Quantum Field Theory of Particle Orbits with Large Fluctuations
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We show that an ensemble of particle orbits with large fluctuations around their classical paths
are described by quantum field theory in the strong-coupling limit.
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Grand-canonical ensembles of gaussian random walks
can be described by quantum field theory @—B] Indeed,
the relativistic scalar free-particle propagator of mass m
in D-dimensional euclidean momentum space p has the

form
G(p) 1 /Ood —sm? _—sp? (1)
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The Fourier transform of e~*P” is the distribution of
gaussian random walks of length s in D euclidean di-
mensions

P(s,x) = (4ms)~P/2e 714 (2)

so that the propagator () is a superposition of gaussian

random walks whose lenghts are distributed like e=sm”

G(x) = /000 ds e_sm2P(s,x). (3)

If d-function-like interaction are added to the random
walks, their statistical mechanics is described by the eu-
clidean action

A= [ @ o0t + ot + Sl (@

The evaluation of the partition function based on this ac-
tion is usually done approximately by perturbation the-
ory order by order in the coupling strength g. The results
are divergent power series in g from which the physical
properties must be extracted by renormalization. There
exists ao-called critical dimension, here D. = 4, where
the action is scale invariant. If the physical dimension
D lies slightly below D., say at D = D. — ¢, the the-
ory appears to be still scale invariant, with fields ac-
quiring an anomalous dimension [¢] = 1 — n/2, and
the interaction becoming effectively ¢°+!(x), where § =
(D+2—mn)/(D—2+n). This is known as the renormal-
ization group approach to critical phenomena ﬂa] Al-
ternatively, it can be formulated as to strong-coupling
limit of the quantum field theory [4, [8]. This theory has
exlpained critical phenomena with high accuracy. In par-
ticular it has predicted the value of the critical exponent
« in the singularity of the specific heat C' o< |T'—T¢| ™ to
be a =~ —0.0127 in excellent agreement with the satellite
measurement Qexp, ~ —0.0129 E]

Thus gaussian random walks are a natural starting
point for many stochastic processes. For instance, they
form the basis of the most important tool in the the-
ory of financial markets, the Black-Scholes option price
theory [10] (Nobel Prize 1997), by which a portfolio of
assets is intended to grow steadily via hedging. In fact,
the famous central-limit theorem permits us to prove that
many independent random movements of finite variance
always pile up to display a gaussian distribution ﬂl_1|]

However, since the last crash and the ensuing financial
crisis, it has become clear that realistic stochastic distri-
butions in nature belong to a more general universality
class, the so-called Lévy distribution. While gaussian
distributions alway arise from a pile up of arbitrary fi-
nite steps, Lévy distribution emerge if these step have an
infinite variance. They describe that rare events, which
initiate crashes, are much more frequent than in gaussian
distributions. Such tail-events also occur in the distribu-
tion of earthquakes, with catastrophic consequences ﬂﬂ]

These are events in the so-called power tails oc 1/|z[t
of the distributions, with a < 2, whose description re-
quires a fractional Fokker-Planck equation HE]

[as + (ﬁQ)a/2]Pa(SaX) =0. (5)

In the limit o — 2, the Lévy distributions reduce to gaus-
sian distributions. In general the solution for P,(s,x) is
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where H22§ is a Fox H-function [15]. In the limits v = 0
and a = 2, this reduces to the standard quantum me-
chanical gaussian expression ([2). For v = 0, = 1, the

1 21 [ [%|?
Pa(S,X): 7TD/2|X|D/2 H2,3 <20‘S

result is
2 |(1/2=D/2,1)
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which is simply the Cauchy distribution function

[N(D/2+1/2)/aPHD]s/ (52 + [x|?)P/21/2,

From what we explained above it is clear that these
nongaussian Lévy walks are contained in the theory based
on the action (@) in the strong-coupling limit. Using the



results of Ref. [7], and the textbook [§] the effective action
of this strong-coupling limit reads

Aol — / d*a [6(x)(B%) " 2(x) + (ol ()], (7)

where 1 —1/2~ 0985, d=(D+2—-n)/(D—-2+n)~
5(1 —6n/5) ~ 4.83, and g, ~ 1.4.

The original field theory based on the action () is
extremal for fields that satisfy the typical Schrodinger
boundary conditions that ¢(x) must be single valued.
In the quantum theory this is the origin of all quantum
numbers. In the strong-coupling limit, on the other hand,
these conditions are no longer satisfied. Instead, the field
is multivalued HE], and by proposing such wave funtions
for strongly interacting electron systems in two dimen-
sions has earned Laughlin ﬂﬂ] the Nobel prize in 1998.
The strong-coupling limit may also be needed for an un-
derstanding of high-7, conductivity, which is often asso-
ciated with a non-Fermi liquid behavior of the electrons

[18).
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