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I, Introduction

Present ideas about the interactions between elementary parti-
cles are based on the concept of virtual processes which can be pic-
tured by means of diagrams. These diagrams occur either in a per-
turbation expansion of the scattering amplitude as derived from fieid
theory or in the unitarity condition imposed on an analytic S-matrix
thecory. In either case, the hope is that starting with a few—in some
sense fundamental —particles and taking into account all their virtual
processes, one will eventually be able to calculate the complete
scattering matrix and to recover all observed resonance spectra from
its singularity structure. To solve this problem completely, a summa-
tion of infinitely many diagrams would, in general, be necessary.
While for weak enough interactions we know about hierarchies of
strengths of diagrams and a finite subset of them may be enough to
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428 HAGEN KLEINERT

approximate the observations as well as desired, our knowledge about
such hierarchies for strong interactions is quite rudimentary.

The number of observed resonances has been increasing con-
tinuocusly over the paét yvears. Their masses and spins become larger
hand in hand, and the spectrum of their probably quantum number
starts exhibiting high regularities, Since this spectrum is generated
by a large set of strong virtual processes, it is quite suggestive to
ask whether or not one can use information on the spectrum directly to
take into account the effect of all the corresponding diagrams and thus
to obtain stringet restrictions upon the structure of the scattering am-
plitudes, or even to determine it completely. During the past year
there has been a considerable success in setting up such a theory for
the most fundamental possible interaction—the three-particle vertex.
The guidelines of how such a theory should be formulated have been
derived almost exclusively from the study of the dynamics of the best
known guantum mechanical system—the non-relativistic hydrogen
atom. The algebraic structure of its interaction with an external pho-
ton has become the model case of a three-particle vertex in which
some external particle can excite another one over a large highly
regular range of available quantum states. It is therefore gquite
worthwhile to study this structure in detail.

The goal of our study can be formulated in the following way:
We want to be able to express all information contained in the
Schrodinger theory of the hydrogen atom in a completely algebraic
language in which no typically quantum mechanical variables, like
internal coordinates, occur any longer but rather energy-momentum
variables of interaction vertices which permit a relativistic generali-
zation. The observation that there is a non-compact group O(4, 1),
whose maximally degenerate representation has a spectrum being in
one-to-one correspondence with the hydrogen spectrum, will be the
basis for our discussion (Section II). As we shall show, there exists
an extension of this group, O(4,2), which, moreover, allows for a
very simple description of all transition form factors of the process

H** — H*+*Y

in terms of simple group operations. (Sections III and IV.) In Sec-
tion VI we shall give relativistic infinite component wave equations
containing only external coordinates of the H atom but carrying com-
plete information on the internal structure through its current opera-
tor. An important relation between the conservation of this current
and the H atom mass spectrum will be discussed. In Section VII the
free states of the H atom and their connection with the bound states
will be given. Finally, the algebraic structure of the interaction will



THE HYDROGEN ATOM 429

be described in such a way that it can readily be generalized to par-
ticle physics (Section VIII).

1T. Group Theoretical Description of the Quantum Numbers of the
Hvydrogen Atom States
It has been known for guite some time that there exists a rep-
resentation of the group O(4,1) containing the quantum numbers of the
H atom in a natural way. 1} Recall that O(4,1) is the group of rota-
tions in five dimensions with the metric

1 ] 1
g = 1 1/ (II.1)

and is generated by the Lie algebra of antisymmetric O(4, 1) tensors
Lag (¢,B=1,2,...,5) with the commutation rules

[LQB'LW] = ng’CELB'Y' (II.Z)

The interesting representation can be given in terms of crea-
. . . . . 1
tion and annihilation operators of spin 35:

a

T, T _
rrarfbrlbr . (r_llz)

satisfying
lap.af1 =6, [b.bl]1 = 6__, (I1. 3)

and Pauli matrices

1 -i ! _
cr1‘(1 3 cr2_(1 j “3_( —1?' C = oy,

(11.4)
as
_ 1, 7 T N
Lij = 2 (a (rka + b frkb‘lj.
_ 1/ 7 i}
L, = -5 (alea-b a'ib>
' (11.5)
1 ¥ T
Lis = -7 (a'o,Cb —aCcrib>

I SR PR |
Lyc = 2i(a(:b —aCb).
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The representation space is then spanned by the basis
-1/2
Injn,m) = [nll(nzﬂm])!nz!(n1+Im])IJ

nl +m nz

n> +m
alT z aT bT bf " 10) mz 0
X { o N, I for (1. 6)
2 1~ -
af a; bf bg {0) m=0

The representation is obviously irreducible and also unitary, since
all L, 5 are Hermitian. The Casimir operators of 0O(4,1) have the
values:

- o _
C, = Lygl = -4

(I1. 7)

_ By o _
C, = Lyl L gL = 0.

The operators Ly ,L;, generate an O(4) subgroup which keeps the
total number of a! and b!, or also the operator

N = 2 @Ta+ptb+2), (I1. 8)

invariant, On the states Injn,m) we find

N|n nzm) n]nlnzm) (nl+n2+|m]+l)!nln2m). (1I1.9)

The other diagonal operators are
L3fn1n2m} = mln;n,m) (II.10)
Malnlnzm) = (n;-ny) Inynym). (I1.11)

If we do the following identification of generators

L. = orbital angular momentum
_ 1
N = NECET (11.12)

where H is the Hamiltonian of the H-atom, we see that we thus have
generated with O(4, 1) the complete bound state Hilbert space of the
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hydrogen atom in the parabolic basis which is used for the theory of
the Stark effect. In position space, the wave functions are given

by2

| _ _im¢ “i(g4n)/2 o £ Im1/2
Unynym@.ne®) = e Ng pome (n2>
(11.13)
Imi Im|
Ln1+|m ! (é/n)an_Hm |(n/n)
where £,m are the parabolic coordinates:
£ =r+z (II. 14)
mn=r-z,
¢ is the azimuthal angle, and Ny nm is the normalization con-
stant: 172
(_)n2+(lm|—m)/2r nI!nz! }1/2
= : (I1.15)
finzm Nn? L(r11+lmi)!3(nz+lmi)!3

In this representation, identifying the states ln1n2m> with
un,n,m{(€ .M, ¢), the angular momentum L and the Hamiltonian H be-
come:

2
L=rXp, Hz’;——f, (II. 16)

while the position representation of R; = L;4 is the so-called Rumge
Lentz vector:

R = 3(pXL - LXp) - 7. (I1. 17)

One may then ask: What form does the usual wave functions
¥ im(x) (on which L2 and L, are diagonal) take on our representation
space? For this, one has just to observe that

L=J+K, R=-T+K (II1.18)

defines L,R in terms of the commuting O(3) XO(3) generators of
a- and b-spin:

J = %aTg_a, K = %ngb. (11.19)
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On Injnym), O(3) XO(3) is diagonal since all a's, b's commute
among each other and therefore couple totally symmetrically to
j=k=nj;+ny+m = n- 1/2. One can also easily read off Eq. (I1. 6),
by counting up- and down-states, that

%(nz—nl+m), k., = %(nl—n2+m). (11.20)

iy = 3

If one now uses the fact that J and K commute, the basis on which L2
is diagonal is just given by means of Wigner's 3-j symbols

Infm) = (—)m(2£+1)§<1 n-1/2 -t/ 4 \In n,m). (I.21)

z(ny-njy+m),z(ny-nym), -

In x-space one has to identify |Ingm) with

2
_ —r/n
\Ifnﬂm(;&) = (\ F(n L2042 ,2 ) (11.22)
where
£+1 .
N, = —— [(mf)'r (11.23)
n (24+1) In Op-

and n, is the radial quantum number np= n-£-1.

Observe now that the group O(4, 1) can be extended unitarily
to ©O(4,2) on the same Hilbert space by introducing the additional
(Hermitian) operators

_ L/ i
L16 =53 a chb +aGcrib>
S UV U |
L46“ 2 (a Cb +aCb>
L56= N (11.24)

which close with the generators {II.5) under the commutation rules
(II.2) with «, B, v, etc. running now from 1 to 6 and the metric

1 1 X
g = 1 (I1.25)
-1 1

The group O(4,2) will be sufficient to describe in a simple
manner all the properties of the H-atom with respect to
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electromagnetic transitions. To show this, we shall make extensive
use of the O(2,1) X 0O(2,1) subgroup of O(4,2) containing only the
generators:

L L L L

3534 Ly57 Lggrlagrlyg: (11.26)

Define the operators

N = -a)n)

Nl_ = -azbl

Nf’ = -é'(az-fa2+ blTbl+1> %(Naz + Np, + 1)
N2+ = alszT

N, =a.,b

(I1.27)
and, as usual, their cartesian combinations
Nl - L(N.+ + N.‘)
i 2 i i
2 1 + - :
Ni = 53 Ni - Ni ) (11.28)

Then we see that also these operators commute according to
0(2,1) X0(2,1) rules:

[NliN IJJ = igkkle (i,j,k= cyclic, running from 1 to 3)
2 2 2

i _ 1
[Nl ,NZJ =0, g = ( 1 _1>. (11. 29)

In terms of Nii, the operators (II.26) are
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Lyg = Ny - N,
bys = N11 ) Nz1
L45 = le +N22
Ly = 'N12 * sz
L46 = Nll +N21
Lo = N} + N (11. 30)

On the basis Injnym) the matrix elements of N1 have a very simple

representation, as can be seen by direct appllcatlon of (II.27) onto
(II.6): L

N;tln n.m) = —[(n1+ {3}) (1"11+m+{‘1)}>jz |nlﬂ:1,n2m)

12
N;Inlnzm) = [<n2+{é}> <p2+m+{; })‘z Inln2 +1,m)
Inlnzm) = (2nr+m)lnln2m) (r=1,2). (I1.31)

The whole O(4,2) can be given in x-space representation if
we determine NlJ as functions of x. Using (II.31) and

Ly +14m(®) = ';1+—1Q‘=3g +n tm+l- E) ny+m(6)
Lner(&) = (g 4 Cé,ag -n1>Ln1+m(§) (I1. 32)

one easily finds before the states up (5.1, ¢)

t é_ =3
N = Dn/n+1 g ~E+3 + 5+ +1>(+1>2

1
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_ 9 & L3 ‘0 N\
N, = 'Dn/nﬂGagJ“ 2n 2 n1><n+1> } (II. 33)

where Dp, /., is the dilatation operator defined by

D, u(x) = u(ax). (I1.34)

I11I. Algebraic Substitution of Schrédinger Theory

In the last section we gave a representation of O(4,2) whose
states could be brought in one-to-one correspondence with the states
of the hydrogen atom. Given such a representation we want to ana-
lyze now the problem of how much additional information is needed to
substitute Schrédinger theory.

Schrodinger theory provides us with two independent informa-

tions:
1) It gives the energy as a function of the internal quantum
numbers.
2) It gives the wave function of the internal constituents of
the system.
Once a representation of the group O(4,2) has been found on the
Hilbert space of the states }nfm), the first information must be sup-
plied by a relation:

la) H = H(nfm). (III. 1)

In order to recover the wave functions from the O(4,2) repre-
sentation states [nfm) we have to know either:
2a) The diagonal operators Lgg, L2 , L3 as a function of the
position and momentum operators x and p:

L2 (x, p)
L., = Ls(x,p) (I11. 2a)

(these relations were determined in the last section), or
2b) x,p as a function of the generators of O(4,2}, i.e.,

X = x(Lab)

p = p(Lab). (II1.2Db)

Both specifications 2a) and 2b) involve the internal coordi-
nates of the system and thus are not sguitable in this form for a rela-
tivistic generalization to elementary particle physics. Observe,
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however, that the relation (III.2b) can be used to describe the elec-
tromagnetic structure of the system. Let x X x denote the elec-
tron, proton, center of mass and relative coordpnate (—xe—x ) of the
H-atom, respectively, then the wave function of the atom movmg with
momentum g is given by

¢EI-( Qe,??p) = 7% eiqx ¢n(:?) (III. 3)

where . (X) is the usual Schrédinger wave function for the relative
motion of electron and proton. The electronic current for the transi-
tion of the atom from momentum g to rest is then given by the Fourier
transforms:

—- B 1 P S
plq) = S <1>.. (x, xp)ﬂba(xe.xp)e € dxe dxg

= R
N 1 o -igQ¥Xe .~
1 e
I*(q) 2mgi SI:O *p ot Tae p]e dx, dxp.  (I1.4)

Remember that this current describes the amplitude for the coupling of
a hydrogen to an external photon with momentum g and polarization
vector < via the scalar product:

A@) = = p@® - Ta)e' . (11L. 5)

Going from ’?e and X_. to the center-of-mass and internal coordinates

X and x, we can express p and 1! as

plq) = g¢nf(§)e—iq(mp/(mp+me))x¢n(5§)d§ (111. 6)
1@ = €@ + -2 (111.7)
q - q 2me .
with the auxiliary vector:
K'(Q) = — —e_iq(mp/(mp’“me»qun(;)d}?. (111. 8)
e

From these equations we see that if we eliminate x and 8/8—:} using
the equations (III.2b), we can obtain a completely algebraic prescrip-
tion for obtaining the electromagnetic current as a function of the mo-
mentum transfer g. But this current is now enough to replace all

Schrodinger theory:
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N First, the wave functions of the atom can be obtained from
p(g) by a simple Fourier transform which gives all the products

LP]_,:: (x) an(X)

and therefore all wave functions Y,(x}). Second, the functions

p(q), Il(-c_f) form an electromagnetic current and thus have to be con-
served (since the photon has spin one). Therefore, if the photon goes
in the 3-direction, the ratio 13/.0 has to fulfill

3 VoM - o2
Ip(fag! _M-M qCI /2M (I1I. 9)

and from this relation we can calculate the energy as a function of the
internal quantum numbers. Thus we see that an algebraic theory of
the electromagnetic current for all momentum transfers can completely
substitute the Schrddinger equation of a system. Such a theory will
be formulated in the following section.

IV. Electromagnetic Current in O(4,2) Description

We shall proceed here according to the program designed in
Section III. We {irst find the operators X and p as a function of the
generators Lgp, of O(4,2) and express then the electromagnetic cur-
rent for all transitions n—-—n' in terms of group and Lie algebra opera-
tions. 3

To find X and p, the most elegant approach makes use of the
natural representation of O(4,1) on the space of normed homogeneous
functions f(za) {a=1,...,5) in the five-dimensional parameter space
of O(4,2) .4) The scalar product is defined as

t.a) = 2 () () 822 az (. 1)
which projects out the irreducible part of the representation that re-
mains on the light cone.

A finite group element G of O(4,1) transforms f(z) into

f'(z) = UE) fz) U (@) = 1(zG). (1v.2)

G can be written as

_ —logpLyp
ch - (e \/'cd (V. 3)

with
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(Lab>cd - 1<gacgbd l gadgbc>' (V. 4)
and its x-representation is
1
L, = i(za.ab - zbaa> (IV. 5)
~io~L
U@G) = e 2bab (1V. 6)

It is easy to verify that a function can be normed if and only if their
degree of homogeneity N satisfies the conditions:

N = --g—+iv, v = real (= -%1+ iv for O(p,1)> (Iv.7)
or
_3<N<0 (—(p—l) <N <0 for O(p, 1)). (V. 8)

In such an irreducible representation, the parameter Zg can be re-
moved out of the operators and states defining new functions & by

_ . N
f(z) = z5 ®( ) (Iv.9)
where we have introduced homogeneous coordinates
z
£ = -z'}i (IV. 10)
5

On the functions <I>(§p) the finite transformations are then given by
the factor representation

N
-1 7 1) 5 *
U@ s u @) = (&HG L +G 5> B(E*G) (IV.11)
where
_ £.GY +G°
(£*G), = UG)E,U lg) = ¥ b2 (V. 12)
H §VG:5+G5

The infinitesimal generators are then
-1 £E 9, +£. 0
pv i\ MV LA

1
- [gH(N - (£8)) + ap] (IV. 13)

L

L.s
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and the scalar product becomes

(@8 = (£,6) = Sd.zszsﬂ\”3 &* (&) o(E)dn (V. 14)
where
de = 26(£2 -1)4t. (IvV. 15)

zg can in general not be eliminated out of the scalar product. A com-
plete orthogonal set of functions in the representation space is given

by

fN.n,e = 35 YN,n-1,a

zp) (IV. 16)

where the YN n-1 a‘s are homogeneous polynomials of degree n-1 in
Z,; i.e., they can be written in terms coordinate tensors

yN,n—l,a(zP) = ZyTee et Zug g (Iv.17)
and in terms of four-dimensional spherical harmonics as
y (z,) = (z5)" 1y (€,) (V. 18)
N,n-1,a# 5 N,n-1,o "M'° '

Observe that yn -] o Solves the potential equation in four dimen-
sions:

2

9 yN,n—l,a(zH) = 0, (Iv. 19)

which is therefore invariant under the operations of O(4, 1) for

every N,
The Casimir operators of O(4,1) are
02 = LabLa}D = 2 %:(3 +(28))(28)] = 2 [(p— 1 +za)(za)] for O(p, 1)
(IV. 20)
and
_ bc da _
C, =L, L L L =0 (1Iv.21)

which give in front of functions of homogeneity N, from the Euler
equation:

(z9) f(z) = Nf(z) (Iv.22)
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C, = 2N(3 + N) (Iv.23)

C4 = 0. (1Iv. 24)

We see that N= -2 gives the same representation as the one used in
(II.5) (see (II.7)). This is also clear for another reason. On the
H-atom representation there exists a five-vector (L, g,Lcg) trans-
forming like z4 in the z-representation of O(4,1). But the operator
z5 raises the degree of homogeneity from N to N+1. Hence, it can
only then exist inside a single representation if N and N +1 are
equivalent. From the Casimir operators Cy,C4 we see that this is
the case only for N=-2(-p/2 for O(p,1)).

The functions IN n o can be chosen to be eigenstates of
L2 ,Lz. They also satisfy

R £ - £ ) (IV. 25)

Hence, with the labels a=£,m; N=-2 we have the correspondence:

f o n o m®a = (zlnim). (Iv.26)

Therefore we can formally introduce a completeness relation:
(

.) dsz 5(z2)z){z| = 1. (IV.27)

Observe now that, since there exists for any O(p,1) an opera-
tor Iy on the representation space with N= -p/2 which transforms
like Zg and is completely expressible as a function of £, we can de-
fine a new scalar product replacing (IV. 14) by

('.

(e, @ = o *g)reNt3

5 o(g)ds

¢ (IV.28)

and eliminate in this way the fifth variable zg completely from the
representation. It is only in this case that one can represent O(p,1)
unitarily on a space with p variables., I‘5 N+3 is the metric which
makes the non-Hermitian operators Lps equivalent to Hermitian ones.
For the particular case of the H-atom representation, the invariant
scalar product then becomes

@9 = { o*@r; " ae)an,

- S@‘*(&,msgl 3()ae, (V. 29)
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Analogously to what we did in Egs. (IV.25) and (IV.26), we can now
introduce the special homogeneous functions in §:

® (€)

-2,n,4,m

and identify them with the H-atom states |nfm) through the formal
definition:

o, (8 = ® ) onfm = (€1nfm) (1v. 30)
with the completeness relation
_1 _
‘mg'g)Lse (€] = 1. (1Iv. 31)

The explicit connection between hydrogen wave functions and
&(£)'s can now easily be given. Fock®) observed that the n-depend -~
ent stereographic projection of the wave functions ‘I'nzm(p) in mo-
mentum space onto the surface of a sphere in four-dimension with
unit radius defined by

2 2

-~  2pyp p°-p 1
6=, 7 %= 2,2 Pn-n av. 32)
P +py, p=+pg
or its inverse:
~ £ 2 2 Wy
P =P, 1-¢, P =P 1€, (Iv. 33)
and
- (p2+p%)? . -
Qnﬂm(g) 4 93/2 nim @
n

. 3/2 -2 - £
=0, 087 (P 1—&9' (Iv. 34)

m_m
- & p _ — =
I~L_me+mp_1' e”ﬁ"’l\/

(L—E\.\If =—i—§dala{-‘:‘2m (@ (V. 35)
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into the integral equation for four-dimensional spherical harmonics:

1
anﬂ

L© = —= laa o022, o (1v. 36)

which therefore are just our &,y;,(£) defined in Eq. (IVv.30). The
physical scalar product is not equal to the invariant one. For equal
principal quantum numbers it is found to be

(Fh %) s = § 90 207 E) 3,(6) . 37)

since the {n-dependent) spherical angle is

(2p, )3
an] = 25(%-1)d8 = ——2—a’p (IV. 38)
(p +pn)
giving, together with (IV. 34),
(v T ) = \alpur*e (IV. 39)
nt n phys - p n n . -

For n'#n, the scalar product (IV. 37) obviously gives zero, since the
functions &', ® are spherical harmonics of different degree. In this
case dflx becomes a more involved function of the momentum and
Pp . Pp+ than (IV.38).

The quantum mechanical operators x and p have a compli-
cated n-dependent form before the functions q’nﬂm(g) Observe, how-
ever, that we can introduce the alternative states

_ L (p?+a?)?
2 =5 2 % (1. 40)

together with the fixed stereographic projection which one obtains by
substituting py=a in Egs. (IV.32), (IV.33). The physical scalar
product becomes then

@,m =1l T @06,
= 5 de2, EX (é) ﬁ L (Lgg- Lgg) @ (E) (Iv. 41)

or, in terms of the invariant scalar product (IV.29),
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' —_— ] _.]:.. - )
(v ,fo)phys = (@ . 5 (Lsg L46)q>>. (IV. 42)

Thus the physical scalar product is obtained by using the charge
operator p = 1/a(L56—L46) as a metric in the invariant scalar product.
For the operators x; and p; we find

— e . E _ S _
¥ = 19p;,~ 'op; 86, T @ (Lig - Lig) (IV. 43)

and from (iV.33)

a2 o -1
Py T AT, T a{lgg - Lag) Lyg (Iv. 44)

whose physical matrix elements are from (IV.41) expressible in terms

of the invariant scalar product as (¥',p; \I’)phys = (@',L, 6<I>) The con-
nection of the states &, (§) with <1>(§) can be given by the "tilting"

operation

Tnn ‘I’nﬂm(g) = <I>n£m (IV. 45)
with
_ iBnL45 - o
n =€ , e, = na. (IV. 46)

Applying this to ®(£) we indeed find

o onlds 3 () = (chon na - shomna £4) 23 _(£¥T))

2 -2
4 : Pn 2 S
(-850 (1425 )] BT

2,2

il

n

3/2

I

- £
(1-£,) : ‘Ifn(pn 1-%4> (Iv. 47)

But the functions on the right side are according to (IV. 30) just the
spherical harmonics in £ up to a factor 1/‘\/1_'1. Hence,

T_ng, (E) = “ne (£). (1V. 48)

We see from this equation that Tnncb (€) has the norm one in
the invariant scalar product (IV.29), & 1tse1f has the invariant norm

n 2 . 3(.)bserve that the tilter dilates the p in the wave function by
Pp/a.
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We have thus established a one-to-one correspondence be-
tween our states Infm) and functions in the four-dimensional §
space. This correspondence can be summarized by

\/Bq;ngm(g)--: {€|ntm), (IvV. 49)
Engm(é) = (¢lngm) (IV. 50)
with
Infm) = %e_ienL‘lS Ingm); 8, = log an (IV.51)
and
— S |
Sdﬂglé)Lss (E] = 1. (Iv. 52)

Observe that the tilted states Infm) are renormalized by a factor
1/n in order that they have unit norm in the physical scalar product.

The physical quantities X and p (in atomic units) are repre-
sented on the physical states [nfm ) by

1
X, = 3 (LiS = Lig) (IV.53)

-1

if the physical scalar product is defined via the charge density
operator

1

Thus, if T is some observable, then the matrix element (¢n' ,TllJn)
becomes

(n*lpTin ). (IV. 56)

Note that since the diagonal elements of p give the charge of
the different states, the renormalization factor 1/n in (IV.51) guaran-
tees constant charge for all states |nfm).

With this information we now immediately find the group theo-
retical expressions for p and I* by inserting {IV. 53)-(IV. 55) into
(III. 6)-(I1I. 8). The result is (in atomic units)®
~i(a;/me)1/aNkig ~Lig) | =

plq) = (Hl% (Lgg-Lygle (IV.57)
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—

(@ = (@ + 52— pla) (1V.58)
e
K@ = 7 (@ ILiGe'i(qi/me)(l/a)(LiS'Li‘l)IH). (1v.59)

e

Observe that
[ .9 1
exp l_—lfnt I (LiS—LM)J

represents a Galilean subgroup on the O(4,2) Hilbert space. Since
qi/(me+mp) is the velocity of the H-atom, the operator

m
M., = ——E(LiS-L (IV. 60)

i a 14)

has to be identified with the Galilean generators. A physical state
in) that is multiplied with the element

C 9]
exp [‘ m, a (Lis “Li4)]

of the Galilean group will be called "boosted" to momentum q and
denoted by In,qg). Since the current {p,I') is a Galilean four-vector;
i.e.,

[Mi:Il] ip

[ Mjpl = 0, (IV.61)

we can write the current operator in a form that exhibits this property
in a better way than Eqgs. (IV.57)-(IV.59). For this we go into a
general frame of reference where the initial atom moves with momen-
tum p, the final one with p'=p+q. Then the operators become

m.+m

_ _Pp1l e 1
P = -t a LsgLag) * " m, a (Lgg-Lgg)- (IV. 62)
i_ L (p'+p)t 1
U'=mglig*  2me a (Iselag)- (IV. 63)

The first and second parts of p and I' now form separately a Galilean
vector (IV. 61). While the first part is completely algebraic, the
second part involves the momentum vectors p' and p. Such a current
is generally called a convective current. The first part of I
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describes the internal motion of the system. The convective part
gives the current due to the motion of the electron cloud as a whole.

Let us summarize the result of this section: The algebraic
structure of the electromagnetic current can be characterized in the
following way.

1) There exists a certain Galilean subgroup of O(4,2).

2) There is a vector operator with respect to this subgroup

which is the sum of an algebraic and a convective part.

3) The physical states are given by the tilted and renormal -
ized basis states of the representation. A tilter is a non-compact
rotational invariant group operation. The renormalization factor is
necessary to guarantee constancy of change within a multiplet.

4) The current at momentum transfer g is obtained as the
matrix elements of the vector operator between a physical state at
rest and one that is boosted by the Galilean transformation to mo-
mentum g.

This is the form of algebraic rules which has meanwhile suc-
cessfully been applied to particle physics7 to find electromagnetic8
and pionic form9/ factors of baryons. In order to make the theory
relativistic, one has to use a Lorentz subgroup instead of a Galilean
subgroup, and corresponding vector or pseudoscalar operators to rep-
resent the external photon or pion.

We want to point out at this place that in the composition of
the vector operator, the convective part has proved to be very impor-
tant for particle physics applications. While a theory without such a
term can explain the shapes of the electromagnetic form factors rather
well, magnetic moments turn out to have the wrong sign and the mass
spectrum decreases with n. With a convective part, the fit to the nu-
cleon form factors and the baryon mass spectrum becomes, however,
excellent.

V. Evaluation of the Current

In this section we shall evaluate the matrix elements of the
currents, using the formula (IV.57) and (IV. 59), for arbitrary bound-
bound transitions n—n'. In atomic physics, these currents have been
calculated for the transitions 1--n by Mohr and Masseylo) by means
of the integral expression in x space (III.6). It was not until re-
cently that this integral was done for the general case. 11) While in-
tegrations produce the current in a rather complicated and cumbersome
form, our group theoretical formulation will lead to a highly symme}ric
result expressed in terms of products of hypergeometric functions.7 /12)

The evaluation of the expressions (IV.57 and (IV.59) is sim-
plified if we insert the explicit form of the physical states (IV.51) and
move both tilting operators together. In this way we obtain the alter-

native relations:
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0@ = L(n' ngg-r e Oninlasemi@/meIntlisLiddny .1

{n'lL. e_ien'nL45e_i(qi/me)n(L15_Li4)!n) , v.2)

mgnn
where 6,:,=1og n/n’.
Inserting a complete set of intermediate states behind the Lie
algebra operators and denoting the finite group transformation by G,
i.e.,

G(E{) = e_ien'nL45e"i(qi/me)n(LiS ~Ligq) ] (v.3)
both expressions have the form

(n'10 In"){n"1G(@) In). (V. 4)

The matrix elements of ® are easily evaluated in the parabolic basis
using the creation and annihilation operator representation (I1.5),
(11.24), and for mZ 0 one finds (In) stands for Injnym)):

(nI(L56#L46) In) = n

o=

(nl(Lss-L45) ln1 +1,n,, m) = "%[(nl + 1)(n1 +m + 1):|
1

(nl(LSG-—L46) Inl -1,1,, m) = ‘é‘[nl(nl-i-m)Jz

1
_ _1 2
(nl(Lss—L46)lnl,n2+1,m) = 2[(n2+1)(n2+m+1):l

1

_ - _4i F

Similarly one finds for L,¢ {mZ0), defining as usual
i Y ) (V. 6)

6 16 ‘26" y

N

pm = 1) = i[(n1+m)(n2+m)]

+
(nl]'..6 Inln

[ M

(nng|n1+l,n +1,m—1)=i[(n1+1)(n2+1):| ;

2
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H
1

(nlL lnnym+1) = _1[(n +m+1) (@ +m+1)}% )
(nilgIny -1, n -1, m+l) = _i[n1n2JE _S (v.7)
(nlLggin n,-1,m) = 21_1[(n2+m) J%
(nlLygin, -1,n,m) = g;[&H fm)n IE
(nllyginin,+1,m) = 517[(112 +m+1)(n +1)J%
(n1L36!n1+1,n2m} = '%[(nl+m+l)(n1+1):|é V. 8)

What remains is to determine the matrix elements of G{g}.
Without loss of generality we can assume that q points in the z
direction; the other matrix elements may be obtained by a simple ro-
tation. Then G(q) becomes:

G(q) = e'ien'nL4Se“i(Q/me)H(LSS‘L34)- (V.9)

It has the advantage of leaving the magnetic guantum number m in-
variant. Representations of finite group transformation in O(4,2) are
not known in general. In the particular case of our maximally degen-
erate representation we can, however, evaluate the matrix elements
of G(q) using O(2, 1) subgroups of O(4,2) discussed in (II,29), etc.
Defining the operators Kj as

Ky = Lysr Ky = Loy By = Lyys

we see that they close to an O(2, 1) subalgebra of the O(2,1) X 0(2,1)
algebra of (II.30), satisfying
[Kl K

= —1K3, [KZ’K =1K1, [K3,K1] =iK,. (V.10)

2] 3] 2
K3 is diagonal on the lnlnzm) basis with the eigenvalue n;-ny. The
other two operators can be written more explicitly in terms of the

generators NlJ as
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2 .2
K1 = Nl +N2
PN R
K, = (Nl N2>. V.11)

Consider now the representation of elements of the O(2,1) groups
formed by NJi. An irreducible representation of the Nlil algebra, for
instance, which contains a state Inlnzm) contains all the states

!0,n2,m),...,I°0,n ,nz) (V.12)

1

with the eigenvalues of N13 being n; +m+1/2. Then, in the notation
of B‘r::u’grnt:u’m13 (see the Appendix), the matrix element of

.y
e_lNl B
is just a function Vr];n with the Casimir operator k= (m+1)/2.

ax 2
{n' n'm']e—lNlBlnanm) = v(m-H)/2 (shg)b )

12 n1+((m+1)/2),n1+((m+1)/2) n'n. m’'m,

272
(V.13)

-iN2R
Similarly, one obtains for e 2

2
Do ~INS'B _ (m+1)/2 B
{(njn;m'le In)n,m) = V1r1'1+((m+1)/2),nl+((m+1)/2)(“Sh2)6!1'11'116m’m
and therefore for e_iKIB
R _iKIB _ (m+1)/2 ﬁ
(njnymle Inyn,m) = Vn'l+((m+D/2),n1+((m+1)/2)(+5h2)
(V.14)
_ (m+1)/2 B8
Vn'2+((m+1)/2),n2+((m+l)/2)("sh2)6m'm

Knowing this, we can find the matrix elements of the operator G(q)
immediately by parametrizing it in Euler form. Inserting K; from
(V.11), we have to find Euler angles «,8,Y such that

- e_ieKlei(qn/me)(K2+K3) - o 10K3 e‘iBKl o 1YK3 (V.15)
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One does this most easily in the 2X 2 guatemion representation of
O(2,1), substituting

_ 1oy _ dog _ o3
K1_2'K2"2’K3_2' (V.16)

from which one finds for the left side of Eq. (V.15) the expression

o-18K] i(ng/me)K2+K3)

_ _6_ ng . g
= ch > + [crl + Zme(l —Cth(e/Z))(Uz - 10'3)] sh 2 V.17)
while the "Euler quaternion" is

o ~oK3 o ~iBKL -IVKg s _0% ch g T o) cos Q‘2;’},5}1 g

+ 0, sma—zl shg -io, sin mchﬁ. (v.18)

Comparison of (V.17) with (V. 18) gives the four equations:

ch% = Cos QT-FY— chg (V.19a)
shg = COoSs 2_271 Shizi (V.19b)
%nqe—(l -cth g>shg = sin Q;Y shg‘ (V.19¢c)
-Z_er?e_(l - cth %)shg = sin —z—chg . (V.19d)

Squaring b) and ¢) and adding them we obtain

2.2 2
sh2 B _ shz o 1+ 2497 - cthg . (Vv.20)
2 2 am2 2
e

If we insert 6 = log n/n, we find

2 3
sh‘lzi = 27#;{[(1‘1'-%1)2 +—rr?—2—n'2n2:l {v.21)
e
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2 Py
8 _ __1 o2, 49,2 242
ch2 = odon (n'+n) +me2 n''n .

For ¢« we then obtain
a/me
o3} = {2} s
2 2 2 g°
cos{} - [n —n)in n 2] sh 3.
n'n m 2

The phase of 8 has been fixed such that in the timit q—= 0

@ -JL-:r_rgz}, v - {:;67;2}

451

(vV.22)

(V.23)

(V.24)

(V.25)

for n'2n, respectively, as we can see from Eqgs. (V.23) and (V. 24).
With these angles, the matrix elements of the finite transfor-

<

mation G becomes in the lnlnzm) basis:

c™m (n n mIG(qz)!n n m)

n nznlnz

(m+1)/2

B
Vny+(m+1)/2) ,ny +(m+1)/2) (*Sh )

(m+1)/2 B
n2+((m+1)/2 n2+((m+1)/2) (‘Sh 2\.6m'm'

—1(nl—n2)a e'l(nl‘HZ)'Y

(V.26)

Collecting the different terms in Egs. (V.4)-(V.8) and changing to the

Iném) basis according to (11.21), we finally obtain for p(q):

1
Pl = %[(2£'+1)(2,e+1):|2 yo(-N/z w-1)/2 g

n'fZ'm,nfm k', k

(n-1)/2 (n-1)/2 IAN
m/2 -k m/2+k -m

x{n'ho'(E'_E)(a,’}/)v(mﬂ)/z ®8)

X

k', k n'/2+%', n/2+k

m/2-k' m/2+k' - m
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_t

110, W2 22 +,(8'-8) (m+1)/2
+3 [(n +1+2k")"-m | hk' K (@, 7)v n'/2 +k'+1, n/2+k(B)
DI PPN S E NN VARY) (m+1)/2 |
+2[(n—1+2k) -m | Thy N e )n/“k,_l’n/“k(b)}
X v(mH)/z (-8 vV.27)

n'/2-k',n/2 -k

where we have introduced the function

{830 cos T +1 " i [+1
hk',k (,7) = l:—isin [(2k'+{?1}\fa+2k’yj for (-) = [__l:i .
(v.28)

In a similar way we obtain

L I T U P NE
In.g.mil'nﬂm(CI)—K (@) = +n'n mg [(22 +1)(2£+)J
(n'-1)/2 n'-1)/2 A
" (mt1)/2 - k' (m+!)}/2 +k' -—m;l)

X (n-1)/2 (n-1)/2 £
m/2 -k m/2+k —m>

JL[ +m> K }%otw- 841 (o )

(m+1)/2 (m+1)/2
(n'¥1)/2 +k', n/2 +1<(B) Vin'31)/2 -k', n/2 —k(_B)

L 2 % []
HCE) R T e

(m+1)/2 (m+1)/2

“Vsn/z+k', n/2+k B Ve /2 -k, n/2 —k(_B)}

(V.29)

and
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1

3 — ; _.,1_ 1 ] 2 (1‘1'*]_)/2 (n"’l)/z 2
K™ (q) = n'n mg [(22 12+ )] ka((m/Z - k' m/2+k' -m>

(n-1)/2 (n-1)/2 £
><(m/z -k m/2+k —m}

=

2
117 . +,(£'-£+1)
X{Z [(n +1+2k> :i hk',k (a,*y)vn,/z +k'+1,n/2 +k(B)
: 2 3 (g
—%[(n'—l+2k'\ —.mz:lz hk"(ﬁ £+1)(a,’y)

XVn/2 ekt -1, n/2+k(ﬁ)}vn./2 k. n/2 B (v. 30)

—

We have plotted fp'g'm, ngm{q) for some of th? excitations at the end.
Every factor v*v contains a term ch™\0 ™M3/2 which has a
singularity when

ch(B/2) = 0. (V.31)

From (V.22) we see that this happens at

d nZn'2 e ‘

which can be written in terms of the binding energies of the states
ingm)

1
B = - —— (V.33)
n 2n2
as

¢ = -2 (VBy + VB0 m2. (V. 34)

Observe that this position of the singularity coincides up to
order B/M = 10-8 exactly with the anomalous threshold of the dia-
gram
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which can be calculated from the Cutkosky rules to lie at14)

cos 81 = cos(8y +63) (V. 35)
with
Zmé2 —q2
cos 6, = s
1 2mg
0 me2 -l»m2 —M2
€os ¥ 7 2mem
mé?‘ +m? - M*2
cos 68, =
3 2mgom

Solving this we obtain

q2=2 Zme JL(m +m® M)(m +m%-M* )

- |(@(ngen") (- >-W>l
< @ul(pdem’)- (@lnt) - s

For M=M' this reduces to

~+
Hi

|

_ 2 1[ 2 2 272
t = 4m] —mz[me+m -—MJ . {(v.37)

If, as in the case of the H-atom, M differs from m+mg, only
by a very small binding energy B,
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M=m+mg -B (V.38)

and find up to order (B/(m+mg))?
t= 22 (mg+ m(B +VB"? (V. 39)

which reduces for M= M"' to

2
Mg

Mg
t = 8 - (me+m)B = 8 . B. (V. 40)

We see that (V. 32) coincides exactly with this since the units are
chosen as atomic units (p=1).

Observe that knowing the masses of the constituents of a
quantum mechanical system the position of the anomalous threshold
singularity of a form factor gives the complete information on its mass
spectrum. For particle physics, however, our ignorance about con-
stituents unfortunately prevents us from making use of this informa-
tion, and one has to go back to the relation (III, 9) following from
current conservation to determine mass spectra.

For completeness we finally give the results in a form more
suitable for practical applications. Consider an inelastic collision of
an electron with a hydrogen atom of the form

-k‘n + l:(nﬂm), g]—afns + {(n'ﬂ'm'), E{J , (v.41)

where En, Kn' denote the initial and final momentum of the electron
and the atom is assumed to be at rest before the collision. The mo-
mentum transfer is

g = kn - kn" (V.42)
The cross section for this process then is in the Born approximation:

do _ 2

aae q4 K pn'ﬂ'm',nﬂm al . V.

In this formula the azimuthal quantum numbers m' and m are meas-
ured with respect to q. If we instead use the z-axis for quantization
and let k,, go in z-direction, p has to be replaced by
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0 @ ei(m;z —mz)zpz dﬂl.
& m

/
MOEWENCY (a)

1] t 1 1 ]
n'f'm;,nfm, 2 2 n'Z'm,nim

= ()™ ) (2'ml4,-mglL, my-my) (V. 44)
L,m

(4'm£,-m|L0) (4n/21+1)%Y N(o, o) _, (@.

£'m,nfm

With this quantization the cross section depends only on ¥ and we
can introduce

K = 15l = Vk2 - k'2 - 2k_k! cos ¥ (V. 45)

~ = 7 pl™. (V. 486)
dK Kyy K3
Thus the total cross section is
K
mAX 4 87 ( dK , 3
o o= dk =~ = —7 ipl
dK Kk g3
min n
with
AE
Kmin = k
_ (V.47)
Kmax = 2k
where
AE = En, - Bn (V.48)
is the energy transfer (recoil has been neglected) and
k = zlk, +kpo (V.49)

is the average electron momentum. The experimentalists usually
measure ¢ as a function of kn.
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VI. Infinite Component Wave Equations
The dynamical information contained in the algebraic formula-
tion of the electromagnetic current can be expressed in an estheticalls)

and compact way by the use of an infinite component wave equation.
Since the state Inf{m) satisfies

LSGInEm) = ninfm), (VI. 1)

we find for the physical, tilted states Infm) the equation

1 12N, - =
2a Q + a >L56 _(nz - a >L46J Ingm) = nlngm), (VI.2)

or, using the energy Ep= - 1/2n?,

a% a? =,
[(En - 2>L56 - (En+ 2) L46 +a]ln.€m) = 0. (VI.3)

The Galilean boosted states

Infm,p) = e_i(pi/me)(l/a)(LiS_Li4) Inim) (V1. 4)

can therefore be obtained as a solution of4)

2 N
e a’ Py PN
[an -Zm%XLSB 'L46> - (s * L,g)-2 g Lig* @ |If4m,p) = 0.
‘ (V1. 5)

If one now introduces the electromagnetic coupling into this
equation by the minimal substitution

p - p-A, (V1. 6)

—

one finds the additional term linear in A:

-A. [aL 6+ (L56 L46):| (VI.7)

which is exactly what the spatial current 1! of Equation (IV. 63) would
give between states moving both with momentum p'=p.

Thus, Eq. (VI.5), together with the prescription of minimal
electromagnetic coupling, completely describes the internal structure
of the hydrogen atom. It is therefore equivalent to the Schrédinger
equation with an external electromagnetic field.



458 HAGEN KLEINERT

Notice, however, that the renormalization factor of the tilted
states, 1/n (see IV.51), cannot be obtained from this equation. This
factor has to be determined separately by imposing the requirement of
constant charge in a multiplet.

There also exists a relativistic current and a corresponding
wave equation for the hydrogen atom. This current is characterized
by the property to give, in the Galilean limit (c—=<9, the correct non-
relativistic matrix elements (Eqs. (V.28)-(V.30)).6) The current is
composed of an algebraic four-vector

P* = (-Lgg. Lig) (V1. 8)

and a convective part

pr B
EL%' P" = p'* + pH

in the form (in natural units p=c=rx=1)
b P*L
= g (™ ~2m, L 6) (V1. 9)

The physical states have to be taken as

Infm) = 1139(“2(mp/af))L‘lsI nim). (V1,10)

'.3

The Lorentz transformation under which J" behaves like a
four-vector is ,
e-lékLks

where (= sh'l(p/M). Therefore the matrix elements of the current at
arbitrary momentum transfer q are given by

_irk
= (177 1n,q) = @M e LksIn) (VI.11)

which can be written in terms of the states |n), in atomic units, as

I°(§.)-—— {n'l(Lgg -Lygle -6 (n/n")Lg5 ~1(L%/dmpnlis-Lka) ) 4 o (o)

(VI.12)
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() = 2 L (nr]L e 10/ Lyg i/ @ImpnlysLig) |
nn me

+ (gi/2mg) aI®(L) +01(a?). (VI.13)

But if we here go to the non-relativistic limit, c=1/a = ©, we
obtain

tm —-—-—>;nqé-p . (VI.14)

and, inserting

1°=cp =1, (VI.15)

we indeed recover in this limit the expressions (V.1) and (V.2).

This current can now be used to construct a relativistic wave
equation which possesses the states (VI.10) as solutions and pro-
duces, after minimal coupling with the electromagnetic field via the
substitution

p* - p - AV, (VI.16)
the correct current (VI.11). (The normalization factor 1/n again has

to be determined by the constancy of charge requirement.) This
equation is

m2 - m2

(1MPu e e Lyg + o ) Iatm.p VI.17)
pMe

Observe that according to this equation the current JM is
conserved. In general, if ]“ is some current operator and if the
boosted physical states satisfy an equation

(]"Lpp + const. operator ) In,p) = 0. (VI.18)

Then the matrix elements
™ = (o,p'l 10, p) (VI.19)
fulfill automatically the current conservation law:

(p'-p™ = 0. (V1.20)
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In our discussion of the algebraic substitution of Schrodinger theory
in Section III we concluded that given a method to construct the com-
plete current of a system, its mass spectrum could be read off an
equation like (III.9). From what we have learned in this section we
can therefore make the alternative statement: Given a current opera-
tor and tilted physical states, this current is only conserved if the
masses (and tilting angles) are adjusted in such a way that the
boosted physical states satisfy an infinite component wave equation
of the form (VI. 18).16)

Observe, however, that the wave equation (VI.17) has many
more solutions than the ones corresponding to the H-atom. In fact,
the set of discrete solutions of (V1.17) is

M2 = (ms +m2) & 2mm, J1 - a2/m? (VI1.21)

whose upper sign gives the hydrogen spectrum

M, = l:M _ue @(a4):|, (VI.22)
2n2
while the lower sign gives the unphysical masses:
m.,m 2
— _ p-e «a 4
M, = (mp me * T org zn2>+(9(a ) (V1.23)

which distinguishes from (VI.22) by mg changing sign.

There is another infinity of solutions of both equations for the
H-atom, relativistic as well as non-relativistic. They are found if
one asks for energies E>0 or masses M>m_ +mg; i.e,, for the con-
tinuous: states of the. H-atom. Then the equations (VI.5) and (VI.17)
cannot be solved any more by tilting representation states on which
Lse is diagonal, but we have to find eigenstates of Lyg. These so-
lutions will be discussed in the next section.

VII. The Continuous Spectrum

The infinite component wave equation of the H-atom (VI. 3) is
completely equivalent to the Schrddinger equation. Until now, we
have restricted ourselves to the discussion of the bound state solu-
tions of this equation, and the calculation of form factors was done
only for bound-bound transitions, In this section we want to show
how the continuous states can be included in the group dynamical
treatment. It will turn out that all the results obtained generalize to
apply also for the continuous states provided that instead of
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Bargmann's v-functions, used in Section V for the representation of
0O(2,1), we employ a certain analytic continuation thereof.

Consider the wave equation (VI. 3) for the H-atom at rest. If
the energy E is positive, call the corresponding solution lafm) and
their energy E,. Then we can perform a transformation

-ilg(a/N2Eq) Ly L)

la) = +\2E, e (VIL. 1)

and bring (VI. 3) to the form
2.2 2.2 3 .
azy o _ath\e 2 - al -
1REQ+ 2) (Ea 5 !)J Lyg jla) = 0 (VII., 2)

In order to solve this equation we need representation states on
which Lgg is diagonal. Since we know that the spectrum of energies
(and thus that of Lgg) is continuous, these states are not contained
in the Hilbert space but they have 6-function normalization. The
problem of finding eigenstates of the non-compact operator Lyg in a
unitary representation space with diagonal Lgg has not yet been
solved in general. In our maximally degenerate representation space,
however, the problem can be reduced to that of changing the basis in
0O(2,1) from eigenstates of K3 to those of the non-compact generator
K, (see Appendix B).

Assume that this basis change has been performed. Let |v)
be the eigenstates of Lgg with eigenvalue v, The energy of this
state is then, according to (VIIL. 2),

E = ! (VII, 3)

Vo222

and the physical states (VII. 1) become

17) = LgiBva L45|v). (VII. 4)

v

Since Ljg commutes with L2 and L3, a complete set of labels is
given by IvZm) (the fm-basis). A parabolic basis is spanned by
states with diagonal operators Lyg, L35 and Lj which we shall write
as |v,A,m). Electromagnetic form factors are now given by matrix
elements like the following:
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1 vt ilgvalysg 1
(v'le 5 (Lsg

vy

o = L46)ei(qi/me)(l/a) (Lis-Liq)

x e ivalas, (VII. 5)

et cetera, just as in Section IV.17)

The evaluation of such matrix elements can in principle be
done by inserting intermediate states |nfm){nfml| on the right and
left sides of the operator and finding the transformation matrix ele-
ment {(nfm!v) between the different basis states.

These matrix elements can easily be calculated. Because of
angular momentum conservation, the basis change from the states
In m) to eigenstates of Lyg L2, L3 is achieved by a relation

Jvim) = Z (nfmlvim) Infm). (VII. 6)
n

To determine the coefficients of this expansion we can use another

o2, 1)) subgroup similar to that of Eq. (V. 10) consisting of the opera-
18

tors

Kl = L45, K2=L46, K3=L56 (VI1.7)

which generate an irreducible representation of the discrete class
D'E.,.l on the ladder of states

In=£4+1,£4,m), 1£+2,8,m), 12+3,4,m), .
(VII. 8)

Changing from Lgg to Lgg diagonalization at fixed £m is then equiva-
ient to changing from K5 to K; diagonalization within every D‘E+1
ladder. Thus the coefficients (nfmlvfm, are nothing but the matrix
of basis change of the discrete class D]:, {km | kv), which have been
given in Appendix B, if one inserts the relevant values of Casimir
operator k=£+1 and of the K3 eigenvalues m=n, i.e.,

{(némivim) = {£L+1,nle+1, v). (VII.9)
The corresponding relation for the parabolic basis |v,\,m),

milvkm) Inln m), (VII. 10)

[vim) = Z {n.n

172 2
ny,ng

is evaluated by means of the O(2,1) & O(2,1) representation



THE HYDROGEN ATOM 463

D(Tn+l)/2® D{m+1)/2 of Eq. (I1.27) generated by Nli, Nzi on the
square array of states

l - 2 ’ 2 - 2 7 m I 2 ' 2 + m P
In =0+ _mtl m) [m+3 m+3 \ (VII.11)
1 2 7 2 2 ! ' 2 ¢ 2 s M}, = o -

On every such array the change of diagonalization from Nl . N23 with
eigenvalues np,ny to Ny 1 N2 with eigenvalues v,,vy is accom-
plished by a matrix

m+1 m+1 m+l

(k=T 1T v k= Tmmg L T v I D)
From (II.30) we have
' 1 1 o1 1
Lyg = N -N,, L, =N +N,. | (ViI. 13)

Therefore in the new states, v, - v, has to be identified with the
eigenvalue M of L35 defined before Eq. (VII.S5), while the eigenvalue
v of Lyg is v]+vy. Thus we obtain for the matrix (nyngmlvim) the
expression

m+1 v+h m+1 m+l v-X\

m+1
, nyl . ) < | , )

(n nzmlv?\m) = 2( 55—

where the factor 2 has been introduced in order to change the nor-
malization from the Vy,V2 scale to the v,X\ scale.

The use of the basis transformations (VII. 6) and (VII. 14) for
the evaluation of the currents is quite cumbersome. It is therefore
desirable to pursue a more direct approach which treats free and
bound states from the beginning on the same footing. Indeed, it is
possible to find the matrix elements of the current in a form which is
defined for all complex values of v' and v and has the property to
give the free-free transitions for real v',v and to reduce to bound-
free or to the bound-bound currents of Section V by analytic continua-
tion of the corresponding quantum number v to integer values of
-iv=n.

Consider a non-unitary representation which is defined by the
introduction of new states:

|-iv) = e+(”/2)L45 lv). (VII. 15)
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This transformation is not contained in the group but it can uniqliely '
be specified by analytically continuing the group operation el? L45 o

= -i(7/2). Note that the transformation is non-unitary and therefore
|-iv) will have scalar products different from |v}. Indeed, as shown
in Appendix B, '

{iv'|=iv) = 2 "V sh nv o(vi-v). (VII. 16)
Applying Lgg to |-iv) we find

L56|—iV) = -iv]-iv) (VII. 17)

which explains the notation used for the state. Since L2 and L3 com-
mute with Lg5, the transformation (VII. 4) leaves the quantum numbers
£m invariant and states like |-iv,£4m) form a good basis of the
Hilbert space. A parabolic set of quantum numbers, on the other
hand, can now again be given by L3, L34 just as in the case of

bound states., Defining the parabolic states

l-iv, —in,m) = ™/ 2ILa5 1, 5 oy, (VII. 18)
we find
L3l—iv,—i7\,m) = ml-iv, -ix,m) Wi -19)
L34l—iv,—ih,m) = =i\ |-iv,=-iX,m). .

The normalization of these states can be found to be (see Appendix B)

(ivlrik.:m. ] _iv: _iklm>

sh #vgk shvrv;\ m = odd
= 8e TV { Y L) for . (VIL.20)
ch 7r--2——-ch1r 5 m = even
Observe that in terms of the non-orthogonal basis |-iv) the
physical states (VII.1l) can be written as
Tivy = Lemifl-ivialys) (VIL.21)

v
if it is understood that the first sheet of the logarithm is used with

larg(ég z) | < . (VII.22)
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This is a formula completely analogous to the bound state case
(IV.52) if one replaces n by -iv. The normalization of these states
in the physical scalar product is the same as (VII,16) and (VII.20).
Since the infinite component wave equation is analytic in E,
it is clear that the physical states form a vector valued analytic func-
tion of v which can uniquely be extended into the whole complex v-
plane. The bound states then obviously appear as the values of this
function at positive integer values of -iv. If we agree on the conven-
tion that the norms of the bound state limits of this function are unity,
the free states will in general have a norm

(+ivlﬁlm']—iV£m) = Nfﬁ(v'—v) 5£|£6m|m (VII.23)

in the Zm basis, and

(+iv'ix'm']l-iv, -iN,m) = NR@(V'—V)C)()\.'—-?\) 5m.m (VII.24)

in the parabolic basis. It is interesting that the normalization con-
stants fixed according to this convention turn out to be exactly the
same as those given in (VII. 16) and (VII.20) (see Appendix B).

In terms of the states |-iv) normalized in this way, we can
now define new currents by the matrix elements:

(iv' IeiggiVla Lgs 1

p—iv',—iv(q) = E(LSS*LLIG)

v'v
o iay/mg)(1/2) (Lis-Lia) -ig(-iv)algs | _; vy (yi1.25)

and similar expressions for the spatial components Ii. These cur-
rents now have the remarkable property to describe transitions to free
states normalized according to (VII.16) and (VII.20) if v is a real
number, while transitions to normalized bound states In) can be ob-
tained by continuing -iv to integer values -iv=n.

In order to evaluate these equations for the currents, we can
proceed in a way completely analogous to Section V. We first re-
write p and K! in the form:

.,

-1lv

(@) = -lv— (iv'li (Lgg-L,g)Gl-iv)

. -1V

_ 1 s
K ',—iv(q) = mgv'v (1vl lLiG Gl-iv) (VII. 26)

where G is the same as in (V. 3) except that n'n are continued to
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iv', -iv, respectively. Then, inserting intermediate states through
the completeness relation

A
ng"d iv,-ix,m X iv,ix,m] = 1, (VIL. 27)

we can reduce the problem to that of calculating the matrix elements

of the generators Lgg, Lgg. Lig and of G. We have given the matrix
elements of the generators in Appendix C. The operator G can again
be decomposed in Euler angle form with, in general, complex angles.
Equations (V.21)-{V.24) carry over without change if one continues n'
and n to imaginary values along a path lying completely on the com-
plex n plane cut from -« to 0. Then the only problem left is to find
an analytic continuation of Bargmann's v-functions such that

~i(NZ +N2)B

{(+iv',+iN'", mle | -iv, -ix, m)
_ (m+1)/2 m+l)/2 _
B V—i(V'-!—)\.’)/z ,—i(v-l-)\.)/Z(Sh B/Z) -\ )/2,-1(V“)\)/2( sh B/Z)

(VII. 28)

This problem is solved in Appendix B.

Let us consider this situation in position space. Since the
Schrédinger equation is analytic in the energy, also the wave func-
tions are analytic.

The bound state wave functions in the £m basis

A (n+£)! 1 _-r/n EAY
Rpgl = (2E+1)1fM—’1H n2 " (n>

X F K—(n—ﬂ—l), 24+2, 2r/n\) (VII.29)

5
"

are the continuation of the free wave functions of energy 1/2 2

_ _iglr/2) 2P TCanT 1 -i/veV
R_iv,g(r) - e @2E+1)1 | (-iv-£-1)1 ,2 ° <v>

Flivtf+1, 24+2, 2i r/v> (VII. 30)

which- are normalized to
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SR ()R ()r2dr = N26(v'-v) (VIL. 31)
+iv', } -iv , £ v .

with the normalization factor

Nf = Ze_wvlsin'irvl = |1 -e

—Zwvl

(VII. 32)

which agrees with Eq. (VII.16). In the parabolic case we find that
the free wave functions

. _ o Fime —lf nylny! e_i(g_,_n)/z gﬂ\m/Z
iv,i?\,m N V2 (nl+m)13(n2+m)!3 (VZ /
m , m .
Ln1+m(1§/v)Ln2+m(1n/v) (V11. 33)
with
m+1 i
- - B2 2y
! 2 2 M)
m+l i
n2 = -5 > (v+\)

continue properly to the bound wave functions up p for integer
ny,ny =0 and -iv=n, and that they have the normalization

+1 -m(N+\
mle (N )I

L{ agando(esmiu,,., L Eno)u (Ene) = 811 - ()

iv,ik,m

% |1 - (“)m+le—1r(N-—k) |

X 6(v'=v)B(N'=N\), (VII. 34)
which amounts to the normalization factor defined in (VII.21) being

N = g8l1 - ()

- A - -A
m m+le m(N+ )I_ I - (_)m+le 7(N )I

(VII. 35)

just as in (VII.20).

Finally we like to mention that states which behave asymp-
totically like outgoing or incoming plane waves in the direction k are
characterized by
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K-L| -iv,k £) =0

1l

Ry~ Ligl-iv,R2) = (ziv - 1) | -iv, k). 19 (viL. 36)

They are given in position space by

_ {i/2) (tkr+k- 1) v 1 1 iy, 1, Fiv-l
w = e 5 oo Seeer ™o

e'i(ikr:}a‘g (VII. 37)

with the normalization

Sk 3. _ &3,
Suk.ukdx—é(k k)

and have no simple continuations to bound states like the other two
cases. For k pointing in z direction, these states can, however,
be reached from the parabolic states by continuing A to *v +1i.

We see that group theory and wave functions go nicely hand
in hand also in the case of continuous states.

VIII, Summary

We have seen that the internal structure of the composite
guantum mechanical system of the H-atom can be described com-
pletely in terms of simple group operations in the representation
space of the non-compact group O(4,2). There are indications that
the algebraic structure of this description may well be model inde-
pendent and carry over to the physics of elementary particles. Let
us, therefore, summarize the general features of this structure. For
applications to particle physics one clearly has to substitute men-
tally the Lorentz group every time the Galilean group occurs in the
following statements in order to construct a relativistically invariant

theory.
Given a three-particle vertex in which an external interaction

(like photon, pion, et cetera) can cause momentum transfer dependent
transitions between a highly symmetric array of physical states, then
the structure of the amplitude for these processes can be described in
the following group theoretical way:

1) There is a (in general non-compact)group G which contains
all possible states of the system at rest in a single unitary irre-
ducible representation. The group G has to contain a Galilean
sub-group, the "boosting group," rotational invariant non-compact
operators, "tilting operators,” and tensor operators possessing the
transformation properties of the external interactions.
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2) The physical states are tilted, renormalized states in the
irreducible representation space.

3) The amplitude for any external interaction with momentum
transfer g is given by the matrix elements of the corresponding
tensor operator between physical states transformed to their true
velocities before and after the collision via the boosting group.

4) The normalization facters in the physical states are fixed
by the requirement of constancy of charge in a multiplet.

5) The tilting angles and masses of the particles are deter-
mined from the requirement of conservation of the electromagnetic
current (which is equivalent to the physical states solving a cer-
tain infinite component wave equation).

Three ~particle vertices of baryons and mesons built according
to this structure have shown excellent agreement with experiment and
have given many predictions (in fact, there are always infinitely many
predictions for every vertex) using the group O(4,2). It will be in-
teresting to see how many of these predictions will survive a closer
experimental test.

Appendix A: Global Representations of O(2,1)

Let K{KyK3 generate O(2,1) according to the commutation
rules (II.29), and let im} be states on which the operator K3 is
diagonal with the eigenvalue m, then one can classify all unitary
representations by the value g of the Casimir operator

2 2 2
Q= -K; -K, +K, (A.1)
or alternatively by using k such that
qg = k(1 -k) (A.2)
as
1) Discrete classes D]: or Dy, existing for
k=1/2,1,3/2,... et cetera, with the spectrum of m being
m or ~-m=k, k+1, k+2, ..., respectively

Cor C 1/2 existing for 1/4=Sq<w

2) Continuous classes Cq g

or 3<qg<oe with the spectrum
m= 0, £1, £2, . .

or

m= +1/2,+3/2, £5/2, . . .,

respectively.
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If Kij=io 1/2+ Ko = io 2/2+ K3= o3/, generate a (non-unitary) 2 X 2
representation of O(2,1), consisting of the elements

a=(% §> oa - BB = 1, (a. 3)

then the representation of D]:r and the continuous classes is given by

vmn(a) = emna-m-nﬁm—n P(k—n, 1-n-k, 1+m-n, —EB) (A. 4)
with
_ 1 L (m+1-K)T (m+k)] 2
emn - I“(1+m—n) [P(n+1—k) I"(n+k)] ’ (A. 5)

which is well defined for mZn. For m<n the limit m - n—negative
integer has to be used. If one does a careful limiting procedure
k—-1/2,3/2, ..., then (A.4) holds also for Dy. Explicitly, one
finds from unitarity

*

v () = vnm(a_l) (A. 6)

et a -
(P e
Hence, for m=n one can take vp, from (A.4) with the substitution

B—=-B.

Appendix B. Spinorial Method for the Representations of O(2,1) in
Discrete and Continuous Basis 20),21)
Let af', a2+ be two complex variables and a,= a/aaf (r=1,2).
Then the representation with Casimir operator g=k(l1 -k) is generated

1+ 1 _ 1 + 2 1 + 3
Kl— S aca, Kz— , a o a, K3—2acra (B. 1)
on the Hilbert space of functions
_ . k_4m-k_ _ -m-k
|k, m) = Amal a, (B.2)

where Ar]n‘: is some normalization factor. Because of the possibility of
an Euler decomposition of every group element we can restrict our
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discussion to the subgroup h=elK1? which is represented by the 2 X2
matrix

_ ch /2 sh cp/Z\
h = (sh 9/2 che/2) (B.3)

on the space of

1.e.,
eiKl(p(af)e-iKltp = n(al) (B. 4)
ag ag

But then we find that

iKje - -m-
e 1k, m) = NXch vat + sh vaH)™ K(sh ea +ch gaf) ™K
m 1 2 1 2
(B.5)
which can be expanded in states |k,m) by a series
iK k
e ¥k, m) = ) v (@) ik, m') (B. 6)
m
where
k A k ) 2k L]
_ Sm m-m ~2k+m"'-m
Vm'm = Ak sh ©/2 ch @0/2
o .2
~-k+ - —k-m’
X Y th ptp/Z( ,m> k m) (B.7)
- m-m'+p p
p=o

and the sum can be collected to give a hypergeometric function. For
mzZm' one finds

k
A
_ “m 1 {-k+m)! m-m' -2k+m'-m
m
X F(k-m', k+m, 1+m-m"', th2 m/Z). (B. 8)

If one imposes the unitarity condition upon v:
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K@ o= vE (e,

one finds that Ar]; has to be

k k-m [(k+m—1)!]§ (B.9)

Ap = () (-k+m) !

and k in the range given in Appendix A. But then {B.8) exactly coin-
cides with (A. 4) if one remembers the relation

F a,b,c,z\ = (1-2\°F é,c-—b,c, _g_\ (B. 10)
; Z"]. /

Representations which diagonalize K; can be found in a com-
pletely analogous fashion. Here one simply considers the states

lkv) = A e(“/z)Kl(af\/ﬁi”’k(a vk

2)

k . oR\iv-k , -iv-k
A (al+1a2> (a2+1af'> (B.11)

which obviously diagonalize K.
/2
1 amounts to a canonical, non~unitary

The operation e
21)

transformation to the new variables

+ + o+ + o+ .t
<, —a1+1a2, c, =&, tia, (B.12)
in terms of which Ki have the form
I L | _ 1 +3 1 +2
Kl— ;¢ ¢, Kz—zccc, K3—20<rc. (B, 13)

i
The matrix elements of e Kye can now be obtained by forming

a state like (B.5) and expanding in the form
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elKl\'ﬂlk,V) = N\]:" cht@cl+ + sh qﬁc;\jw—k(chi?c;+shmcl+\j- siv-k
A
oy
= avv L @ik (B. 14)
oo v v

The last step is done by means of the generalization of the binomial
expansion

(1 + E,)Z = ms F(—z+iu)r(-iu)givdv

farg €1 < 7 (B.15)
One findszn
Ak
k v 1 -2k
vvlv((p = k ZTTCh tp/Z
AK

% JLthi(Vl—v) °/2 %(];_Tv)) 1“(i(v'-v))FQ"i", k+iv',1+i(v'—v).th2@/2>

+th-‘i(V'-V)lp/2 Ik-iv') I“(i(v—V'))FQ(‘*iV, k-iv', 1-i(v'-v), tthP/2>}.

I'(k-iv)
(B. 16)
The normalization A\]f is fixed from unitarity to be
-k/2 n1/2
2 .
= ' -1i .17
Av NS [I‘(k+1v) T (k 1v)_l (B )

The non-unitary basis lk,-iv) = e(7r/2)Kl lk,v) on which K3 has the
eigenvalue -iv can then be shown to have the scalar products

. i _ 5 v { sh vmy} . " k = integer
(ko ivt Tk, -iv) “€ chh var X6(v'-v) for k = half integer.

(B.18)
From this it follows immediately, by going to the corresponding O(2,1)

or O(2,1) X O(2,1) subgroups, that the O(4,2) states defined in
(VII. 15) have the normalization (VII.16) in the {Zm-basis (where
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k=.+1) and {VI1.20) in the parabolic basis {(where k=(m+1)/2. Note
that an extra factor two has to be introduced apart from the product of
two expressions of the form (B. 18) in order to change the normaliza-
tion from the (v+7\)/2, {(v-2)/2 to the v,\ scales.)

The matrix elements for the basis change (k,mlk,v) can be
obtained by expanding (B.11) in terms of states lk,m). One finds:

k A ~(r/2)(vrim) L(okrival)

{k,mlk,v) = 2 Ak T(krm+1)
m

1 . .
X T(iv-m+1) Flk-m, k+iv, iv-m+1, -1), (B.19)

which can also be obtained by continuing the matrix element

(K +iv' 1k v) = (k, iv' e ™21 4y

to iv'=m.

the Continuous Basis.
Given the states of the parabolic basis |v,X\,m), then by def-
inition

L461vkm) = v|[vim)
Lag JvAm) = X]vim)
Lyp lvkm) = mlvim). (C.1)

Observe that these states diagonalize the generators N% {(r=1,2) of
the O(2,1) subgroups (II. 30) —namely,

T
—{-)"X]vA
Nllvkm)z v_|vim) = vo{) My m). (C.2)
r r 2
Let us define the Hermitian '"raising and lowering" operators
t _ gl - w3
N = NS TN (C. 3)

which satisfy



THE HYDROGEN ATOM 475
Nr:t raise and lower v, by i, respectively. From this, one finds

m2-1 —! e—i(a/avr)

(v',?\',m'iN::Oiv)\m) = +l:vr(vr—i)+ 1|

(v', 2, m'lO]vim)

5 /50 2.1
+e 18 /8vy) l:vr(vr+i)+ m4 1_]("'7\'1'“'*0]")““)

e Am INFOIvm) = -t/ im0 1vam).

From this, all matrix elements of the O(2,1) X O{(2,1) operators (II. 30)
are known.
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Figures 1-5. The form factors of the charge distribution

ig=

P {q) = ¥

*
n't'm,ntm J Lljn'aff,'me nim
are plotte in atomic units e= h= (memp)/(me+mp) =1. [A very fast
Fortran subroutine has been written which calculates the functions

pn'{,‘m,n{,m(q) according to formula (V.27) and the spatial currents

I;'L'm' n}Lm(q) according to (V.29) and (V.30).]
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