p')[8 "|n(p)> = o .
A H W

These diseases of the "improved" energy mamentum tensor are

not unexpected. We noticed before that euv can be shown to

+ .
Based on the conservation of euvl
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produce the correct energy momentum operator Pu only if
the surface terms when partially integrating the second
term in (7.19) can be neglected. This, however, is
impossible due to the long-range correlations caused by
a pole of mass zero in the matrix elements+.

We mention this point since people have repeatedly
argued that there are problems with a spontaneous break-
down of scale symmetry++. Any argument involving 6=0 uses
the diseased "improved" energy momentum tensor and must be
discarded. Other arguments will be mentioned when models
are at our disposition to illustrate their defects.

As we said before, we shall always, for physical
reasons, assume some scale breaking to be present moving
the pole at g?=o0 to same nonzero q2=m02. We shall call a
scalar particle in a broken scale invariant world a Gold-
stone particle of scale breaking, or a dilaton if it
appears as a dominant pole in the same form factor that

would need a massless pole for 6=o0.

VIII. SCALE PROPERTIES OF THE LINEAR o¢-MODEL

This model was constructed a long time ago for the pur-

pose of exhibiting a set of vector and axial vector currents
commuting like SU(2)xSU(2) and having the divergence 3A
dominated by a single pion. The Lagrangian of this model
contains a nucleon field ¢(x) and scalar and pseudoscalar
fields o(x) and y(x}:

*Example: Let <p'|0(x) |p> have a pole at g?=o0. Then
qQ; | q;

Jd3x<p' [3,0(x) |p>c=iId 3x—5e 3= (2r) 3263 (q) $o.
q q "

++The author likes to thank J. Katz for bringing these
arguments to his attention. See also Ref. [39].
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- + - . 1 '
L= %wlYuauw_gw(U'lYSQ‘{)w + 5[(3uc)2+(3u£)2]

u02 A 242 2
- —-2-—(024-,1\1;2) + -Z(cz+,1{ ) +f“p c=C . (8.1)

Here ¢ is a constant which is in general necessary to
make the vacuum expectation value of L vanish*'.
Except for the term f“uzc, this Lagrangian is in-

variant under isospin transformations

8o = O, Gg = axg
4 - -k (8.2)

6y = -ig il v = v 3 ¢ i
and axial transformations
So =g, 8= o
_ _ 1 (8.3)
6 = —ig vg5 ¥, S = =¥ 5vg g 1
generated by the vector and axial vector currents

W - 6L _ -wm % B
X = 53 o = dJY 5“""7{"3 :Q, (8.4)

u

u SL = M 4 +;

A" = — =¥ ¥y yg ¥ty 3" o . (8.5)
68ua

+ .
The parameter u means the numerical value of the pion
mass.

+
TIn order to make <o|eoo(x)|o>=o.
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The term fnu2o breaks axial symmetry and gives rise to
the PCAC relation

(=3
-

BQ(X) = = f“uzﬂ(X) (8.6)

d
Q

which shows that f1T is the pion decay constant (%.095 BeV).
Due to the occurrence of the terms f“uzo and
%(02+n2)2, the potential minimum for the o-field will
not be at zero but at a value o determined by

3 . 2
o fvu . (8.7)

As a consequence, the degeneracy between ¢ and r-masses is
split. From the terms 72/2 and ¢2/2 in L one finds

2 = 2 - 2
m_ Mo Ao, (8.8)

2 - 2 _ 2
m Mo 3Aoo (8.9)

and the o-nucleon interaction gives rise to a nucleon mass
term -myy with

m=gs_ . (8.10)

In the absence of the symmetry breaking, the nucleons

would be massless. The constant c is found to be

2 G 2

= - Q9 2 LAy 2, = -9 (0 2 g 2 2
c 29 + 1% +fﬂu o 8 (m0 Smn )+fﬂu g, - (8.1})

o]

Combining (8.7) and (8.8) and requiring mﬂ2=u2, we determine
the potential minimum

Aeta Physica Austriaca, Suppl. IX 38
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o = f_ . (8.12)

Quantization of the Lagrangian will yield g, as the vacuum
expectation value of the field ¢. It is therefore con-

venient to introduce a new field

g' = g-¢ (8.13)

which oscillates around zero.
The most important coupling constants are found by

looking at the corresponding vertices+

-~ - = = l = T
Iown T “9own T 9 T E (Loyn = 9.an?¥i vgivp) (8.14)
m, 2 m,
Jomn = 7 E;(l— Mg ) Comn = Yonn 207 (8.15)
- = L (8.16)
Y900 = £ " m 2 (Lo © Y5005 39 ) . .

Numerically, the first relation++

(=13.5) = X 15.)

9NN (=9, NN

is borne out by the analyses of nN backward-scattering [11].

The g coupling of the model is

agnmmw

= J No=7.4

which is too large by a factor of about V2.

*Recall that gnNN=m/fn is the model's version of the Gold-

berger-Treiman relation gﬂNN=mgA/fﬂ.

++We shall choose the sign of = S to be negative, as in
the linear c-model. Then Eq. (3.4) determines guNN%—15.
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We can introduce dilatations in the model by means of the

to be 3/2, 1, 1. With this choice, the divergence 3D

becomes

aD(x) = u02(02+ﬂ2) - 3fﬂu20+4c . (8.17)

This agrees with ouy general theorem (6.11), since due to
H
(8.2) the terms —%— (02+ﬂ2),—f“u20, and ¢ are scalar
symmetry breakers of dimensions 2, 1 and zero, respectively.
In terms of ¢' we find
= 2 12 2 - 2 .1
3D (x) Mo (o +1 ) f“mo ' . (8.18)

We can now easily calculate any matrix elements of 3D in

the tree graph approximation. For example:

chN m 2
<N(p') |eD|N(p)> = -f m 2 L= = n—T— (8.19)
m0 e | m0 -q
2
g q
1 - 2 _ 2 ~Z40mm & _ 2 -
<n{p") | D] n (p) > 2u 2-f m m_7-q 2u?-fm g gt
o
1 2 2 3g0‘00m0 2 392
<o(p')|oD|o(p)> = 2p 2-fm 2 ———— = 2m _“-f m g
O m g 2 2 g m 0-0G0 2 2
m_*-q m_“-q
(8.21)

These matrix elements satisfy at g?=o the
fundamental low energy theorem (2.11).

The SU(2)xSU(2) breaking term —z=f“uzc and the diver-
gence of the axial current have the dimension one. There-
fore our equation (4.32) should be true. Indeed, the term

linear in o' in (8.18) gives us

38*
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m03 2 mO

—T = —f‘"mo or Yy = - _f—_; (_8.22)
such that (4.32) for d=1

2

Fypy = V(1™ ﬁ"i‘g) (8.23)

leads to the correct onn coupling.
Further, the matrix element (8.20) is once sub-

tracted taking at g?== the value
<t(p') [3D|7(P) >0, = 2u,% = 3u? - m 2 (8.24)

which agrees with (4.33) for d=1.

Notice that in the model we have exactly the situation
which was the basis of our assumptions of Section V. While
3D is once subtracted between pions, the symmetry breaker
£ is always o-pole dominated. For this reason our theorems
(5.1) - (5.3) about the size of the I-term are necessarily
correct. The 3DNN vertex (8.19) is unsubtracted and there-
fore the coupling gONN=—m/fTr agrees with the general re-
sult (3.13) if one uses the model's value for y (8.22).

From (8.21) we suspect that the 3D3D3D vertex will be
subjected to a similar theorem as (4.34). This can indeed
be verified by means of Ward identities. Since this coupling
is most academical, though, we shall not consider it any
further.

2 Notice that, due to appearance of the operator
—%—(02+£2) of dimension two, the symmetry limit I-o causes
only the pion to have zero mass {becoming the Goldstone
boson of spontaneous breakdown of chiral symmetry). The
o-mass is still finite. If we want both the chiral and



587

scale symmetry breaking to be caused by the same term Z*,
we have to set u02=o and f£ind

m 2 = 3m 2 (8.25)
o m

i.e. the ¢g-mass drops to about the size of the pion mass.
This is clearly incompatible with experiment.

The linear o-model can easily be modified to in-
clude the case of the divergence of the axial current
having an arbitrary dimension d. For this we simply take

as a symmetry breaker

d-1
Lo = =% = £ a2 u2a(a24g2) 2 (8.26)
such that
da-1
B = £ og u? glo24g?) P= £ g+ . (8.27)
The value o is now determined from
uozoo - Aqf = fﬂuzd (8.28)

while the meson mass formulas become

f
m 2= yu? - 2 - =" u2(d-1) (8.29)
Q
£
mc2 = u02 - 30,2 - ;ﬂ p2(d-1)d . (8.30)
O

Inserting (8.29) in (8.28) gives

*up to the trivial c-number term.
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H

2 - T2
moSo=— ks . (8.31)

If we want m“2=u2 it follows that again o_=f .
It is obvious that the couplings 7NN and oNN are just the
same as before. For onm and ocoo we now obtain additional

contribution from I:

) zd_'_l
' 20 o'+o'é+y 2
L = f p2g (1+ L) (1+ —2 =)
Tr (@] OO 02
o
_ 2 o' _1, 4 g'? d-1
= fﬂu co{l+d0 +(d l)2 7 + 5= T3 (8.32)
o} o o
_ o o'n? _ (8+1) (d-3), o'3
+ (d-1) (d 2)20 5 +(d 1)[1+ 3 ]20 7 + eeo}
o o
giving:
1
- 2 - - —— 2
Lounﬂ = (AOO + fﬂu co(d 1) (d-2) 2003)0‘5 (8.33)
Combining this with (8.29) and (8.30) we find
m 2 m 2
L = - 3% (1+(d-2) —5)o'p? (8.34)
clmm 2fTT m0 4 -
and therefore
m, mﬂz
Iomm — §;(l+(d-2) EZT) . (8.35)

This verifies our general result (4.33). The direct coupling
of 9D to o' is obviously also in this case
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|

(8.36)

=
|
1

H

This can be seen as well by expanding

aD

)

ug 2 (o2+g2) + (4-d) 1+4c

(2u 2-(4-Q)du2) £ o' + u 2 (o' 2+g?) (8.37)

+

2
(d-4) (d-1) 5-(do'?+g?)

The factor of ¢' is indeed equal to m03/y as it should be.
In this form we can also see the subtraction constant

appearing in the 3Dgy vertex. The term «72 shows

<r(p') [2D|m(p) [ 22,212+ (d-4) (d-D)u? = - m F+(4-d)u? .

{8.38)
Also here, the term [ is dominated by o' with

the normalization Z=-du2fﬂo' which agrees with the general
result (5.1) if we insert there y from (8.36).

Notice that we can combine Egs. (8.29) - (8.31) and
bring the mass formula for mc2 to the form

2 - 2_ 2
m_ (4-d)du 2u0 . (8.39)

If u02=o, our Lagrangian has only one c—-number é§-term,
apart from -3, breaking scale symmetry, and our formula
(6.37) should hold. Indeed, if we insert Y=-mo/fw and d
(6.37) coincides exactly with (8.39).

If, in addition to u02=o, also d=4, the o-particle

§ O

becomes massless. Since the pion mass is still pfo, the
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c—-particle is apparently just the Goldstone particle of
a spontaneously broken scale symmetry. To see this consider

the energy momentum tensor euv of (7.15):

_ oB 1 - 24,2
0,y = 8, * E(09, 70 2 ) (o2+g?) . (8.40)

Between pions, only the terms

02

1
ew = au T Bv T - gu\)(-i(au Jl)z -5 £2)

(8.41)
1 - 2
+ G(Dguv auav)(g +20°0') + ...

contribute. Then we obtain for the form factors Fl(qz),
Fz(q2), defined in (7.25):

2y =
Fl(q ) 1
(8.42)
f g
1 T ConmM O
2y = 2
Fala®) = 5+ =5 —
q
But
moz u2
Iynaly = — —g-11+(d-2) 7] (8.43)
i1 [8)
becomes for d=4, m02=o
- - 2
ggﬂﬂmo 2u /fn {(8.44)
such that
2
F,(g?) = % - % é? (8.45)



591

just as is necessary to ensure the tracelessness (see
(7.29)).

It is interesting to see what happens to the matrix
elements of 3D if a small scale breaker u02=—52/2 is
present in the Lagrangian. Then (8.39) gives m02=52 and

the matrix element of 3D between pions becomes

2
<n(§')|3D|n(p)> = 2u2 + 2u2 -E-i-ga—-z- .

The result is zero for any finite g? except for g2?=o where
<H(E)|BD|n(p)>=2u2. Thus, close to the scale invariant
limit, there is a strong singularity at small gq? making
3D run extremely fast from 2u? to zero.

We can use this model also to illustrate the defects
of some of the "proofs" claiming to show the impossibility
of a Goldstone symmetry+.

One considers the commutator

[D{o) ,H] = ~iH (8.46)
to demonstrate that D{o) |o> has zero energy

H D(o)|o> = o (8.47)
such that either D(o) |o>=0 (i.e. exact symmetry) or the
vacuum is degenerate. In the latter case one uses the

commutator of H with the conformal transformation Ko:

[Ko(o),H] = -2iD (o) (8.48)

toc obtain

+See the first two of Refs. 39.
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<o|[KO(oLH]D(o)|o> = -2i<o|D(0o)D(0) o> = o . (8.49)

This shows that the state D (o) |o> has zero norm from which
people conclude D (o) |o>=0, i.e. exact symmetry.

However, this type of state of norm zero is nothing
bad in a field theory. Consider our model for d=4, u02=o.
Then D{o) |o> is just a state of the Goldstone boson o of
momentum zero:

£ +
D(o)|o> = i — a_ (g)|o> . (8.50)

This is quite a necessary state of affairs in order to

make the field o' (o) transform according to

ifD(o),0'(0)] = c'(o)+cO = 0'(0)+fTr (8.51)

or

i<o|[D(0),0c'(0)1]o> = £ . (8.52)

+ +
Even though the state a_ (Q)|o> has zero norm , the pro-
duct with a field as singular as

' _ q3 ~iqgx
o'(x) = J 5&;7%?73 (e ac(%) + h.c.) (8.53)
gives
; fn { dag + fn
colotardto)for = 5 [ 55 Tamys ola (@a; R)fo> = 5 .

(8.54)

; + . .
Since a (Q)|o> is an isolated state of norm zero

+ , .
Remember, our boson normalization amounts to

fa, (a"),a " (@)] = 2q,(2m) 363 (a'-q) .
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there is no problem with the axioms of quantum mechanics:
Any wave packet formed of a0+(%)|o> will have a non-
vanishing norm.

Finally, we would like to use this o-model to
demonstrate the danger of deriving conclusions concerning
the size of the I-term as long as we do not have specific
ideas about PCAC breaking (see end of Sect. V).

Suppose we want to include the effect of the higher
singularities in the mass dispersion relation for 3A
correcting the Goldberger-Treiman relation (4.14). This
can be done most simply by adding to the Lagrangian a very
small PCAC breaking term

Lpcac break = ~ Mo vy (x) . (8.55)

This term will enter into 3A as+

=<3 |
—

A (x) =

m 4"

£ w2 g(x) +m ¥ ivyg g ¥ (8.56)

=]
Q

such that between nucleons

gTrNN

<N(p')[3A(0) [N(p)> = (£ u? tm )b iy g v (8.57)

4y
uz-qz

and the Goldberger-Treiman relation becomes

mg, = fTT 9wy T Mo - (8.58)

From the experiment numbers (see (4.14)) we know that m,
should be chosen ¥-120 MeV. This gives only a 10% contri-
bution to the huge pion pole term at g?=o.

+Since (E¢:—$iy51w) transforms in the same way as (o,1)
(see (8.2) and’{8.3)).
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For the r-term, on the other hand, the situation is quite
different. The total symmetry breaker is

- - 2 ' T
L = fTr u¢ do' + m, ¥(x)y(x) (8.59)

yielding between nucleons

g
N(p') |z(o) |N(p)> = -f_ u2 d DN _ 4 (8 .60)

m 2 2 o}
m —
g 9

Now even though 9NN is quite large (¥15) and there is the
possibility that the factor d could be 3, the large
denominator mo?at q2=o makes the first, unsubtracted,
contribution never outweigh the term mg (the largest
estimate is f_ u2/m02.3chN%160 MeV) .

Thus we see that in spite of PCAC breaking effects
being small in matrix elements with a close lying pion
pole, it might well become dominant when only the high o-
pcle is present.

It is curious to note that in this model the on-shell

value considered by Cheng and Dashen as the I-term

gnNN
m

<N(p) | 2|N(p) >y = £ 2[A(0,2u2,u2,u2) - ] (8.61)

is, in fact, given by the unsubtracted part of (8.59).

If we abstract what are possibly the model independent
features of this picture of PCAC breaking we conclude that
the on-shell determination of I by means of (8.61) should
follow the general formulas (5.2) - (5.4) while the true
off-shell value (5.5) as appearing in the low-energy theorem
and evaluated via the Fubini-Furlan method could quite
100 MeV. As we see, this conclusion is roughly borneout by

experiment.
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Certainly one can introduce also PCAC breaking by
using a second chiral pair of fields d and 7 of higher
masses. Due to the additional parameters one would then be
able to fit the Goldberger-Treiman relation without
determining the subtraction term in (8.60) to be equal
to mo=—120 MeV. All we wanted to demonstrate with this
model is the general expectation that PCAC breaking should
have dramatic effects on such tiny expressions as
<N|2|N>%25 MeV. As always, people should be careful in not
overstretching simple approximative ideas into regions

where common sense casts strong doubts on their validity.

IX. CONCLUSION

By investigating the low-energy properties of some
hadron vertices we have been able to obtain some evidence
for an approximate scale invariance of the world. The scale
properties of the Hamiltonian density become most simple
if one assumes the symmetry breaking to be mainly due to
an almost Goldstone boson o. .

Unfortunately, the mass of this boson is rather high.
Therefore the assumption of o daminance of the divergence
of the dilatation current (PCDC) should be expected to be
a rather crude approximation for vertices where the coupling
of o is not very large. Indeed, by using additional in-
formation from the chiral properties of the world, -we can
show a subtraction constant to occur, for example, in the
aDrm vertex. ,

Thus the approximation of PCDC is certainly much less
accurate than good old PCAC.

Since scale transformations form a group with a

rather poor structure, there is not much information coming
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from commutation rules of the scale currents with fields.
The main result is (see Sect. IV) that the dimension of

a field tells us how fast a vertex varies when going off
shell in this particular field. For the pion we showed
the canconical dimension d=1 to produce the smoothest off-
mass shell continuation.

The reader will have noticed that we have left out
unitarity completely in our discussion. Now one certainly
may argue that the large width of the o resconance regquires
unitarizing our vertices if one wants to have any better

than 40% accuracy+. However, we do not think that the in-

trinsic crudity of the approximation of PCDC warrants such

an elaborate correction procedure. All the framework of
Ward identities and PCDC should be expected to giveus is
some rough ideas on the order of magnitude of the o
couplings. With this reservation in mind we think that the
whole scheme provides some interesting addition to the
framework of current algebra.

We should also like to mention here that there are,
in general, problems associated with the covariantization
of Ward identities as soon as we form derivatives with
respect to more than one current (for example in the
T(DuAAAK) vertex). In the absence of a definite model one
does not have a definite prescription how to proceed. For
this reason we have not dealt with such cases in these
lectures. Instead, we have taken directly some effective
Lagrangians to obtain predictions.

The reader should be aware of the model dependence
of all such results. For a complete study of this problem
via Ward identities we suggest a study of Ref. [43].

*The author is indebted to B. Renner for many discussions
consequences of a unitarization of the Ward Identities.
(See also B. Renner and L. P. Staunton, DESY preprint.)

on
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Finally, the whole idea that scale invariance is
broken in some soft way may be wrong altcgether. If Regge
trajectories really rise up to infinity this is certainly
the case. Then the highly massive and energetic photon
never sees pointlike partons in deep-inelastic scattering
[8]. There is no contradiction with the phenomena of
scaling if only all form factors drop off the same way.

As usual, we shall have to wait and see what will

survive of all these hypotheses.
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APPENDIX: Some Theorems

We give here a brief derivation+ [51] of the

commutator (4.16)

ifab(x}, QS(XOH = (4-d)3A(x) (A.1)
needed in deriving the Ward identity (4.19). The assumptions
are:

1) In the commutator of the densities

113D (0,x) ,A,(0,y)] = aly) 63 () +8" (y) 2,63 (x-y)

N (A.2)
+ ] of1---kn ()35 «+.3, 83 (x-y)
n=2 1 n

Tour derivation proceeds under somewhat weaker assumptions
than that of Ref. [40]. We do not require Aj(x) and
31Aj (x) to have a definite dimension.
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.I.k
the Schwinger terms o 1 n(y) all vanish.

2) The dimension of Ao is definite, such that current

algebra enforces

i[D(xO),AO(x)] = (3+x3)Ao(x) . (A.3)

3) The dimension of %A is d.

The proof proceeds in two steps.

First we integrate (A.2) over d3x determining

in3x[aD(o,§),Ao(o)] = a(0) . (A.4)

Commuting (2.8)

iId3an(o,§) = iH+[D (o) ,H] (A.5)

with Ao(o) we obtain:

a(o) = 3 A (o) + [[D(o),H],A (0)]

3 Ao (0) + i[H,i[D(0) ,A_(0)11-i[D (o) ,ilHA (0)]]

. (o]
4avo(o) - i[D (o) ,3 Ao(o)]

43_A_(0) - d 3A + i[D (o), aiAi(o)] ) (B.6)

Now from the basic property (2.4) of D(xo), the local
operator Ai(x) fulfills
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i[D(xo), Ai(x)] = xaAi(x) + A{(x) . (A.7)

i , .
As a conseguence, 9 Ai satisfies

i[D(xO),aiAi(x)] = x3 aiAi(x) + aiAi(x) + aiAi(x) . (a.8)

Such that (A.6) can be rewritten as

a(o) = (4-d)aA(o)—4aiAi(o)+aiAi(o)+aiA£(o) ) (A.9)

As the second step we cbserve that the Schwinger term st

is determined by integrating (A.2)

inax xi[aD(o,é),Ao(o)] = = Si(o) . (A.10)

The left-hand side is evaluated in the following fashion:

One uses the vector property of Du:

i[Moi’Do(x)] = (xoai-xiao)Do(x)—Di(x) (A.11)

to integrate

3D(o,§) . {A.12)

i[Moi,D(o)] = fd3x Xy

Then one commutes this with -iAO(o) to get

S(o) = [[M_;,D(a)], Aj(0)] = -i[Moi,i[D(O),AO]] +

+ ifD(o),i[Moi,Ao]] = -3a,(0) + Al(o) . (A.13)

Acta Physica Austriaca, Suppl [X 39
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Using the results (A.6) and (A.l1l3) and integrating (A.2)
over d3y we finally obtain

x4

103D (0,%), Q°(0)] = afo) - 2,S'(0) = (4=d)2A(o) ,  (A.14)

completing the proof.
Further, we want to show here that the result of the

I-commutator (4.17):

p(x) = 1[Qg(x ), 3A(x)] (A.15)

is always a scalar, if only the commutator

(3)(

[3A(0,x),3A(0,y)] = oi(y)aiﬁ x—y)+aij(y)aiaj6(3)(x-y)+...

. (A.16)
has no lowest Schwinger term ol(y). For a proof

we simply commute

[M_;,Z(0)] = i[M_,,[Q (o) ,3A(0)]]
=-i[3A(0) ,[M_,,Qc () 1] + i[Q(0),(M_,,5A(0)]]

The second term vanishes since 3A is a scalar. In the first

term we can use a relation like (A.12) to get

[M_,,2(0)] = —J(d3x x;[3A(0,%) ,3RA(0)] = 0,(0) = 0 .  (A.17)
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