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1. Introduction

When the avelanche of papers on current algebra came to rest [1], many people’s
philosophy on the SU(3) X SU(3) properties of the world had settled on roughly
the following ideas [2]:

1) The time components of the vector and axial vector currents observed in
electromagnetic and weak interactions form the algebra SU(3) x SU(3).
Under this algebra, a large portion of the energy density @y (») of the world
is invariant.

2) When the divergence of the axial vector current ¢4, (x) appears in any n-point
function, this n-point function is almost zero except for the low mass region?'),
where it is dominated by a pion pole (PCAC).

3) The SU(3) x SU(3) symmetry breaking term in @y (x) is approximately
SU(2) x SU(2) symmetric. However, the vacuum is not. As a consequence

1) Here one refers to the analytic continuation of the n-point function in the momentum
squares g% of the local operator 24 ,(x).
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the pion appears as an almost massless Goldstone boson. This mechanism
generates the masses of the baryons and explains the smallness of higher mass

contributions to ¢4, (x).

While the first point has become the basic hypothesis of much of the recent work
on symmetries, points 2) and 3) are somewhat controversial. The discussion was
basically started up by some unexplained experimental data on K;; decay. Indeed,
some quite plausible theoretical arguments can be found to raise doubts about the
presence of such a universal pion pole dominance as stated in 2). The alternative
statements which were proposed to replace 2) and 3) are [3]:

2’} Only the single particle matrix elements of ¢4, are pion pole dominated. For
arbitrary n-point function the dominance depends on the detailed dynamics
(Weak PCAC).

3’) The SU(3) x SU(3) symmetry breaking term in G (x) is approximately
SU(3) invariant. This explains the rather small SU(3) mass splittings of all
particle multiplets except for the pseudoscalar octet.

The principal weakness of this scheme is that the small mass of the pion, and pion
dominance of single particle matrix elements of & 4, remain unexplained dynamical
accidents. The practical weakness consists in its smaller predictive power. Our
point of view is that the first scheme apperas up to now to be sufficiently flexible
to accommodate present experimental data and many of those to appear in the
future. We shall therefore keep sticking to the more aesthetical ideas 1)—3) until
they are definitely proven to be wrong. We think, however, that for the sake of
understanding the significance of our assumptions it is worthwile to keep the
other possibility in mind and to compare the results of both schemes whenever we
can.

From the practical point of view, the fashion of current algebra has provided us
with a considerable amount of techniques. These techniques have been developed
in order to exploit the physical consequences of the following type of hypotheses:

1) There exist some currents 74 (x).
2} Their charges @;(x,) = f d3xj®(x) generate some well defined group trans-
formations when applied to certain local fields at equal time

i1[Q (o), ¢ ()] = dg (). (1.1)

3) Their divergences A (x) = @j(x) are local fields dominated by a single meson.

In current algebra itself, assumption 2) was formulated in a stronger form.
Among the other local fields ¢ (x), there had to be necessarily also the currents
j# (x) themselves, and the time components of the currents had to form the Lie
algebra of the group transformations dg. For the general techniques, to be applied
below, this stronger form is not needed, though.

The principal consequence of the first two assumptions consist in the following
statement.

The N -+ 1 point functions

(g3 2y o ) = 01T (7 (@) ¢* (1) -+ ¢¥ (@x))|0) (1.2)
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satisfy the Ward identities
(0T (Y5 @y o aw) = 40 T(A(y) ¢* (1) - ¢ () 0)
+ 0y — ) (O] T (8¢ (1) ¢* (@) -+ 9™ (wy))[0)  (1.3)
+
4 8(y — aw) (01T (" (1) @2 (@s) - g% (ax)) | 0).
The terms on the right hand side can conveniently be re-written as
1Ay 2y - xy) + 6y — xy) dlo(z, -+ xy)
+ ¢ (1.4)
+ oy — xy) Vo (@, - wy).

It one goes to the Fourier transforms
(27)0%(q 4 2'pi) (5 p1 - Px)

~
i(qy + 12 Pm)

= fdy dz, ---daye t(y; xqy, -+, xy) ete. (1.5)

the Ward identity (WI) takes the form
. N
¢Tuld Py pa) = EAUG Py py) ok 20070 (o s Pr - G o pR)- (16)

There are very few cases where the Ward identity can directly be tested by
experiment?). If only the function 7, is unknown, it may be eliminated by going
to the point ¢* = 0%). Here one obtaing the low-energy theorem (LET)

i\T
0 = 34(0; py - py) + D 60 (pg, o5 Pw)- (1.7)
r=1

However, also the amplitude 4 (0; p, -+ py) is usually hard to measure. It is for
this reason, that assumption 3) is introduced. With assumption 3) the value
A(0; p; -~ py) is the off shell continuation of an amplitude involving a physical
meson of mass 4 with the ¢ dependence given by a simple pole term ¢2 — u2.

In many cases, the amplitudes occurring in (1.6) refer to processes which are
hard to perform in any laboratory. For those cases there is another way of obtain-

2) The most famous example is the Ward identity relating the amplitude of two axial vector
currents between nucleon states 7, = i [ dxei'® < N(p)| T (4,2(x)4,%(0))] N(p) > to the
corresponding amplitude of the divergences 73 5, and to the matrix elements of vector current
and I term 2% = §/2 ([Q 2.4%) + (b)) by ¢* g7y, = T3y o0 — if2%°[@" + 9)/2] (N {p)| Vel
N(p) )+ (N(p)| X% |N(p) ). The isospin odd part of this relation is directly measurable in

neutrino and electron scattering on nuclei. Recall Ty, = lim (2% — ¢*) (¥ — ¢/ {212 T34 54-
¢
gt
8) A possible pole at ¢# = 0 can always be eliminated by infinitesimally modifying some
internal masses. For example, the single nucleon pole in the Ward identity?) for z N scattering

disappears upon taking the electromagnetic mass difference into account.

1%
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ing physical consequences from the Ward identity, called the hard-meson technique.
One simply parametrizes the amplitudes in terms of vertex functions and pro-
pagators of particles which one expects to be prominent in the low-energy region.
Then WI and LET provide us with relations among these parameters [4].

This technique has been shown to be completely equivalent to the method of
effective Lagrangians [5]. Here one introduces separate fields for all those particles
whose properties one would like to relate by means of Ward identities. Then one
constructs a Lagrangian involving these fields.

The field transformations d ¢ are introduced and a current j#(x) with the property
(1.1) 1s found following standard Lagrangian methods. The only technical problem
arises in satisfying assumption 3): In order that ¢5(x) is dominated by a single
particle only, the Lagrangian has to be chosen approximately invariant under
d¢. This can be done by standard group theoretic techniques. Then any n-point
functions involving j*(x), calculated via standard Feynman graphs, will satisty
the correct Ward identities (1.6).

While all this technical apparatus was becoming common knowledge among
theoreticians, experimentalists made the important observation that the structure
functions of electron proton scattering scale in the deep inelastic limit [6]. For
large energy » and virtual mass ¢* of the exchanged photon the eross section turned
out to depend only on the ratio & = —¢?/2mv. Thisscaling property was imme-
diately taken as an indication of an approximate scale invariance of the world.
Kinematically, deep inelastic scattering probes the singularity structure of the
product of two currents when their relative distance becomes light-like [7]. Tt
is an attractive hypothesis that the Hamiltonian of the world is possibly scale
invariant with a symmetry breaking of such a soft type that products of local
observables do not notice it at light-like distances. It is worth mentioning that
this is by no means the only explanation for the scaling phenomena. It is easy
to find counter-examples: There are Lagrangian models with a strongly non-soft
scale braking which yield scale invariant structure functions [§]. As usual in such
a situation, one prefers assuming the world to be maximally symmetric and
changes one’s mind only after some clash with experiment.

In these lectures we shall investigate what physical consequences can be derived
from the assumption of an approximate scale invariance of the world by using the
techniques described above. In order to do so we shall introduce a current &, ()
generating certain scale transformations on local fields, whose divergence is
dominated by a single scalar meson called ¢. Ward identities will be derived,
parametrized in terms of particles and relations will be obtained for coupling
constants involving this ¢ meson. Due to the equivalence of this approach to that
of effective Lagrangians [4] we shall illustrate most of our statements by compar-
ing with the situation in some definite Lagrangian models. We shall not talk about
light cone aspects of broken scale invariance which have been discussed in great

detail in the Literature.
II. The Dilatation Currents and its Basic Properties
A dilatation is a transformation in space time
Z, — €0, (2.1)

Accordingly, we shall call any representation of (2.1) in the physical Hilbert space
a dilatation by e+, if it transforms every local observable O (z) into another local
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observable O, (x) evaluated at e*x:
O(x) = O, (e*x). (2.2)

A vector &, (x)?) is called a dilatation current, if its charge D(x,) = f Bz Dy (x)
is the infinitesimal generator of all such dilatations:

eil@e O (x) e-P@) = O, (e*x). (2.3)
By taking « infinitesimal, one finds the commutator
1[D (o), O ()] = 260(x) + 0" (x) (2.4)

where O’ (z) is again alocal field (= 8/0x O, () |.=). If O'(x) is a multiple of
Ox):
O (x) =dO0(x), (2.5)

then O (z) is said to have a definite dimension d.

From (2.4) we can immediately see animportant property of the dilatation charge:
The derivative with respect to the explicit dependence on x,%), 8, D (), satisfies
the commutator:

i[8,D (&), O (@)] = 2,0 (). (2.6)
Since this is supposed to hold for all local observables of the theory, we conclude
8,D (%) = P,. (2.7)

From the equation of motion we therefore find®)
i[D(x)H] = H — % D(wy) = H — [ d®z 22 (x) (2.8)
¢[D(xo) Pi] = P;. (2.9)

These equations allow us to prove an important low-energy theorem for diagonal
matrix elements of 02 (x) without using the general formalism described above?).

*) Notice that we want %, (z) to satisfy vector commutationrules with the Lorentz generators
M,,:
ur
""[-M,uv 2)(x)] = (x,uav — & a,u) @l () + GJui @,(CL’) — G 9Ju(m)

even though it will turn out to depend explicitly on z, 1. e.
8#. 91 (LL') %= 'L[P,u ‘@l (x)]'

5) Recall that the derivative with respect to the explicit dependence on x, of an operator A4 ()

is that part of the total derivative 9,4 (z) noi obtained by commuting with P,: 5”A (x) =
= 9,4 (x) — i[P, A (x)]. A local operator O (x) satisties 8, 0 (z) = ¢[ P, O ()] and has not explicit
dependence on z,,.

%) In many Lagrangian theories one can define a local energy momentum tensor @,, (x) such
that dilatations are generated by Z,(x) = 2'@,, (). In these theories, (2.8) is trivially satis-
tied since 8, 2, (%)) = @,,. In addition one has 8 & (z) = O(z) (see Sect. VII). Our derivation
is more general, though.

) This low-energy theorem could certainly be proved by the methods leading to (1.7). For this
particular case of elastic matrix elements we prefer, however, this more direct proof.
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If |pa) denotes any state of total momentum p, with all tother quantum numbers
collected in the index «, which is normalized by?®)

(P’ o' [po) = 2py(27)3 33(p” — P) dua IV, (2.10)
then
(px|69 pa) = 2p2N,. (2.11)

For a proof we simply take (2.8) between two diffent states and find
i(po — Po') (P& | Do) [pox) = 2pg? (27)® 6*(p” — Pp) 6o NV,
— 2aP & (p’ —p) (P& 82 |px). (2.12)

In this equation, momentum conservation makes sure that p’ and p are close to
each other. Therefore we can expand

|

T (p* —p™) (2.13)

Po — Do &

and the left hand side of (2.12) can be rewritten as

i
—(p'&' | [D, P?]|p«). 2.14
T (Pl [ 1lp (2.14)

But using eqn. (2.9) we have
e[D (%), P?] = 2P? (2.15)

such that (2.14) becomes
2p2(27)* 3 (p" — P) dera V-

Inserting this back into (2.12) we obtain indeed (2.11).
This proof is only valid if the dilatation current is not able to produce scalar mesons
of mass zero. The reason is that in such a case a pole is present in the matrix

elements of &, at ¢ = 0 and the definition of &,
b= 0, —i[P, ] (2.16)

ceases to coincide with the naive derivative with respect to the explicit depend-
ence on ¥, One can roughly describe the situation in the following way: In the
matrix elements of D(x,), the local parts of &, contribute like §® (p” — p), the
parts with linear x, dependence like 9;6®(p’ — p), etc. If the local part has a

1/g> 6 (p’ — p) pole, then some part of it will be attributed by 6; of formula
(2.16) to the second term &; 83 (p’ — p). Since we shall not be interested in a world
containing such a massless particle, we shall not elaborate much more on this
point. Only later, when we get to specific models some more comments will be in
place.

8) For many particle states, a contains continuous labels like the relative momenta and d,-,
denotes continuous d-functions. For single baryon and meson states we shall use the normali-
zation N, = 1/2m and 1, respectively.
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IIl. Is ¢ %, Dominated by a Single Scalar Meson?

Being equipped with a dilatation current we can now embark on writing down
Ward identities. Since n-point functions containing ¢ (x) are hard to measure in
general®), assumption 3) of meson dominance of 82 is necessary to derive physical
consequences. The meson would have to be a scalar of isospin zero. The particle
one tentatively accepts for this purpose is the broad s-wave resonance o(700)
of width I'y,.. ~ 400 MeV which appears to be present in == scattering. Evidence
for the existence of this particle is rather indirect. Theoreticians have kept need-
ing it either to explain phenomenological fits of data or to make sum rules come
out right. Or they have predicted it by unitarizing the m== scattering amplitude.
Among the many examples one could give here we just mention

1) Dispersion theoretic treatments of the processes nw —nw and ww-» N N
prefer a s-resonance at [9, 10]

Mg ~~ 750 + 100 MeV, Iy &~ 300 + 200 MeV. (3.1)
The corresponding ornw coupling is:1%)
|Forr| =~ 3.4 £ 1.). (3.2)

In addition, the ratio gsn</gonx can be estimated as [9]

form (0 & 25) 2o,
goNN f“

The mass factor appears explicitely since the ratio ggmmpt/gony #s.

2) In backward =N scattering, a {-channel = resonance of 700 MeV would have
to couple with a strength [71]

Jormnfony A~ 69 + 4 (3.4)

in order to explain the energy dependence of the amplitude close to threshold.
3) The low energy phase shift analysis of nucleon-nucleon scattering requires the
exchange of at least one scalar particle. The determinations of g%,xy vary from
31 + 16 to 190 [12]. '

4) Constructions of low energy == amplitudes satisfying approximately crossing,
analyticity, and unitarity and fitting the experimental p-shape predict a pole
around 420 MeV with [y, &~ 400 MeV [13].

5) The Adler Weisberger relation for nr scattering is saturated with the observed
0 (765), DI'ynr ~ 125 and f (1260), I'izr &~ 150 resonances by only 60%, Assum-
ing that the remainder is due to a single s-wave resonance,!!) this sum rule

%) Except for diagonal matrix elements, for which a balance is sufficient! In theories where
2, =20, and 6% = O, gravitational interactions would in principle do. Prof. Weber
informs me that he does not have enough resolutions as yet.

10y The o ww and 6 N N couplings are defined by ¥ = ggrn (ma/2)} 072 + goxnw o NN such that
T'orr = (3/4) (9% omnf4m) ¢-

11) That the missing part is of positive parity, can be concluded from a combination of forward
and backward dispersion relation written down for the amplitude at threshold (see BANERIJEE
et al., Phys. Rev. D2, 2141 (1970)).
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reads (f; ~ 0.095 BeV):
gp'rm 2 gcﬂ:'n: 2 1 gt“rm 2 _
fnz[(mp) -l_(mc,) +24(mf) =1 (8.5)

The famous KSFR relation g, .. ~ m,/ ]/é fr gives for the g¢-contribution 509,
while the experimental width of f makes this contribution roughly 10%,:

— M
|Ginnl &~ 233 v 3. (3.6)
fr
As a consequence, gqnr is about of the size
m
Yonml & —— ~ b (3.7)
Ig m‘cil V2 fﬂ

corresponding to a width of 400 MeV at m, a~ 700 MeV.
Combining this estimate with eqn. (3.4) we conclude that g4y is not much different
from g.xy (= 13.5):

|gonn | ~ 15. (3.8)

This result was predicted in the c-model, [14] in which the ¢ plays the role of
being the chiral partner of the pion (see Sect. VIII).

Suppose this s-particle dominates the divergence ¢%. In analogy to PCAC, one
calls this hypothesis PCDC (partial conservation of dilatation current).

In this case our low-energy theorem (2.11) allows for a direct experimental
consequence in form of a Goldberger Treiman type of relation!2).

If m;?/y denotes the direct coupling of 6 to 02 (analogous to (0} ¢4 | x) = u2fy)

Me®
0]0Z(0}| 0)= (3.9)
we find for matrix elements between pions
’ m03 gGTCTCmG r
(7(p') 122 (0)| =(p)) = g g ISP TP (3.10)
and between nucleons
mc3 JoNN
Np)|e N = . 11
(N (p)e2(0)| N(p)) S it — g (3.11)
Comparing with (2.11) at ¢2 = 0 we conclude
9,2
Jorm = ¥ 5 (3.12)
m
JoNN =7 o (3.13)

12) Recall: There the matrix element of ¢4 between nucleon states is (N (p)] 64%| N (p)) =
= mg, while pion dominance gives frdryw.
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Since y is unknown we can only test the ratio

Jorm _ 2
. JoNN mime

~ .06 (3.14)

which is experimentally a 1/3.

Thus one or both of the matrix elements (3.10) and (3.11) cannot be dominated by
a single c-meson.
In the following section we shall show that the assumption of s-dominance for
0% between pions is in conflict with the idea that pions are the Goldstone besons
of the chiral symmetry. This property of pions enforces a subtraction in the
matrix element (3.10). This saves us from a clash with experiment but destroys
one prediction.
Since in this philosophy the role of the pions is a rather special one may hope that
most other single particle matrix elements are still unsubtracted and derive
- predictions from this assumption. For example, the vertex ¢ Zop defined by

2
(0@, &) 167 0)| o(p, &)y = G(gF)mee’e — — H(g®) pe’ pe’ (3.15)

<)

has by s-dominance the form factors!®).

Mo®  GopeMMe
Yy mgt — ¢?

G(g*) = (3.16)

Mg hges
H(g?) = =2 Jee e | Nl
(g = =2 e (3.17)

Comparing the diagonal elements with (2.11), we find

—- 3’-;— Gopp My == 21112 (3.18)
or
m
Jope = —2 77/&_:2, v. (3.19)

No restrietion is imposed upon hg,. Similarly, for photons the gauge invariant
vertex reads

y(#, )22 (0} y(k, &) = F(g® (k'k, — g, k' k) &,/ ¢, (3.20)
with14)
mc3 o2 ovy 2

= Py

(3.21)

From (2.11), the diagonal matrix elements have to vanish. But this is true for
any goyy- A popular method of obtaining anyhow results on A4,, and g,y proceeds

13) For the coupling constants see Sec. V.
") We use Foyy = goyy 1/ms (0, A204A, — 0,4°8,4A#) such that Igyy = me/d X
X e goyy’/An ~ Al ge.. Me V.
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by postulating maximal smoothness of vertices: All free constants parametrizing a
vertex are assumed to vanish except for those determined by low energy theorems
(or Ward Identities). In this case we have Ry, = 0, goyy = 0, and there is no
radiative decay ¢ — 2v.[15]

The latter statement can be tested in principle by photoproduction of two pions
on heavy nuclei via photon exchange (Primakoff effect).

At present, only phenomenological arguments are available about the strength
of this coupling. A finite-energy sum rule analysis [16] of pion Compton scattering
estimates [,y 22 keV corresponding to g4,y =~ 47. However, the analysis
contains many sources of uncertainties. Another estimate is obtained from the
combined application of forward and backward dispersion relations to nucleon
Compton Scattering. [17] Here g5y, comes out zero confirming the assumption of
maximal smoothness. We think the latter estimate to be more reliable.!?)

If the first estimate was true, the c-meson should be produced via the Primakoff
effect with a cross section of

~ 162022 L 10 (P2} ~ 8.5 x 109 22 In (=) mb (3.22)
m03 M Mg

Unfortunately, a very high angular resolution is necessary to pick up the events of
very small t which stick out above the strong interaction background (peak at
O; ~ A of width 24, where 4 ~ mg22p;2 << 1)

IV. Ward Identities for the 8% . Vertex and the Theorem about a Subtraction in ¢?
The statement about the necessity of a substraction {18] in the ¢ ¥ = vertex is
basically due to the fact that from PCAC the pion can be continued smoothly
off mass shell by using the divergence of the axial vector current ¢ 4 as an inter-
polating field. All information on the ¢ Z == system is certainly contained in the
vertex (k= —q — p):

7(¢2; p?, k2) = f dx dy etavren) () 1T(8£2(y) dA™(x) A”O))| 0. (4.1)
The crucial assumption which will be the basis of all the future discussion is that

9 A™ has the definite dimension d. Then the vertex r is subject to a low energy
theorem (1.7)

0 =it(0;p% p?) + [ daeirs (0 |T((d { 28) 84 (x) 2A(0))] 0)
+ [ daewz (0| T(2A(x)d 84 (0))| 0). (4.2)
By defining a propagator of the field 4
iA(pr) = [ ez (0|T(24(x) 24(0))] 0, (4.3)

15} Sinee the input information is quite well known from the analyses of photoproduction on
nucleons.
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this low-energy theorem becomes explicitly

—7(0; p%, p?) = (2d —4—p ‘a%) A4(p?) (4.4)

—(2d — ) A(pY) — 2P 4 (9% (4.5)
where *® = o¢/op2.
One conveniently introduces a reduced vertex function by dividing the propa-
gator 4 (p?) ot of 7:
(g% 2 k%) = —A71(p?) A1 (R?) (@ p2, K?). (4.6)
It satisfies
I(0; p2 p%) = (2d — 4) 472 (p?) — 2p* A-2(p?) A (p?). (4.7)

Due to the assumption of PCAC, 4(p?) is, to a good approximation, given by

J= u
A(p?) = m, (4.8)

where f. is the decay constant of the pion (f. ~ .095 MeV).
If one goes to the pion pole, one finds from (4.7)

1
fﬂ2:”4.

This is nothing else but the low-energy theorem (2.11), since from the LSZ reduc-
tion formulas,1®) the on-shell matrix element (z(p’)|¢Z| n(p)) is just given by

I'(0; p?, u?) = 2u? (4.9)

@@) 02| a(p)) = lim fRut A (p2) A2 (p%) X 7(g%; 4%, P?) (4.10)
qqZ:zE
= [=2ut (g% g2, u?). (4.11)

The factor f-2u* appears in front since the properly normalized interpolating field
for the pion is = aA/[f u?.

Due to the PCAC assumption (4.8), the p* dependence of (4.7) is completely
determined. We find

f2ut IO p% p?) = 2u% + 2(d — 1) (p* — p?). (4.12)

Since PCAC is expected to be a good approximation only for ¢2 much smaller
than some characteristic mass M2 (maybe ~ 10 x2), the quality of the statement
(4.12) will decrease when p2 leaves the mass shell. Correction terms of the order
O(|p?* — u?|/M?) are expected to turn up.

Relation (4.12) tells us something quite interesting. It says that the strong form
of PCAC implies that the dimension of & 4 is necessarily one. If it were three, as
suggested by light cone discussions based on the quark model, the vertex would

18) For a nice exposition of this subject see the text book by S. Gastorowicz, Elementary
Particle Physics, John Wiley & Sons, N. Y. (1967).
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behave as
f2ut(0; p2, p?) = 4p® — 22 (4.13)

showing a rapid relative variation when p? runs from zero to p?.
However, we should not take PCAC that literally. We think that the known
amount of violation of PCAC in the Goldberger Treiman relation

u?
MGa = gnnnfr — O (W)

(1.16 == 1.28 — .12) GeV (4.14)

should rather be seen as setting the scale of absolute variations of amplitudes of
the dimension of mass when going from ¢*> = u? to ¢% = 0. Therefore, it is not
surprising if small amplitudes of the size of a pion mass show rapid relative changes
in magnitude. It is easy to demonstrate this point by means of a simple Lagrangian
model (see, for example, Ch. VIIT).

The result (4.13) is all the information that can be obtained by using the assumpt-
ion of ¢ 4 having a definite dimension.

The nice thing about the vertex 0% 8.4 ¢ A is, however, that additional informat-
ion can be derived by considering the properties of ¢ under the chiral SU(2) x
S8U(2) group. Clearly, if the commutators [Q5(x,) 02 (x)] and [@°(x,) 04 (x)] were
known, an additional Ward identity could be derived by multiplying the vertex

T.(¢, p)=1 f dx dy elavtea) (() IT(a.@(y) A,(x) EA(O)) (4.15)
with p,,.
What do we know about these two commutators?
For the first the answer can be given if one makes only the very mild assumption
that, apart from 94, also 4, has a definite dimension. From current algebra this
dimension is necessarily equal to 3. We can then show that

i[9 (), Q5(x,)] = (4 — d) 8.4 (). (4.16)

The proof is based on a straight-forward use of the Jacobi identity. Since it is
rather lengthy it will be given in the Appendix A.

The second commutator is the famous X-term occurring in many current algebra
calculations:

2(x) = t[Qs (x,), 0A™ (x)]. (4.17)

It usually is assumed to be a member of a (1/2, 1/2) representation of SU(Z2) x
% SU(2), together with 247, i.e.

Q7 (o), Z()] = — 0.4 (). | (4.18)

However, this point will not be of importance at this place.
With these commutators we find

8,7 (0| T (62 (y) A~ (x) 2.47(0))] 0) =

=(0|T(82(y) 04~ (x) 647 (0))] 0) — (4.19)
—i8(@) (0|T(02(y) X (0))] 0) +
+i(4 —d)o(y — @) (0 |T(24(x) 24(0))] 0).
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Hence 7 obeys the Ward Identity
— Putt(g, p) = T(¢%; D% k) + Ao,z (D) — 4 — d) A{(g + p)?)  (4.20)

where 44, is the propagator —i [ €%4% (0 | T(02 (x) Z(0))]0). The corresponding
low-energy theorem at p = 0 yields an equation for z:

(4% 0,¢%) = (4 — d) 4(¢*) — Ao,z (¢°) (4.21)
implying for the reduced vertex I'(¢2; 0, ¢?)
I'(¢%; 0, ¢%) = —(¢ — d) 471(0) + A1(0) 471(¢?) dog,z(9)- (4.22)

Notice that at the point where all arguments are zero, comparison of (4.22) and
(4.7) yields '

A30,5(0) = dA(0). (4.23)

This result could have been arrived at as well by equating the low energy theorems
for the two point functions

{0 |T(AH (x) 04 (0)) | 0) (4.24)
and

0T (2, () Z(0))] 0) (4.25)

and by observing that due to (4.17), >’ has the same dimension d as 0 A4.
Obviously, if we want to derive any consequences we have to parametrize the
propagator Ay . If 62 is dominated by a single particle, this propagator should
have the form

¢ (4.26)

Ao,z (q) = pra——t
As can be seen in models, this assumption actually appears to be somewhat
weaker than that of s-dominance of ¢2. The reason is that the symmetry breaker
> is expected to be asmoother operator than ¢2. We shall come back to this
. point later in Sect. X. Using equ. (4.23), the comparison of (4.26) with the PCAC

form of A(0), equ. (4.8), determines (4.26) completely

m02 Tr,2 4
Aog (g = d =3 qu-_”mcz. (4.27)

From (4.22) we obtain an explicit form for the I" vertex

FAHT(P0) = [((4 — &) gt — dm )@ —(d — 2d) wimg¥].  (4.28)
q Mg

This result can be combined with equ. (4.12). Since I'(¢?; p,?, p,2) has to be a
symmetric function in p,2, p,2, we find [18]

2

. m
Fr2ut (% ;% po?) = m [a(g® — mqs?) + bms?] (4.29)
<3
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with

2
a:_1+(4—d)?§2 (4.30)

2
b——1+@2—dy Lo b (0 —d)(p2 T ps? — 202 gt

M2

With the direct coupling strength m*/y between 6% and ¢ introduced before,
this result amounts to an on shell s coupling constant of [18]

M2
Gorr = ¥ (1 +d-2)E 2). (4.31)
The subtraction constant of
2
fr2utl(oo; P, po?) = — (1 + (d — 4} ;f:cz)mcz (4.32)

is a measure for the breakdown of exact s-dominance of 0% between pions, just
as the term (1 — d) (p,2 + p2 — 2u2)/m2 breaks PCAC.
Only for d =1 and my2 ==3m,® are both hypotheses exactly verified. In
referring back to our earlier discussion on the significance of the condition of
exact PCAC we just note that as soon as g2 is somewhat away from the pion mass
and the matrix element [.2u'l'(¢2; p,%, p,2) is not close to zero any more, the
relative PCAC breaking becomes extremely small.
For example, close to the s-mass shell, ¢® ~ m,2, I" is essentially proportional to
b itselt: _
4
AT p ) ~ g [ @ = d) 5 (= D) (2 + i — 20 mo)
a
(4.33)

This vertex is independent of p,2, p,2 within the range of a few u2 for any reasonable
d between 0 and 4.

The hypothesis of s-dominance of ¢Z in the 0% 0 A ¢ A vertex, however, cannot
be saved by such an argument, due to the large mass of .

At this place we should like to comment on the usage of the term “‘subtraction”
to denote a power of ¢ or p? in the reduced vertex functions. It is important to
stress that within the hard-meson method we are pursuing, this term has nothing
to do with the true subtractions.necessary at high energy when dispersing in the
corresponding variables. In the hard meson method, Ward identities are merely
enforcing certain powers of g2, p?, etc. in the reduced vertex functions as far as
the low energy region is concerned. These powers can very well be a reflection of
higher mass singularities in an wnsubstracted dispersion relation in ¢, p?, ete.
The Ward identity tells us nothing about the physical origin of these powers.

V. The Question of the Size of the X-Term

While our hope for universal s-dominance of #2 has been destroyed in the last
last section, some models suggest that the Z-commutator appearing in equ. (4.16)
may still be dominated by a single pole at g2 = mg2 If this is so, then the
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propagator (4.29) determines the strength of the direct coupling

2
0 12(0)] 0) = ydf2 . (5.1)

e

This formula allows us to express the famous 2-term of pion nucleon scattering
(for the definition, see footnote in on p. 3) in the following form [19]:

N (D) Z0)| N (p)) = goxyd I2E (5.2)

0‘

But from our last result (4.32) we can substitute y by g, with only a few percent

error
2,2

N (0) |Z0)] N (D)) ~ o omedd L2

[¢]

R goNNgonﬂ:d X .5 MeV. (53)

If one uses the estimate (3.4) for the s-couplings:

YoNNGJornn ~ 69 :i: 4 (54:)
one finds
(N(p) |20} N(p)) ~d x 35 MeV.

Unfortunately, the value of the Z-term cannot be measured directly. An off-mass
shell continuation is necessary in order to arrive from the the physical pion
nucleon scattering amplitude at the point where both pion momenta are zero.
For this purpose, Fubini and Furlan have developed a dispersion theoretic
method [20]. However, the discontinuities of the dispersion integrals are not well
known and require further approximations. Applying this method to =N and
pion nucleus scattering leads to the estimates!”):

1
COROIR Iy i ) 5.5

It has been argued by CueNc and Dasugx [24], that within the PCAC approxima-
tion, the value of the 2-term appears with the reversed sign at the on-mass shell
point » =0, t = 2u? of the N amplitude. The argument is briefly the follow-
ing: Current algebra gives a low-energy theorem for the amplitude

T+ (1/, t’ q’27 92) = A+ (’V’ t’ q’z’ q2) + VB+ (v7 t’ qu’ qz) (5'6)
2 2 2 . 2 2 2
4 9N 2 e 009@N s 6.7)
m vg2 — 12 m vg: — v®
where vp= — qq'[2m =1t — q'2 — ¢*/4m, g(q®} 1is the off-mass shell continuation

of the nNN coupling constant (via the interpolating field =z = 0A47/f;u?)
and 7, B+ are the amplitudes free of the ps nucleon pole. This low-energy theorem

is

- 3 Po) .
T+(0000) = A+(0000) — *— f = (N (p) | Z| N(p)). (5.8)

%) For a criticism of the results of Ref. [27] see Ref. [23].
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On the other hand, any amplitude emitting a pseudoscalar particle of ¢~ =0
via the field 0.4 Vamshes As a consequence, T has the so called Adler zeros:!)

T+(0, u2, 0, u2) = A+(0 u2 0 u2) — g%(#g) = 0. (5.9)

The crucial assumption is now, that from PCAC [24] the amplitude

N 2 2
T+, ¢ 4 ¢ 4% ) = A0, % + % ¢ ) — LEID 549

is a smooth function in ¢'2, ¢2. If we allow for only linear variation in ¢'%, ¢2, the
Adler zeros enforce the on shell value

T+(0, 2022, 122, s2) (N (p) |Z] N (p)). (5.11)

f’ﬂ'.'

We do think that this argument is convincing. Certainly we cannot exclude that
T+(0, ¢'2 4 ¢2, q'2, ¢?) may in fact be a smooth function of ¢'2, ¢> . However, the
principle of PCAC can certainly not be invoked for a proof. As a counter-example
consider the amplitude in the linear s-model which incorporates exact PCAC:
Mo grxx
— 12
I — mg? m (5.12)

T+ (v, t, 0% %) = —Gornfoxnn

with
2 m
e = =T (1= 25). o = =g = 633)

3

Due to PCAC, this amplitude has the Adler zero
T+(0, 42, 0, u2) = 0 (5.14)

and it is independent of ¢'2, ¢2.
However,

T+(0, ¢ + ¢% ¢ g% (5.15)

pmks up a q'%, g% dependence from the ¢-channel smgulantles If o was very low
in mass, the non-smoothness of 7'+ (0, q’2 9%, ¢, ¢%) would be arbitrarily large in
spite of exact PCAC. Since the particle is not very low-lying, one may argue that
one can include its effect by means of an expansion linear in ¢'2, ¢2. However, as
long as we do not have a definite idea about the breaking of PCAC we consider
this procedure as quite dangerous. If such breaking terms are turned in, the
expansion of 7+ up to first order corrections to PCAC is

. ’2 2 2 2 £1 1
T+0, ¢, g2, ) — [(ao + a2 tq) + (a, ta, 2 t g ) _ZJ 2 (5.16)
Iz W]

where the X-term is contained in a,:

2
(N () |Z] ¥ p)) = — ’;? Gy 5 — 650, MeV. (5.17)
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On shell, T+ (0¢42u?) has been determined in =N analyses. Let [25—28]
PR y
- ty\ 1
Tty = (4, + 4, —) —. (5.18)
u)

Now the point is that 4, and A, are both of the same size!®)
AP v —14 + 6 (5.19)
A=~ 1.13. (5.20)

There is no a priori reason why 4, should have a weaker ¢* dependence than 4,
in a theory with a slight breaking of PCAC). If one takes the condition of the
Adler zeros into account, one can eliminate only one of the four parameters. If
we leave a,” as an unknown we can express the others in terms of @, and the
experimental quantities 4, and A, in the form.

ay =2a,) — 24, — 4,
a, = —2a,) + 4, (5.21)
ay +a, =4y + A,

We see that only the sum of the PCAC breakers a, | a,/ is determined by
experiment.

How the breaking distributes among a," and a," is completely model dependent.
Let p be the content of breaking in a,’, i.e.

a," = o(4, + 4,)
ay = (1 — ) (4, + Ay). (5.22)

Then the Z-term is obviously
2
(N (@) || N(p)) — %(Ao + 24, — 20(4, + 4Y)

= f2[(1 — 0) T(0, 2p2, u?, u*) — oT(0, 0, p?, p?)]. (5.23)
The ad-hoc assumption g == 0 reduces to the result of CHENG and DASHEN
(N(p) | Z| N(p)) = f.2T+(0, 202, u2, u2) = 65 (.9 -1 .6) MeV.20)  (5.24)
For arbitrary ¢ we have

2
(N (p) | Z| N (p)) — f—M— (146 —20(—31 .6)

=65 [(1 + .69) & .6 (1 — 20)] MeV20), (5.25)

18y Due to the nucleon contribution g2/m == 27.3/u cancelling almost completely A+ (00> u®) ~
A 26.1/u.

19) This can be checked for example by adding a PCAC breaking term to the o-model.

20} Qur numbers are obtained by inspection of the data points of Ref. [26] since Cheng and
Dashen dont quote any errors.

9 Zeitschrift ,,Fortschritte der Physik®, Heft 1
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About the value of ¢ we do not know much. One should think, though, that due
to PCAC, @y’ and a,” should be smaller than a, and a,, respectively. Therefore we
expect ay and a," to have opposite signs and g could lie somewhat below zero or
above one.

Obviously, the large error bars leave the result (5.25) completely consistent with
the off shell extrapolation values of eqn. (5.5)

A word of caution is in place here. The argument raised before concerning the
accuracy of the pole dominance approximation for ¢ can certainly be applied
to the matrix elements of 2’ as well. In the beginning of this section we justified
this assumption for X by saying that models suggest 2 to be a smoother operator
than ¢%. Unfortunately, due to the small factor u2/m, appearing in the coupling
strength of X' with ¢ (eqn. (5.1)) inclusion of PCAC breaking may make this argu-
ment completely irrelevant. In the s-model, for example, one can show that a
very small PCAC breaking term (like —m,% ¥ in the Lagrangian with m, ~
~ 110 MeV) whose magnitude is chosen to correct the defect of the Goldberger
Treiman relation, can yield a subtraction constant of —110 MeV in the X-term
which is much larger than the contribution of the o-pole (See Sect. IX for the
detailed argument). For the divergence %, on the other hand, the coupling with
o is so large that between nucleons m, can be completely neglected.

VI. The Dimensional Properties of the Hamiltonian Density ¢ ()

Until now we have investigated the consequences of broken scale invariance as
they follow from the assumption of certain fields having definite dimensions. We
have not, as yet, assumed anything about the detailed mechanism of scale break-
ing except that ¢2 should be dominated by a single s-meson. In this section we
shall try to find out wether any simple breaking structure in the Hamiltonian is
compatible with experiment.

Consider the Hamiltonian density of the world @y, (2). If it had a dimension four,
the action would be invariant under dilatation and ¢ 2 would vanish. In this case,
consideration of elastic matrix elements of eqn. (2.8) teaches us that all particles
have to be massless.?!)

Since the real world is massive, there is at least one term of dimension different
from 4 which breaks the scale symmetry of @y, (x). Is there any connection of this
symmetry breaker with the chiral breaking term? If we accept the standard
ideas about SU(2) x SU(2) breaking in @y, then &, can be split in an ST(2) X
SU(2) conserving term @, and a local scalar operator X (x) belonging to a (1/2, 1/2)
representation of SU(2). i.e.

Q" [@5™ £ (2)]] = £ (). (6.1)

But then one can show that field X (x) is identical with the commutator term
2 () introduced in eqn. (4.18). To see this one uses the equation of motion

i[QmH] = i[Q5, d*x £(2)] = — Q5™ = — [ dPzx 04~ (6.2)

1) Excluding a zero-mass pole in &, for physical reasons. We shall discuss the problem asso-
ciated with a Goldstone way of breaking scale symmetry in Sects. VII and VIII.
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and commutes with one more —i@;™:

[ (0105 £ @))] = [ d*x Z(@). (6.3)
From the (1/2 1/2) assumption (6.1) one obtains
f d%(f,’(m) —Z'(w)) = (. (6.4)

If the integrand could be shown to be Lorentz invariant, we would have from a
theorem [29] in field theory:

Fx)= Z(=). (6.5)

Now X (x) is a scalar by assumption. That X(z) is also a scalar can only be seen
after a little work if we make the very mild assumption that the commutator
[0A™ (x), A™(Y)]s,—y, Vanishes?2) (see App. A). As a consequence, @, can be
written as

O (%) = @00 (x) + Z'(=). (6.6)

If we assume ¢ A to have a definite dimension d =4, then the term X'(x) has the
same dimension and is necessarily one of the breakers of scale invariance. Are
there any more? If the chiral structure is supposed to extend also to the group
SU(3) x SU(3) then this is certainly true.

It has been proposed that there exists a whole set of 18 local scalar and pseudo-

scalar operators u, and v, (@ =0, ..., 8) transforming according to the (3, 3) x
(3, 3) representation of SU(3) x SU3) (1 =1, ..., 8) [30]
[@5° (o), uP{@)] = —vd™v* () (6.7)

[@5' (20), v* (%)] = sd™us (x).

In terms of these operators, the breaking of SU(3) x SU(3) symmetry is supposed
to be of the form

Ouoss (®) = U= uo + cug (6.8)

where ¢ is some number. Now @, (x) can be split into an SU(2} x SU(2) sym-
metric term

S——-V:(l——]/éc)

and the (1/2, 1/2) type of term

— V2 ug) (6.9)

%I

2=-1—_(1/§+c) V%(Vé g + ug) = W. V2 wo + ug).  (6.10)

% 075

From our assumption that X has a definite dimension d and from the commutators
(6.7) it follows that all components u,, v, have the same dimension. We conclude
that the whole term « has a definite dimension d. It is an attractive hypothesis

22) Actually we need only the lowest Schwinger term to be absent. This is fulfilled in any
Lagrangian model where 8.4 is equal to the canonical pion field.

2%
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that there is no other operator breaking scale symmetry except for the terms
S and X of definite dimensions d breaking chiral SU(3) x SU(3) invariance.??)*')
Let us see the consequences of this hypothesis. Suppose @y, can be decomposed
into a term 6, of dimension four and a term u of dimension d—==4 breaking scale
symmetry. For the sake of the argument, let us also suppose that, in addition,
there is a scalar term 6 (z) present of dimensjon d; -+ 4. Our hope is that 6 can
be a trivial c-number term of d; = 0.

As a first consequence of this assumption one obtains the theorem that the diver-
gence is completely determined (by what is called the virial theorem).

8T (@) = (4 — dy) 0(x) + (4 — d) u(x). (6.11)
The proof uses equ. (2.8):
iD@) Hl =H — [ d*x 62 (6.12)
inserting H = [ d*x(6} + 6 + u) gives on the left hand side
[d3a[(4 + 28) O + (dy + ) 0 + (d + wd)u] (6.13)
— [ d3x[O% + (ds — 3) 0 + (& — 3)u] + 2,8, [ d*26y,
and on the right hand side
[ d3z {[6% + 6 + u] — 62 (x)}. (6.14)

The operator &, drops out and for the remaining integral over scalar operators we
can again use the theorem of field theory quoted before?3) to show {6.11).

Equ. (6.11) has a simple consequence. Since from equ. (2.11) ¢.D between vacuum
states is zero we find [32].

(4 —dy) (0[0]0) + (4 — d) (0 [u]0) = 0. (6.15)

Notice that complete absence of any é-term would imply (0|« | 0) = 0. In addition,
equ. (6.11) implies a simple low-energy theorem for the propagator

—idogsg(q?) = [ da €2 (0| T (62 (x) 87 (0))| 0). (6.16)

For this consider the vacuum expectation value

(0 !T(@‘u(w) 8@(0)) | 0) (6.17)
apply the derivative with respect to 2, and use
i[D(xy), 6Z(0)] = 4 —ds) dsd + (4 — d) du. {6.18)
This yields:
Asgogp(0) = (4 — d;s) dy (0[] 0) 4 (4 — d) 4 (0 [w]0) (6.19)
or, using (6.15),
Asgog(0) = (4 — d) (d — dy) 0 |u] 0). (6.20)

23) In going from equ. {6.4) to (6.5).



Broken Scale Invariance 21
If the propagator ;4 54 (0) is o-dominated, the left hand side can be expressed as
Mgt met

2 ~

4

Gonn®

and is observable.

As a first result we can now conclude that in addition to « there is necessarily a
term ¢ (with d;==4), since otherwise equ. (6.15) would force (0 |u]0) =0
in contradiction with experiment. Taking the existence of é for granted, the term
on the right-hand side is known from standard chiral low-energy theorems for the
amplitude (0 |T(AH"' (x) 3A“(0))[ 0). By using the commutators of equ. (6.7), one
finds [32]

AH0) = (0 [ X%] 0y = a* (0 |8]0) + b (0 | 2] 0) (6.21)
where
0 1 1,2,3
r+1 r+ 1
at ={r+4+2};, b =17 2r } fori x{4’ 5,6,7 (6.22)
4 1
3 3 8
and -
p— 20 F 12 (6.23)
3 )2

These equations imply for S and X'

1 1
01810) = (r + 2) (H _A%(0) — - 4 (0)) (6.24)
0 [Z]0) = A7(0) (6.25)
and for =481} 2%
— 2 2
wm<»=1§fdwm+iildwm. (6.26)

Putting (6.26) together with (6.20) we find the result [32]*)

_ 9 2
dog og (0) = (4 — d) (d — dy) [T 92 AT0) + :i 1

AK(O)] (6.27)

Since A7 (¢?) and AX (¢?) are usually assumed to be = and K dominated, the expres-
sion in square brackets can be rewritten as

r — 2 - r 2 . r+2,, r -+ 2
{QT 4 (0)+THAK(O)]M~[ - fnzmnwwlfﬁzmﬁ]. (6.28)

24) Notice that this result can be written in form of a spectral function sum rule for the prop-
agators involved, since
o(p®) du®
A(O)th(ﬂ ) 21u-
—H
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With the standard assumption about the Goldstone nature of = and K mesons
discussed in the introduction, the parameter r is determined approximately by

m 2
L (6.29)
giving (6.28) the form
M2
~ 5 61— o)+ m e — )] (6:30)

While the value for f, is quite well known to be =.095 GeV, the ratio fx/f-
could be anything between one and 5/4. These particular two values make (6.30)
come out as

1 2.2 1
~ P fr? (340 & o 103 GeVs; fy/fr =15 ¢. (6.31)
16 ' 4

The left hand side, on the other hand gives with

Jorr & B, My = 100

4

Mo 10 x 10-2 GeV4.

y2

In order to obtain agreement with experiment, the factor in front has to be

d—4d;) 4 — d) ~ {4'5} for fx =157, (6.32)
2.1 fn —
4
We note that a c-number §-term with d; = 0 is certainly compatible with experi-
ment provided d is equal to 1, 2, or 3, for which the factor (6.31) takes the values
3, 4, or 3, respectively.
For completeness we would like to mention also the consequences if one agsumes
only the validity of the framework of . weak PCAC. In this case the parameter »
has been determined from other considerations to be [3]

r A~ 3.3.
We find, instead of (6.32)
1
d—dy) (4 —d)~ L7 por fe _ 5 (6.33)
3.0 .

We see that also in this case the absence of an operator d-term is compatible
with d =1, 2, or 3.

Notice that if we were dealing only with SU(2) X SU(2) symmetry, we could
obtain similar relations by assuming the energy density to have the form

O (&) = G () + d(x) + Z(2) (6.34)
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with @3, 6, and X having the dimension 4, d;, and d, respectively. In this case our
equation (6.11) would read

0D =4 —d)o+ (4 —-d) 2 (6.35)
and the low-energy theorem (6.27) would become
dogog(0) = (4 —d} (d — dy) (0]Z]0) = (4 — d) (d — dy) 47(0)  (6.36)
or, saturated with single particles,

Mgt
2
7Y

= (4 —d) (@ — d) fu2p2 (6.37)

Here the right hand side would be very much too small compared with m,*/y
due to the absence of K-masses.

Physically this means that breaking of scale and chiral symmetry can never be
attributed to the same source at the level of SU(2) x SU(2), since the c-mass is
much heavier than the pion mass.

The average meson mass within the pseudoscalar octet is, on the other hand, com-
parable with m, such that within SU(3) x SU(3) the d-term could very well be a
¢-number.

Some time ago, an argument was forwarded in the literature trying to prove the
necessity of an operator term ¢. This argument was based on the determination
of the 2-term of von Hippel and Kim

N(p) |Z(0)] ¥ (p)) = 25 MeV (6.38)

and went as follows: [33—35]
If one calculates X' for =N scattering by using equations (6—7) one finds

1 .
(N(p) | Z(0)] N(p)) = 75— Wa(e) [V2 (N |uo| N) + (Nug| V)], (6.39)

For the value of ¢ ~ — 1.25 this gives
~ 073 [(N e | Ny + .71 (N [ug| N)]. (6.40)

One now assumes that one can do lowest order SU(3) perturbation theory in the
Hamiltonian density
@00 = 030 “+‘ 6 + uO + Cus. (6.4:1)

Then the matrix element of cug is determined from the octet mass splittings as

(N|cug|N) =my — %mz — % mp = —.215 GeV. (6.42)

Inserting this, together with the estimate (6.38) into (6.40) we recover
(N|ug|N) ~ .2 GeV (6.43)

or

(N |uy + cug| Ny ~ 0. (6.44)
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On the other hand, if § is a c-number, equ. (6.11) between nucleon states gives
(N|6Z|N) = (4 — d) (N|ug + cug|N) (6.45)

which is incompatible with (6.44) for any value of d < 4.

Fortunately, this argument fails.?®) The reason is that due to the Goldstone
mechanism of chiral symmetry breaking and PCAC, SU(3) perturbation theory
is not valid. We shall illustrate this point in a specific chiral Lagrangian model in
Sect. X. In this model the SU(3) mass splittings of the baryons do not originate
at all in the term ug") of the Hamiltonian density @y,%%).

Instead, they are completely due to an SU(3) x SU(3) symmetric baryon meson
interaction. This symmetric interaction term generates all of the baryon masses
via the non-zero vacuum expectation values of the meson fields.

In the formula (6.44), on the other hand, both baryon and meson masses, with
their SU(3) splittings are generated by u, alone®.

VII. Lagrangian Models for Scale Invariance

A weleome illustration for any theorem on broken scale invariance derived from
Ward identities is provided by effective Lagrangian models in the tree graph
approximation. We shall not go into the details of proving the equivalence of both
methods [5]. The mechanism will become transparent when we discuss some
specific simple models.

Let us first remark that given any Lagrangian ¥ (¢, d,¢) as a function of abitrary
fields ¢ and ¢,¢, we can always define a canonical scale current?®?) [36]

Zy(x) = n,(x) dp(z) + 6, (x) | (7.1)
with @, being the canonical energy momentum tensor
0, (%) = 7, (%) 6,9 (x) — g L (%). (7.2)

After quantization, the charge of this current has the property of assigning to
any dynamically independent component of ¢ the definite dimension d via the
commutator:

dp(@) = i[D(xy), ¢@)] = (x8 + d) ¢(). (7.3)

25) Ref. [42] made also this claim. However, the paper is quite misleading. While the author
did notice that SU (3) perturbation theory might fail due to the existence of a ¢ -meson, he
illustrated the point by a model that contradicts the ideas of chiral symmetry. His model
contains BB terms directly in u, + ¢ u, (his equ. (9)). These terms violate PCAC and invali-
date the Goldberger Treiman relation. See Sect. X for a proper model.

%6) Agsuming SU (3) invariance of the vacuum.

") The field ¢ stands representative for any set of different fields. The derivative 0.2/ do#
is conveniently written as 7, (z) such that =, == 7 is the canonical momentum of ¢ (x).
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The choice of d is, at this level, completely arbitrary. If we form the divergence of
Z,(x) and use the Euler Lagrange equations we find

0Z(x) = ot (n,de + 2’n, 0,9 — x,F) =

0.t 0L | L
= 37 dp + 7,(d +1) o*@ — ¢ (2, L) + & (5?1; g + %a*dv@) =
57 55 )
=yt ga (o ) g — 4. (7.4)

Obviously, the first two terms do nothing but indicate the dimension contained
in any expression involving the fields ¢ and @,¢. If ¥ has the form

=31, (7.5)

where ¥, are pieces of dimension d,, then (7-4) yields:

29 — 3(d, — )5, (7.6)

If all terms in ¥ have dimension 4, the dilatation current is conserved.
It is obvious that the current %, is a non-local operator. It has the property that

the derivative &, with respect to the explicit time dependence is

6%, (%) = 65, (2). (7.7)
The canonical expression (7.1) for &, (x) has a form completely analogous to the
non-local canonical current of the total angular momentum

M, = —ia Zp, ¢ + x; ¢, — x,0%;) (7.8)

where X;, are the Lorentz generators in the spin space of the fields ¢.28) The
angular momenta

My, = [ d2z I, (x) (7.9)
generate Lorentz transformations via the commutation rule
i[M/'.x: (P(x)] - (xi Ex — ¥, al - izlz) (P(ﬂ’/'). (710)

At this point one may recall that BELINFANTE [37] has constructed a modified
energy momentum tensor ®3 which has the advantage of being symmetric and
of allowing to bring equ. (7,8) to the more aesthetic form

7:; = ¥y QB”x —_ ﬂf,‘@B”1>. (7.11)

28) They commute like:
2 =g2.: goo=1 ¢y = —1

i.e. in the same way as the Lorentz generators M;,. For Dirac particles X, = i/4{v;, .1,
for vector mesons (Zrdag = 1 (@1axp — 928 Fua)-
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This tensor is defined by??)

OF = 6, + 2 X, (7.12)
where
i

Xow = =5 [0 2wy — muZp¢ — 7, 209] (7.13)

is antisymmetric in p and p. For this reason, &% and @, differ only by a divergence
and possess the same spatial integrals

P, = [d*x0f = [ d®x 6, (7.14)

It is natural to ask whether it is possible to find an energy momentum tensor
which allows us to write not only the generators of the Lorentz group as (7.11),
but also the dilatation current in the simple form

G, =0, (7.15)
For this one rewrites (7.1) in the form
D, =20 + a,dp + X2, — 0°(Xpu2%) {(7.16)
= 208 + v, — 0(X, .7

uy

where
v, () = mu(x) do(x) — i 7w (x) 2, @ () (7.17)

is called the freld-virial®®) [36].
Suppose now that the field virial v, can be written as the divergence of some tensor
o (x)

V() () = &0 (). (7.18)

This is the case for a large class of Lagrangians. For example, if a Lagrangian
contauung scalar, spin 1/2 and vector particles with no derivative couplings,
spinors and vectors have o = ( while scalar particles satisfy (7.18) with
G = 2/9,31)

wuy I ® .
Let o}, be the symmetric part of 6, (¢% = 1/2 (0, =+ 0,,)). Then one may define
a new improved energy momentum tensor

1
O =02 + 5 # & X (7.19)

where
— + + + +
Xlgyv - glga‘w - gz,uo'@,, - 91-0'#9 + g,uvo'lg

1 1
- ggzggma:” + 5 o™ (7.20)

29 Using the equations of motion one can bring (7.12) to the manifestly symmetric form
@fw = (@ » T @zu) "i’ 59 [ny ov @ T 7T, gv @l

80) For all the details of this calculation see Ref. [36].
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It can easily be checked that @, can be used instead of &%, to construct the whole
Poincaré algebra P, and M;,. None of the space integrals are influenced by the
additional term in {7.19).
This energy momentum tensor has indeed the desired property of allowing for
<%, the representation (7.15). By inserting @, in the expression (7.16) for the dilata-
tion charge one finds

D,=20, — % A0 (X' — &0, — 02 (Xppa?). (7.21)
But none of the terms on the right hand side contributes to the dilatation charge32).
Therefore one can use (7.15) as a new dilatation current.
The advantage of this energy momentum tensor is that the divergence of the scale
current becomes

D, = 0, ()= O @) (7.22)

such that the trace @, signalizes directly whether a theory is scale invariant or
not.

Also theorems like (2.11) come out naturally in this case. From conservation of
0, it follows that for a state at rest the so called self stresses all vanish [38]

00 0;(0)|00) =0; i=1,2,3. (7.23)

Therefore the trace has necessarily the same elastic matrix elements as @, between
states at rest

(Px [0,4|pa) = O [Og] 06) — T (0 |0y;] 0c0). = (7.24)
=2u*N,.

In addition one can see more transparently how the Goldstone mechanism of
scale symmetry breaking operates. Consider for example @, for a scalar particle
7
, 1
@) Ouln(p)) =5 2.2 F1(¢*) + Guwe® — 2.0) F2(¢?)  (7.25)

31) Proof. The different contributions to v, are for scalars:

My =0,p, d=1, T=0

Hence:
1
Vy = (a,um)(p = ? av(g,uv(pz)
Spinors:
- 3 1
Ty = 7"}/7}#’ d = E’ = Z,uv Z {y,w y |
Hence:
3 .= D —
Vy = '2— ¥ Y ¥+ Z W’J"”[Vﬂ?’v}'}‘
Vectors:
Ty = _F,uw’ d=1, (Z,uv)in = i(gylgm - g,uxgwl)
Hence:

v, = _Fyv P+ i (Zyv)lx P = 0

) We exclude the unphysical case that X, ,, contains a scalar pole of mass zero, in such a
case surface terms could not be neglected in partial integrations and f Bx By, (x) would not
give the energy momentum operator P, = [ d*x@g,(x).
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where
XME (p’ "I_ p)p; qHE (p’ — p),ﬂ'
The mass normalization

(7(0) {Og| = (0)) = 2pu? (7.26)
forces
F0)=1 (7.27)
The trace of {7.25) gives
) 1
((p') |G, m(p)) = 5 (4p? — %) Fi(¢®) + 3¢* Fy(g®) (7.28)

verifying theorem (2.11) at ¢%2 = 0.
Suppose 6,* is equal to zero.
Then
2 2
o) = — L g, (7.29
q

This equation suggests that we can have a scale invariant world with massive
particles if there is a pole in F,(¢2) at ¢ = 0. This pole is usually ascribed to a
Goldstone particle of mass zero. However, for scale invariance a somewhat
delicate problem arises. By going back to (7.25) we notice that ©,, has several
deseases, due to the fact that the matrix elements

@(p') 1O, 2(p))

are not uniquely defined when right and left hand momenta go to zero. In partic-
ular all self-stresses donot vanish any more. For example, if p’ and p approach
zero along the z-direction, we find that the energy density does not show any more

the value 242 between states at rest but

(2(0) | Oug| 7(0)) = 5 12 (7.30

Second, among the self-stresses [38], only (7(0) |@,;] #(0)) vanishes as follows
also from the original proof of JaAucH and RoHRrLICH.??) [38]
For the matrix elements (7 (0) IQ%;I 7(0)), however, we find instead — 2/3 u?

which is necessary to achieve

(@(p'} 9,4 =(p)) = 0.

These diseases of the “improved” energy momentum tensor are not unexpected.
We noticed before that 6&,, can be shown to produce the correct energy momen-
tum operator P, only if the surface terms when partially integrating the second-
term in (7.19) can be neglected. This, however, is impossible due to the long-
range correlations caused by a pole of mass zero in the matrix elements.?4)

We mention this point since people have repeatedly argued that there are pro-
blems with a spontaneous breakdown of scale symmetry.3%) Any argument involving

*%) Based on the conservation of @,,!

My Example: Let {(p’ |0 (x)| p) have a pole at ¢* = 0.

Then [ d®z(p'| 8;0(2)|p) i [ do gifg? 4% = i (2P gy (q) + 0.

%) The author likes to thank J. Katz for bringing these arguments to his attention. See also
Ref. [39].
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& = 1 uses the diseased “improved” energy momentum tensor and must be
discarded. Other arguments will be mentioned when models are at onr disposition
to illustrate their defecis.

As we said before, we shall always, for physical reasons, assume some scale
breaking to be present moving the pole at ¢* = (0 to some nonzero g¢* — m,%
We shall call a sealar particle in a broken seale invariant world a Goldstone particle
of scale breaking, or a dilation, if it appears as a dominant pole in the same form
factor that would need a massless pole for @ =10,

VIII. Zeale Properties of the Linear g-Madel

This model was construeted a long time ago for the purpose of exhibiting a set of
vector and axial veetor currents commuting like S8U7(2) x SU7(2) and having the
divergence ¢ 4 dominated by a single pion. The Lagrangian of this model contains
a nucleon field % (x) and scalar and pseudoscalar fields o (x) and 2 {x}:

as i
£ =g FPipt, ¥ —g¥Plo—iym,v) ¥ + ':1,- [(8u0)® + (€u7)"] —
o 1
=5 et + A%+ (o + AP+ fapte — ) (8.1)

Here ¢ is a constant which is in general necessary to make the vacuum expectation
value of ¥ vanish®).

Except for the term f. p*o, this Lagrangian is invariant under izospin transforma-
tions

do=0, da=ax=x

aw:-mig-w, aﬂ*:iﬁ%ui (8.2)
and axial transformations
d0 =a-x, da=—ao
Y = —iay, % v, 3P = — P - pai (8.3}

generated by the vector and axial vector currents

- - v 2
e —— — | —
Vo= 35,0 Py 5 Y4+ axirm (B.4)
A T —
I_E: -_— = g i 4!" 1 = | i .
Al = 55 W b e 5 | xévg (8.5)

#) The parameter g means the numerical value of the pion mass.
a7 In order to make {0 Ggi{x) 0) = 0.
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The term fpu*o breaks axial symmetry and gives rise to the PCAC relation

oA (x) = gjij = frpm(x) (8.6)

which shows that f, is the pion decay constant (=2.085 BeV).
Due to the oocnrrence of the terms f_ p*s and 4[4 {o? - 2%, the potential minimum
for the g-field will not be at zero but at a value o, determined by

fy* 0y = Aog® = frud. (8.7)

As a consequence, the degeneracy between s and n-masses is split. From the terms
7*/2 and ¢'%/2 in ¥ one finds

Me® = " — A" (8.8)

= jy® — 3 Agy? (8.9

and the s-nucleon interaction gives rise to a nucleon mass term —m P ¥ with
o= gy, (8.10)

In the absence of the symmetry breaking, the nucleons would be massless, The
constant ¢ is found to be

2 1 2
¢ = — 5ot 4 5 oyt fuptoy = T (e — 5me®) + fuptoy.  (8.11)
Lumhmmg (8.7) and (8.8) and requiring m.® = u*, we determine the potential

minimum
oy == fr. (8.12}

(uantization of the Lagrangian will yield o, as the vacuum expectation value of
the field «. It is therefore convenient to introduce a new field

o =g — gy (8.13)
which oacillates around zero,
The most important coupling constants are found by looking at the corresponding
verticesi)

e !
Fenn = —fauy =F = — (Lryy = gruu Piyat¥r) (8.14)
= Bl - L S
Jann: ® ( e ] (.'?m_uym 5 n':'t:*) (8.15)
Hane = — 'l‘i_) (fcr.u:u 5 oo % Ufa) . I:B.lﬁ}

Numerically, the first rala.tmﬂ“]
Gry (=13.5) = (—glogx ~ 15.)

#) Kecall that gpey = m/f; is the model's version of the Goldberger Treiman relation ey y =

= g 4 fr-
¥ We shall choose the sign of gapr to be negative, as in the lincar o-model. Then equ. (3.4)

determines gopy == — 156,
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is borne out by the analyses of ©N backward-scattering [11]. The gor, coupling of

the model is
o ~ —1.4

which is too large by a factor of about 2.
We can introduce dilatations in the model by means of the current (7.1) choosing
the dimensions of ¥(z), o(x), = (x) to be 3/,, 1, 1. With this choice, the divergence

0% becomes
07 (x) = pug?{0® + a%) — 3frp?o + 4ec. (8.17)

This agrees with our general theorem (6.11), since due to (8.2) the terms
1e2/2 (0* -+ n?), — fup?c, and ¢ are scalar symmetry breakers of dimensions
2, 1 and zero, respectively. In terms of ¢’ we find

8D () = (6 + a?) — famedo’. (8.18)

We can now easily caleulate any matrix elements of % in the tree graph approxim-
ation. For example:

(N (P) 109 N (@) = — famo? —JBH_ _ 5" (8.19)

mcz — q2 mc2 — q2

, orer Mo 2
@) 1021 7)) = 2ot —fum® T = 2t — fuofom g (8:20)

Mme™ — ¢ c
' 3Jo0s Mg 3¢2
(@ 0) 162 0(p)) =2us* — famo® S57—5 = 2mo® — famofons m_?__q (8.21)

These matrix elements satisfy at ¢ = 0 the fundamental low energy theorem
(2.11).

The SU(2) x SU(2) breaking term —2X = f u?c and the divergence of the
axial current have the dimension one. Therefore our equation (4.32) should be
true. Indeed, the term linear in ¢” in (8.18) gives us

Mo

— —famgtor g=— T (8.22)
14 Vr

such that (4.32) for d =1

Mo

Jorn = ¥ (1 - ‘u2 ) (823)

M2

leads to the correct s coupling.
Further, the matrix element (8.20) is once substracted taking at ¢2 = oo the

value
(n(p') ]agl n(p»q’—mo = 2#02 = 3H2 - mgz (824)

which agrees with (4.33) for 4 = 1.
Notice that in the model we have exactly the situation which was the basis of our

assumptions of Section V. While 02 is once subtracted between pions, the
symmetry breaker X is always o-pole dominated. For this reason our theorems
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(6.1)—(5.3) about the size of the X-term are necessarily correct. The 02NN
vertex (8.19) is unsubtracted and therefore the coupling g .ny = — m/f. agrees
with the general result (3.13) if one uses the model’s value for y (8.22).

From (8.21) we suspect that the 62 6% ¢% vertex will be subjected to a similar
theorem as (4.20). This can indeed be verified by means of Ward identities. Since
this coupling is most academical, though, we shall not consider it any further.
Notice that, due to appearance of the operator (uy2/2) (62 + #2) of dimension two,
the symmetry limit X — 0 causes only the pion to have zero mass (becoming the
Goldstone boson of spontaneous breakdown of chiral symmetry). The o-mass is
still finite. If we want both the chiral and scale symmetry breaking to be caused
by the same term 2*0), we have to set u,2 = 0 and find

Mo = 31> (8.25)

i.e. the o-mass drops to about the size of the pion mass. This is clearly incompatible
with experiment.
The linear o-model can easily be modified to include the case of the divergence of
the axial current having an arbitrary dimension d. For this we simply take as a
symietry breaker
Ysp= — 2 = fro % plo(c? + m?)d-Di2 (8.26)

such that

04 = dpo 2 pPa(a? + Aa¥)U-D2 = f_uiny+ ... (8.27)

The value ¢, is now determined from
P00 — Aog® = [rpPd (8.28)

while the meson mass formulas become

My = pe® — Aog® — i P (d — 1) (8.29)
Op
Me® = We? — 3 Aoyt — £EM2(d — 1) d. (8.30)
0
Inserting (8.29) in (8.28) gives
e f—ﬁ 2 (8.31)
Ty

If we want m,?* = u? it follows that again oy = f,.
1t is obvious that the couplings x NN and ¢ NN are just the same as before. For
onw and coo we now obtain additional contribution from X'

’ ! 2 _/2‘7;_1/2
a4 Z) (1 2 ey

Oy 0y’
d d— 1 a2
= it ao{1+d—+<dw—1)§°—+ =
U
o (d -+ 1) (d — 3)] o3
Fa- -5 +(d——1)[1+ L }2603+.

(8.32)

10) Up to the trivial e-number term.
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giving :
1
O (,100 A+ fpog(d — 1) (d — 2) P 3) o' 2. (8.33)
0
Combining this with (8.29) and (8.30) we find
M2 9 m2\ 4
f""’“:—an (1+(d— )mG2)a:r (8.34)
and therefore
Mg My
o == T2 (14 4= D7) (8.35)

This verifies our general result (4.33). The direct coupling of 02 to ¢’ is obviously
also in this case

m
—_ _—g. 8.36
Y A (8.36)

This can be seen as well by expanding
67 = ul?(0®+ a2 + ¢ —d) X+ 4ec =
= (2pe® — (4 — d) dp?) fro” + po® (6 + A®) +

4@ —4)(d—1) %2 (da’® 4 n2). (8.37)

The factor of ¢’ is indeed equal to m43/y as it should be. In this form we can also
see the subtraction constant appearing in the 8 2 v vertex. The term « 12 shows

w(@) 02| 7PN g = 20" + (d — 4) (d — 1) p?
= —mg? + (4 — d) p2. (8.38)

Also here, the term X is dominated by ¢’ with the normalization X = —du?f.¢’
which agrees with the general result (5.1) if we insert there y from (8.36).
Notice that we can combine eqns. (8.29)—(8.31) and bring the mass formula for
mq2 to the form

Mt = (4 — d) du? — 2ug?. (8.39)

If ue? =0, our Lagrangian has only one c-number J-term, apart from — 2|
breaking scale symmetry, and our formula (6.37) should hold. Indeed, if we insert
y = — mq/f= and ds =0, (6.37) coincides exactly with (8.39).

If, in addition to u2 = 0, also d =4, the o-particle becomes massless. Since the
pion mass is still u==0, the o-particle is apparently just the Goldstone particle
of a spontaneously broken scale symmetry. To see this consider the energy
momentum tensor 6, of (7.15):

1
@,uv = @fv + E (E] FJuv — ay 8v) (62 -+ xz)' (840)

3 Zcitschrift ,,Fortschritte der Physik™, Heft 1
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Between pions, only the terms
1 ) 2
Oy = 0,7 0,7 — g, (E (8,7) — % ﬂz)

1
+ E (L__Jg,uv - a,uav) (J\t2 + 2000,) + te (841)

contribute. Then we obtain for the form factors F, (¢%), F,(¢?), defined in (7.25),

Fiig)=1
1 fr GonnMs
Fo(g?) = — + — . .
() = 5 + 5 (8.42)
But
Mg? u?
JornMg = — fn 1 - (d - 2) m02 (8'4’3)
becomes for d =4, m,2 =0
2u?
JonrnMe = — 7""— (844)
such that
1 2 u?
RA=g-5a (8.4)

just as is necessary to ensure the tracelessness (see (7.29)).

It is interesting to see what happens to the matrix elements of ¢2 if a small scale
breaker u,®2 = — %/, is present in the Lagrangian. Then (8.39) gives m,? = &2
and the matrix element of ¢ between pions becomes

2

(n () 169 | 7 (p) = 24t + 20 gL,

The result is zero for any finite g2 except for ¢2 = 0 where (z(p) |22 | =(p)) = 24>
Thus, close to the scale invariant limit, there is a strong singularity at small ¢2
making ¢% run extremely fast from 2u? to zero.

We can use this model also to illustrate the defects of some of the “proofse
claiming to show the impossibility of a Goldstone symmetry.*!) One considers the
commutator

[D(0), Hl = —+H| 0} (8.46)
to demonstrate that D (0)] 0) has zero energy
HD(0)]0)=0 (8.47)

such that either D(0)| 0) = 0 (i.e. exact symmetry) or the vacuum is degenerate.

In the latter case one uses the commutator of H with the conformal transformation
K,:
[K,(0), H] = —2¢D(0) (8.48)

41) See the first two of Refs. [35].
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to obtain
(0[[Ko(0)H] D(0)| 0) = —2i (0 |D(0) D(0)[ 0) = 0. (8.49)

This shows that the state D(0)]|0) has zero norm from which people conclude
D(®)|0) =0, i.e. exact symmetry.

However, this type of state of norm zero is nothing bad in a field theory containing
a zero-mass particle. Consider our model for d = 4, u,* = 0. Then D(0){0) is just
a state of the Goldstone boson o of momentum zero:

D(0)]0) =i %’” as+(0)] 0Y. (8.50)

This is quite a necessary state of affairs in order to make the field ¢’ (0) transform
according to

I'D(0), ¢’(0)] =6’ (0) + 09 = ¢"(0) 4 fr (8.51)
or

i {0][D(0), ¢’ (0)]] 0) = fr. (8.52)

Even though the state a,~ (0)| 0) has zero norm,*?) the product with a field as singu-
lar as

d3 )
o (@) = f 3 (5, (4) + ) (8.53)

gives

P a
Ol 0010 =52 [T 0lm@aroio =5 @5

Since a,* (0) | 0) is an isolated state of norm zero there is no problem with the axioms
of quantum mechanics: Any wave packet formed of a,+(q)| 0) will have a non-
vanishing norm.
Finally, we would like to use this g-model to demonstrate the danger of deriving
conclusions concerning the size of the Z-term as long as we do not have specific
ideas about PCAC breaking (see p. 16).
Suppose we want to include the effect of the higher singularities in the mass
dispersion relation for ¢4 correcting the Goldberger Treiman relation (4.14). This
can be done most simple by adding to the Lagrangian a very small PCAC breaking
term

L PCAC breax = — Mg Y () g’(x) . (8-55)

This term will enter into ¢ A as 43)

PA@) = 5 = frpteula) + mo Piyse (8.56)
such that between nucleons
(N @) 124 ()| N (p)) — [fnm P m} PipeW  (8.57)

£2) Remember, our boson normalization amounts to [as(q’), as™(q)] = 2¢,(27)* $*(¢" — ¢).
#3) Since (F¥, —¥iy,t ) transforms in the same way as (o, @) (see (8.2) and (8.3)).

J*
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and the Goldberger Treiman relation becomes

MG = [afrxy + Mo (8.58)

From the experiment numbers (see (4.14)) we know that m, should be chosen
~ —120 MeV. This gives only a 109, contribution to the huge pion pole term
at ¢2 = 0.

For the X-term, on the other hand, the situation is quite different. The total

symmetry breaker is
Y= —fep2do + my P (x) ¥(x) (8.59)

yielding between nucleons

(N @) 12O N (0) = ~ fapd g+ mo (8.60)

[+

Now even though g.yy is quite large (v —15) and there is the possibility that the
factor d could be 3, the large denominator m,2 at ¢% — 0 makes the first, unsub-
stracted, contribution never outweigh the term m, (the largest estimate is
fr: /u,zlmc, R~ 3gGNN ~ —160 MGV)

Thus we see that in spite of PCAC breaking effects being small in matrix elements
with a close lying pion pole, it might well become dominant when only the high
o-pole is present.

It iy curious to note that in this model the on-shell value considered by Cheng
and Dashen as the XZ-term

2

(N @) 2] N (phop= f* [A (0,2 12, 2, ) — g’;;l"] (8.61)
ig, in fact, given by the unsubstracted part of (8.59) only.
If we abstract what are possibly the model independent features of this picture
of PCAC breaking we conclude that the on-shell determination of X' by means of
(8.61) should follow the general formulas (5.2) —(5.4) while the true off-shell value
{(5.5) as appearing in the low-energy theorem and evaluated via the Fubini-Furlan
method could quite possibly be smaller by substraction terms of the order of
100 MeV. As we see, this conclusion is roughly born out by experiment.
Certainly one can introduce also PCAC breaking by using a second chiral pair
of fields ¢ and 7 of higher masses. Due to the additional parameters one would
then be able to fit the Goldberger Treiman relation without determining the
substraction term in (8.60) to be equal to m, = —120 MeV. All we wanted to
demonstrate with this model is the general expectation that PCAC breaking should
have dramatic effects on such tiny expressions as (N |X| N) ~ 25 MeV. As
always, people should be careful in not overstretching simple approximative
ideas into regions where common sense casts strong doubts on their validity.

IX. Scale Properties of the Non-linear g-Model

While linear chiral Lagrangian models allow to for an adjustment of the dimen-
sional properties by using factors of the chiral invariant (02 + %) of dimension
two, the conventional way of doing the same thing in nonlinear Lagrangians
proceeds via the introduction of the so-called dilation fiel y.
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Consider the simplest non-linear Lagrangian obtained by eliminating o in the
linear o-model [44]

F == % [a‘u;,-; ot -+ ay Vfrc2 — 2 ou wﬁz — “2]+fn”]/fnz — w2 fﬁzyz
= Do De VTR — futu, (9.1)

The covariant derivatile D, is defined as

D#ﬂa = d’ab (ﬂ).a#ﬂb
with
1

1 1
dab(n) - 6ab + f;-; l:anz R - an_2 = + fﬂ] Tq 7Ty (92)

Since the axial charge transforms zr as
[Qu® (o), 7 (@)] = i VI3 — 2*(x) by (9.3)

we see that if we want the axial charge to have a definite dimension ), we have
to assign the dimension zero to the pion field*s). [40, 5]. In that case we sce that
¥ consists of terms of dimension two and zero only.

If we introduce the dilation field y with a non-vanishing vacuum expectation
value, say (0 ]y|0) = y, Wwe can construct Lagrangians like

1 B
¥ = (D) 1 + fr® V2 — 7 'L’ +
1 Ho® A
+ o @GPl — 5+ gt e (9-4)

which have the property that the chiral symmetry breaker and therefore also

oA (x) = fruPa(x) 1%/x0"

have dimension d.
The value of y, is, as usual, determined by the minimum of the potential

2 i
V=5 — Tt — e VIE— 2 gt o (9.5)

which gives the relation
pose® — A xo* = i frPd. (9.6)

44) Which is then necessarily zero from the charge SU(2) x SU (2} algebra.

15) Notice that any bona fide axiomatic field of dimension zero is necessarily a constant. For
our phenomenological fields introduced to enforce Ward identities we don’t habe to worry
about such theorems.
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If one introduces the field y* defined by y = y,(1 -+ by’) oscillating around zero,
V, becomes

Ho? 2 A 4 2,2
V, = o X" g Ao — f2u* + cf +
1 %
+3 [t 70> — 3" — pPfPd(d — 1)]b% "2 + 5 2. (9.7)

The vanishing of (0 |.£ | 0) enforces

i

) %ot 4 fEut (9.8)

_
c = 2+

From the quadratic terms in (9.7) we find the mass of the y particle

my® = [pe® xo? — 3Axe* — p*fPd(d —1)]b° (9.9)
which becomes with (9.6)
my? = —2u2y,20% + (4 — d) db?uf;2 (9.10)

The vertex of y with two pions is given by the Lagrangian
ul
‘fxm't =b (E#Jr@“:!t— —é—dﬂz) x’. (911)
This amounts to an on-shell coupling constant of [40]

us
G = —bm, (1 + (d — 2) Eﬁ) (9.12)

X

in agreement with our theorem (4.31) if we identify
y = —bm,. (9.13)
This identification can again be checked directly by looking at the term in
0F = uPy? — (4 — d) fut® VI — 12 20" + 4o (9.14)
linear in ¥’. Expanding ¢ we find
0D = p*xo* (1 + 267" + 1) — (4 —d) fn2M2(1 +dby +

2
+%d(d—1)b2x’2+ (4—6l)%.7t2—|—---+4c=

d(d — 1
— 2pr — @ — d) fRur )by — @ — ) e D D e
2
+ (4—d)§”2=
2 dd— 1 2
R R YA e L R

(9.15)
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The subtraction in the ¢%n= vertex comes about by a mechanism slightly
different from the linear o-model. From (9.15) we first find a econtribution
(4 — d)u?. But the effective vertex (9.11) has in momentum space the form

Vinr = —b(@* + (d — 2)u?) (9.16)

such that the complete form factor reads

2
My

2 2
My — q

(@) 162 =(p)) = (¢ + (d — 2) p?) +@E—d)p  (9.17)

which gives us indeed the value (4.32) for ¢* — cc.

In this model we can also check our spectral function sum rule (6.36). If we choose
to> = 0 there is only one operatorial scale breaker of dimension d and equation
(6.36) should hold with d = 0.

From (9.10) we find for w2 = 0:

m2 = (4 — d) db®u2f,2, (9.18)

which indeed agrees with (6.36) using (9.13).

Notice that if in addition to g2 =0 also d =4, equs {9.6) and (9.8) show that
also ¢ =0 and the Lagrangian becomes scale invariant with m,? += 0 and m.2 = 0.
This situation identifies y as the Goldstone particle of scale invariance.
Obviously, the essential difference between this model and the linear o-model of
arbitrary dimension d is that the direct 22 ¢ coupling b = — y/m., is a free para-
meter. In the linear model it is the property of ¢ being the chiral partner of & that
fixes this value to be 1/f.. Here the dilatonis an SU(2) x SU(2) singlet which is
coupled completely independently of the pion. On the one hand, this is quite a
pleasant situation since, as we noted before, —m,/f, appearently overestimates
Jonn- Here we can correct this defect by setting y ~ —5. Unfortunately, however,
this adjustment makes the s NN coupling come out too small.

To see this let us include the baryons in this Lagrangian in the same way as in the

linear o-model only that }f.2 — a2 is used instead of ¢ in the interaction term,
and a factor y/y, or e*” has to be introduced to raise its dimension up to 4. Then
every statement concerning the baryons remains the same, except that the free
parameter y appears instead of — m,/f,. Therefore we obtain for g,xy the
expression (3.13) which leads with y ~ —5. to

m
~ —b. X — &~ —1T.
JonN .

The linear o-model just managed to keep gonn & grwn = 13.5 at the cost of the
too large value of y = — mq/f, &~ —T.

If theratio g,nn/¢snn Keeps staying up at around 3, also the unsubstractedness of
the ¢ 2NN, which is common to both models, will have to be abandoned. At
present, the data on the o-couplings are sufficiently uncertain to relieve us from
such a conclusion.
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X. Scale Properties of a Non-linear SU(3) X S U(3) 6-Model

Let us now see wether it is possible to reduce the breakdown of scale symmetry to
the same source as the breakdown of chiral SU(3) x SU(3) symmetry. The
standard Lagrangian for broken chiral SU(3) x SU(3) symmetry consists of an
octet of baryon fields B; belonging to an (8, 1) 4 (1, 8) and of scalar and pseudo-
scalar meson fields belonging (3, 3) 4- (3,3) representation of SU(3) x SU(3). If
F; are the octet generators of SU(3) and ¢ and ¢ denote the rotation angles of
vector and axial transformations, the baryon fields transform according to

UABU = e #wnliglys) B (10.1)
such that the kinetic term of the baryons

¢ = By*8,B (10.2)

is SU(3) x SU(3) invariant.
It is convenient to decompose B into its chiral parts

1 1
B = [(1+y9) B+ (1—yp)Bl=+ [B.+ B] (10.3)

ransforming irreducibly under the commuting SU(3) groups generated by

Fi=F (%) F-=F (1 = ”5) (10.4)
in the form b
U-B:U = ¢~ B, {g} =g 7. (10.5)
This form offers going from the octet indices to the 3 x 3 matrices by means of :
B,t? = >/ L A B = )a’- (10.6)

i=1 ]/ ]/2
Obviously the matrices B,*? transform according to
U-1B=U = ¢ Hil¥2 B ({342, (10.7)

With this transformation law, B+ can easily be combined with any meson fields
matrices of the (3,3) + (3,3) representation.
Such a matrix behaves under SU(3) x SU(3) as

U-IMU = e-ie/2 Mei# 2 (10.8)
UMY = e-i81/2 M+eled/2,
Therefore

oy — % [tr (B, MB_ M%) - tr(B_ Mt B, M)] (10.9)



Broken Scale Invariance 41

is obviously a chiral invariant. The connection of M with fields u,, v, transforming
in the way used in Sect. VI, equ. (6.7) is obtained by decomposing M into its
hermitian and antihermitian parts:

|23
M = D" (u, + 17,) _; l°~]/— 1. (10.10)

a=0

We shall construct such fields %, and », in the standard non-linear fashion8) [41]
out of a pseudoscalar octet

P;=(m K,K,n) i=1,..,8
and a scalar quartet
S, = (», #) r—=4,5,6,17.
If F;, F.® denotes an arbitrary representation of SU(3) x SU(3)*"} (for example

the octet representation used in (10.1}), then the nonlinear transformation among
the fields P; and 8, is defined uniquely by the requirement:

8 7 8 7 3
iZPiFi 28Ty iZPYF® iZSFr {ZW ' Fot Wo'F? (10.11)
gel et =el e’ X el
where
g = e~ UpFHFEd) (10.12)

is an arbitrary SU(3) x SU(3) transformation. Let now A,, A, be a linear
(3,3) & (3,3) representation in the space of the matrices F;, F';5 47). Then the fields
Uy, U, can be defined by

8 _ igPiFis i;'SrFr —lerFr —12871711‘71
D (ug Ay + vg 1) = Ce 7 et (Ay+c'Ad)e 0 e ® (10.13)

0

and are non-linear functions of P;, S;:

1 1

E) ¢’ S, 8ifriafisi — 5 PiPj (d;'ot; + C'd;'sb) Aiva +

Ug = 5 [6510 + C’(sas - C”Srfrsa + 5

1 1 .
+ 5 ¢'8, P Pifrsadivadiny — ) ¢ 8: 858, frsifsiafiis + 0(f161d4)] (10.14)

Vg == ([ Py (dpoa + ¢ doga) — ¢ P8, frgidyia + O (field?)]. (10.15)

8) The author thanks J. Honerkamp for discussions of his paper Ref. [41].
17) For example

A A
Fi=1x o Fe=yp;x o

A; . A;
Ae=3’o><?l, Ai:@%'}’ux?!
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Note that the parameter ¢’ denotes the breakdown of SU(3) symmetry in the
vacuum, since

0 fug| 0y =&
0 |ug| 0) = {c’. (10.16)
If ¢/ =0, the vacuum is SU(3)} invariant while ¢’ = _]/é amounts to a chiral

SU2) x S8U(2) invariance of the vacuum. The standard assumption of most
models is ¢’ = 0 [30].

We shall not go into the details of the purely mesonic parts of the non-linear
Lagrangian. They have been dealt with extensively in the literature [41]. We
only write down the relevant terms needed for our discussion.

The chirally invariant meson Lagrangian leads to massless mesons §,, P; de-
scribed by

8 7
Ly = % [Z' fp, 0. P; 0#P; 4~ > f5, 6.8, BV“ST]. (10.17)

1 1

Then the SU(3) x SU(3) breaking
|
Lsp= —(Ug + cug) = —¢ [(1 + cc’}y — Bl cc’' 8 Sifrsifrsi — (10.18)
1

— 5 PP, (i + i) (T + i) + 0<fie1d3>] (10.19)

lifts these masses up to values given by the equations:

frtmpt= g = — é (V2 + ¢) (Y2 -+ ¢) = =L Wrlo) Wr(o)

peme= K = — 2 (V= 5] (12— §) = —tWal Wute)
fo2ml=n = — é(]/@ —¢) (]/§ —c)y= —LW,(c) W, ()
f.lm,2=x = — —g— % cc'. (10.20)

These equations can be inverted, solving for the parameters , x, ¢’ in terms of
the better known parameters 7, K, ¢:

1 3r-+2
»_ L 10.21
(= - gl Dt 20K (10.21)
1 1

¢ = —=212[rK — (r + 1) @lj[(r + 1) w + 27 K] (10.23)
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with one constraint
4K + 4% —3n—m =0 (10.24)

expressing the pure (3,3) 4 (3, 3) character of the symmetry breakdown. In an
(8,1) -- (1, 8) breaking this term would be non-zero.

Notice that the chiral low-energy theorem (6.26) is necessarily satisfied in this
model

0 |ug 4 cug) 0) = — (0 | L5/ 0) = (1 + ¢c')

4 4
:5(1_,4%):@_3% (10.25)

Due to the non-zero vacuum expectation values of u, and u,, masses are generated
in the chirally invariant meson-baryon interaction Lagrangian (10.9).

Notice that nothing in the world forces us to use, in this coupling, the fields u,, v,
with the same parameter ¢’. One could take any other value and even use different
values of ¢’ for either one of the two meson fields appearing in (10.9).

With this freedom it is no problem to fit the baryon masses®), and the mass term
can be written immediately as

8 —
fBM = Zmi BiBi e (1026)
1

Now we can proceed to impose simple scale properties upon this Lagrangian. We
want to see wether all terms can have dimension four, except for ¥gp which we
want to have dimension d. This is achieved by writing [19]

¥ =554 Lye®® + Lpyet” 4 Lspet 4- i

2b? (e —

d d —4
— {0 |£55] 0) vy et | — (0 [£sg| 0. (10.27)
As a first result we obtain the coupling strength of the dilation ¢:

JoB:B = _'_mez(Sij - 7)% mB;(Sij- (10.28)

G

The value y can again be read off the coefficient of ¢ in ¢
0% = — (4 ~d) ¥spe?" = (4 —d) (1 +cc¢’) L dbo + --- (10.29)

which tells us that

3

m;’ (4 —d) {1+ ec') tdb. (10.30)

48) Since there are two meson fields, the mass formula is a product of two Gell-Mann Okubo
formulas.
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Taking b to the left hand side as —y/m,, we find

Mt
2
14

= (4 — d)yd{0|u| 0) (10.31)

which verifies our sum rule (6.20).

This model illustrates an important point concerning the discussion on the size
of the X-term. Due to the SU(3) dependence of g,3; 3; the matrix elements of u,
and ug between baryon states do not allow for a perturbation type of treatment.
In fact, the terms u, and ug in £gpet?” contribute®?)

1
(Bj |ug| B;) = {dbg,p; g po

o

1
(Bi|us| By = ¢’ {dbgonm ——- (10.32)

G

Instead, the matrix elements of u, and ug are SU(3) broken both in the same way
as the masses themselves. Therefore those of w, are almost SU(3) invariant in
spite of its index 8. If the vacuum is SU(3) invariant, (¢’ = 0), the mass splitting
of the baryons is entirely due to the chirally symmetric part of the Lagrangian ¥ gy,
and not to ug!

XI. Coupling of ¢ to Vector and Axial Vector Mesons

We may extend the set of Ward identities derived in Sect. IV. and include also
three point functions

© 17(2,(y) 4,(2) 4,(0))] 0) (11.1)
and

O1T(2,(y) V,(x) V2(0))] 0) (11.2)
and their derivatives.
The parametrization of these vertices will involve, besides pions, also vector
and axial vector mesons and the Ward identities will give relations between
their couplings. For simplicity, we shall study these couplings directly in appro-
priate effective Lagrangians.50)
We shall take the standard point of view that vector and axial vector mesons
dominate the corresponding currents. It is well known how to construct Lagrang-
ians of this type. We shall use the following model:44)

r=1 [(A#a)z + (Ayarw] + Futo —

2

1 m
— 5 P B + G, G) + --2°— (02 + @) —e¢ (11.3)

19) Notice that due to PCAC no direct BB terms are allowed in contrary to Ellis’ Lagrangian
[42]. See the footnote on p. 24.

30} For the treatment of these couplings via Ward identities we refer the reader to the original
literature [43].
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where o, 7 are non-linear representations of SU(2) x SU(2) like those employed
in Sect. IX. We shall assume ¢ to have the vacuum expectation value

_— 1 1
g = VUﬂz—ﬂz =0‘0_ﬁ02 znz—gg;i (ﬂz)z“—*"' (114)

and find it convenient to define, in analogy with the linear model, a field with
vanishing vacuum expectation value

, 1 1
T= =g ™ g N (11.5)

The expressions 4, denote covariant derivatives and are defined as
A,0= 8,0 + yo@, T (11.6)
A= 8, + yy0, X ¥ — peoa,= D,x — y,da,. (11.7)

The fields v, @, are supposed to describe vector and axial vector mesons g, 4,
and F,,, G,, are their covariant curls

F, =f.+yrv. X0 |+ ya Xa, (11.8)
= 0,0, — 6,0, + yU, X v, - ya, X a, (11.9)
G, = 0,4, — 0,4, + yyU, X @, + y@, X v,

Apart from the mass term, this Lagrangian is invariant under all space tim
dependent SU (3) x SU (3) gauge transformations.

00 =0, dm(x)=a@) X xx)

v (x), = a(x) X x,(x) — yi dux(x), da,(x) =a(@) X a,() (11.10)
and ’

S0 = alx) w(x), dm{xr) = —a(x)o(d)

dv,(x) = a(x) X a,(x), oa,(r) =a(@) X v,(x) — yi o0 (x).  (11.11)

As a consequence, the vector and axial vector currents ¥+ (x) and 4+ (x) obtained by
varying .# with respect to &%« (z) arise from the non-invariant mass term only:

D A T
8 my
Av“ (.’L') == (jaua(x) = — %— a# (;70).

These equations express the vector meson dominance of the model. The covariant
derivative (11.7) introduces terms of the type a,9"x into the Lagrangian mixing
up = and a, fields. One removes such terms by going to the pure vector field

A, (@)= a,(x) — ED, 7 (x) (11.13)
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bringing the Lagrangian to the form:

1

= [(8,0" + pom A, + poéaD, )

-+ ((1 — yaé0g) Dyt — pobo’ Dy — yood, — VOO',Ay)zj + [P0
1
- Z(fpﬁ + yOA,u X Av + ‘}}DEAM X Ay _E_ VOE.DPJT X A,, + ’}}0521)#.7‘ X _D,,.ﬂf)z ———

1 M2
= DuAs — DyAy + E7of X ) + Tﬁ @24 a2 —c (11.14)

where in analogy to D,sr we have written
DA, = 6,4, + yyv, X A,.
The 7.4, mixing terms are eliminated by setting
Mm2E — 00 (1 — yoé0y) =0 (11.15)

or
& = po0o/[Mo® + (Y009))- (11.16)

By this mixing procedure one produces additional kinetic terms of the pion field
which now appear with a factor

M2 | I .
[me? + (oT0)t] 2 (D= 27 2 (Du) (11.17)

such that one has to introduce a properly renormalizes pion field by

o= 2\, (11.18)

Due to this renormalization factor the mass of the pion becomes

Mp? = = p? (11.19)
Go
such that
J=0,2. (11.20)
In addition, the PCAC condition
0A = futm = fZ'V2 2o (11.21)

teaches us that  has to be chosen
f=2Zzq. (11.22)
The masses of vector and axial vector mesons p and A, satisfy
M2 = my?

ma? = Zmg. (11.23)
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such that the experimental ratio determines Z ~ 2. From the definition (11.17)
of Z, we recover the KSFR relation
2 Mo 11.24
7o 2 ,f-rcz * ( . )
The Lagrangian (11.3) has still some problems in explaining the A;pm width.
Therefore one usually introduces in addition a so called é-term

1
o= —8 %’5 [5 F,dtm X A+ G dem AvaJ. (11.25)

With this term the pw and A, pr couplings come out asb!) [4]

my, (3 — 6
Gonn — _4'—

V2 fx
Gaom = %i @ + o)
haon = ;?J_fl 6 (11.26)

By choosing 4 ~ — 1/2 one can get
Ionn &~ 110 MeV, ['jon &~ 100 MeV

roughly in agreement with the experimental widths. There was always a discrep-
ancy of the longitudinal to transverse ratio.

)
gL ~ frl: 2

gr 2
T+

51} The standard definition of these couplings is

&
%

(11.27)

L = Gomm 0¥ AKC, T + GuonMpQulht X X + hyy.fm, @, 84 A X O,
such that the widths become

2 2 23y3/2 _ 2
e = Jorm L me” — Ama P g0 (20 Mev
i 12 g2 1

1 5 m 4>
P

A~ 6.2[58 + 228 1+ 25| MeV

where the longitudinal and transverse couplings are defined by [45]

gr= —¢ 27 et -
= deTT p— oo AR —f4pm me
1 M y2 4 mp?
91 = —hgor — — gp A—z—p_ ~ (—haen 5 6 4er) ——
mg 2my e
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with the measured value [46]5%)

9z

gr

~ 1.4

originating in the models failure to produce odd nn — nx, ®p = wp, nd; - wd,,
scattering amplitudes which are asymptotically well behaved. For this reason the
couplings do not satisfy the corresponding Adler Weisberger relations®3). Therefore
some more terms are really needed in the Lagrangian to inforce the correct high
energy behaviour.

For the purpose of showing how to deal with scale invariance we shall be satisfied
with discussing only ¥ + ¥;. Obviously, the Lagrangian (11.3) is made almost
scale invariant by writing it in the form

1 -
¥ = E [(3,,0‘)2 + (Ayﬂ")z] e2bo + fﬂz()'edb“ _
1 ’ oy 1 T (2 2) p2b0
— 7 Bl + GuGr) + - @2+ o) e
7 12 d 46 7.9 d
T we g = ftea (= )+ 5 (11.28)

where the only breaking comes form the 2 term of dimension d and the c-number.
By looking at the form (11.14) we see directly that the absence of 4,7 mixing
terms due to (11.15) implies the absence of the 6.4, 7 couplings. For cpp and 6 4,4,
on the other hdand, we obtain contributions

£ =b[m2v2 -+ myle (11.29)

showing that kg, = hoqa = 0 and®)

m 2
Jopp — 2bm92 = —2y mp
a
2 M 4°
Josa = 2bm 2 = —2y proat (11.30)
52) Ref. 46) measures
|97 | = 48+ .2
o - V:2_9L

Notice that this value is predicted on the basis of Adler Weisberger relations in Ref. [47].
53) Even though the low-energy theorems derived from current algebra are certainly fulfilled
by construction of the chirally invariant Lagrangian containing PCAC.

54) With the definition:

1
L syv = Jevy My0 V,u Ve + hopy 71_1- o, 3#, V,o V_M.

v
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XIIL. On the Coupling of ¢ to Two Photons

Let us now see what our simple Lagrangian model has to say about the oyy
vertex.’) We make the assumption that the photon couples in the standard
fashion to leptonic currents /,°(x) and communicates with hadronic matter only
via a gauge invariant direct interaction with the ¢® meson®). [4§]

In order to be specific let us assume the matter Lagrangian to be of the type

fh:f+fd

discussed in the last section. In this Lagrangian we take out explicitly the o°
field in the form:

1 2
(0% = — g ful™ + m—; 0%,0% — yo% I, (0®) + ¥ (other hadron fields)

(12.1)
where % is the field tensor of the o° field

0, = 0,0° — 8,0, (12.2)
and I, (x) is the neutral hadronic current. Since our model does not contain any
weak interactions this current is conserved.

eI (x) = 0.
The photon field 4, interacts with the leptonic current in just the same way:

| _
Ly = — T 4,44 —edArI(x) + & (other lepton fields). (12.3)

Now according to the idea of vector meson dominance of electromagnetic interac-
tion all the interaction between leptonic and hydronic worlds is coming from a
gauge invariant modification of the mass term (m.?/2) 0, in (12.1):

2 2
Mg Mg i

> 0%2% — - m (yo. — eA,)2 (12.4)

The resulting Lagrangian is obviously invariant under the joint gauge transform-

ations:
ed, ~ed, — 0,0(x) (12.5)

v0.d = 0.’ — G (). (12.5)
55) For the Ward Identity approach see Ref. [15].

36) We neglet w and ¢ contributions for simplicity. They don’t change the result much, quanti-
tatively.

4 Zeitschrift ,,Fortschritte der Physik®™, Heft 1
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For a moment, the new Lagrangian seems to contain a mass term for the photon
field. However, if one transforms ¢® and A4, to new, physical, fields

. 1

0. (x) = :nyz (v0." —ed,) (12.6)
~ 1

A,x) = - (0, + vA,)

then & goes over into

1 i . m,2

gtot:_ZéMv2“1Ayvz+Tpéop2_
Yy ‘0#+eﬁ#)jh M -— 12.7
W(?}Q 2 V62—|—'}}2 ( )
e

Let us now assume that the Lagrangian %, has been made approximately scale
mvariant as described in the last section. Then the currents ,* have all dimension
3. So does I,,° by its definition. The mass term appears with a factor e, Obviously
the only ¢4 ,A* coupling that could appear would have to come from the term

— Y Fepp (M) (12.8)
Vez + ,},2 l/ez + yz

But inspection of .#* in (11.28) shows that there is no 4 40 contribution to the

hadronic ¢urrent. Hence
Goyy = 0 (12.9)

in agreement with our conclusion in Sect. I1I.
Notice that our Lagrangian allows us, in addition, to predict the ¢ particle’s decoupl-

ing®?) from photons and vector mesons

Jopy = 0. (12.10)

Both of these predictions are rather unfortunate from the experimental point of
view. As we said in Sect. IlI the vanishing of g,.. prevents us from producing ¢
in the Primakoff effect. If the model’s result on g, is true, also the colliding beam
experiment proposed by CrREUTZ and EINBHORK [49]

ete” — oy —ntny

will be searching in vain {40] for a ¢-resonance in the =+~ system when s is close
to m2?
2.

57) See the first of Ref. [40].
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XII1. Conclusion

By investigating the low-energy properties of some hadron vertices we have been
able to obtain some evidence for an approximate scale invariance of the world.
The scale properties of the Hamiltonian density become most simple if one assumes
the symmetry breaking to be mainly due to an almost Goldstone boson o.
Unfortunately, the mass of this boson is rather high. Therefore the assumption of
o dominance of the divergence of the dilatation current (PCDC) should be expected
to be a rather crude approximation for vertices where the coupling of ¢ is not very
large. Indeed, by using additional information from the chiral properties of the
world, we can show a subtraction constant to occur, for example, in the ¢Z ==
vertex.

Thus the approximation of PCDC is certainly much less accurate than good old
PCAC.

Since scale transformations form a group with a rather poor structure, there is not
much information coming from commutation rules of the scale currents with
fields. The main result is (see Sect. IV) that the dimension of a field tells us how
fast a vertex varies when going off shell in this particular field. For the pion we
showed the canonical dimension d = 1 to produce the smoothest off-mass shell
continuation.

The reader will have noticed that we have left out unitarity completely in our
discussion. Now one certainly may argue that the large width of the ¢ resonance
requires unitarizing our vertices if one wants to have any better than 409,
accuracy. However, we do not think that the intrinsic crudity of the approximation
of PCDC warrants such an elaborate correction procedure. All the frame work of
Ward identities and PCDC should be expected to give us is some rough ideas on
the order of magnitude of the ¢ couplings. With this reservation in mind we think
that the whole scheme provides some interesting addition to the framework of
current algebra.

We should also like to mention here that there are, in general, problems associated
with the covariantization of Ward identities as soon as we form derivatives with
respect to more than one current (for example in the T'(%,4;4,) vertex). In the
absence of a definite model one does not have a definite prescription how to pro-
ceed. For this reason we have not dealt with such cases in these lectures. Instead,
we have taken directly some effective Lagrangians in order to obtain predictions.
The reader should be aware of the model dependence of all such results. For a
complete study of this problem via Ward identities we suggest a study of Ref.
[43].

Finally, the whole idea that scale invariance is broken in some soft way may be
wrong alltogether. If Regge trajectories really rise up to infinity this is certainly
the case. Then the highly massive and energetic photon never sees pointlike
partons in deep-inelastic scattering [8]. There is no contradiction with the pheno-
mena of scaling if only all form factors drop off the same way.

As usual, we shall have to wait and see what will survive of all these hypotheses.

4%
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Appendix A: Some Theorems

We give here a brief derivation®®) [50] of the commutator (4.16)
1[0 (@) Q5(xo)] = (4 — d) 64 () (A. 1)

needed in deriving the Ward identity (4.19). The assumptions are:
1) In the commutator of the densities

i[0Z(0, x) A5(0, y)] = x(y) °* (@ — y) + Si(y) §;70% (2 — y) +
N
+ é; gt (y) G, e Gp, P — y) (A. 2)

the Schwinger terms ¢*» %= (y) all vanish.
2) The dimension of 4, is definite, such that durrent algebra enforces

1[D (o), Ag(x)] = (3 4 @ 0) Ao (). (A.3)

3) The dimension of ¢4 is d.
The proof proceeds in two steps.
First we integrate (A. 2} over d®x determing

i [ B [69(0, ) 4,(0)] = (0). (A. 4)
Commuting (2.8)
i [ 2020, ®) =iH + [D(0)H] (A. 5)
with 4,(0) we obtain:

5 (0) = 934,4(0) + [[D(0), H], 4,(0)]
= 8o4,(0) + i[H, i[D(0), A4(x)]] — i[D(0) i[H, 4,(0)]]
— 433 A4,(0) — i[D(0), 3 4,(0)]
= 43,40(0) — d 84 + i[D(0), & A4;(0)]. (A. 6)
Now from the basic property (2.4) of D (), the local operator A; (x) fulfils
i[D (o), 4; ()] =z dd;(z) + 4/ (). (A7)
As a consequence, & A; satisfies

i[D (@) #4;(@)] = wd 04, (@) + #4;(x) + P4/ (@). (A.8)

58) Qur derivation proceeds under somewhat weaker assumptions than that of Ref. [50]. We
do not require A, (x) and & 4, (x) to have a definite dimension.
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Such that (A. 6) can be rewritten as
x(0) =4 —d)04(0) — 40 A4;(0) + ¢¢4;(0)+ ¢4, (0). (A.9)

As the second step we observe that the Schwinger term §' is determined by
integrating (A. 2)

i [ @i [6D(0,®), 4(0)] = —8(0). (A. 10)

The left-hand side is evaluated in the following fashion: One uses the vector
property of &,,:

i[Moi, Zo(@)] = (90 — ®;8) Do () — Zi (%) (A.11)

to integrate
1[Mg;, D(0)] = f ddxx; 02 (0, x). (A, 12)

Then one commutes this with — i 4,(0) to get

8(0) = ([[Moi, D(0)], 4,(0)]
— —i [My; $[D(0) Ag]] + i [D(0), i[My; 4] (A.13)
— —34;(0) + A;(0).

Using the results (A.6) and (A.13) and integrating (A.2) over d*y we finally
obtain

i[62(0, x), Q5(0)] = x(0) — &;81(0) = (4 — d) 2.4 (0), (A. 14)

completing the proof.
Further, we want to show here that the result of the X-commutator (4.17):

2(8) = 1[Q5(x,), 04 (z)] (A. 15)
is always a scalar, if only the commutator
[24(0, ®), 0A(0, y)] = o'(y)2,0® (& — y) + o*(y) 0;0;0 (@ — ) £ --+  (A.16)
has no lowest Schwinger term o* (). For a proof we simply commute
[Mo;, Z(0)] = i[Mq;, [@5(0), 64 (0)]]
= —i[04(0), [Myi, Q5 ()] + i[Q(0), [ Mo, 2.4 (0)])

The second term vanishes since ¢ A4 is a scalar. In the first term we can use a relation
like (A. 12) to get

[Mo; Z(0)] = — [ d*ya;[0.4(0, %) 2.4(0)] = 0;(0) =0, (A.17)
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