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Abstract: Conformal Gravity is renormalizable and has strong fluctuations capable of

generating spontaneously an Einstein term in the action, as a kind of “dimensionally transmuted

coupling constant”. We show that this may produce the correct long-range behavior of

gravitational forces.
c© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: Quantum Gravity; Conformal Gravity; Long rang Behaviour

PACS (2010): 95.35+d.04.60,04.20C,04.90

Conformal Gravity has recently become a fashionable object of study since it appears

to be a possible alternative to standard Einstein gravity [1]. It is a pure metric theory

that possesses general coordinate invariance and satisfies the equivalence principle of

standard gravity, while augmenting it with the additional symmetry of invariance under

local conformal transformations on the metric gμν(x) → e2α(x)gμν(x), where α(x) is an

arbitrary local function. The action reads (see e.g. [2])

Aconf =
1

8α

∫
d4x (−g)1/2CλμνκC

λμνκ (1)

where Cλμνκ is the conformal Weyl tensor :

Cλμνκ = Rλμνκ− 1
2
(gλνRμκ−gλκRμν−gμνRλκ+gμκRλν)

+
1

6
R (gλνgμκ − gλκgμν) , (2)

with Rλμνκ being the Riemann curvature tensor , Rλν = Rλμνμ the Ricci tensor , and

R ≡ Rμ
μ the scalar curvature [3]. Equivalenty we have

Aconf =
1

4α

∫
d4x (−g)1/2

[
RμκR

μκ − 1

3
R2

]
. (3)
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The quantum theory is defined by a generating functional

Z =

∮
DgμνeiAconf , (4)

where the integral symbol
∮
includes a Fadeev-Popov determinant that cancels the

superfluous integrations over gauge degrees of freedom.

It has recently been shown [4], that such an action arises in the spirit of Sakharov [5]

from the fluctuations of the conformal factor in the partition function involving a sum

of matter field actions of spin s in a D-dimensional Riemann spacetime with metric gμν .

The coupling parameter was calculated to be −1/4α = 1/[8π2(4−D)]× [(1 +N0)/120+

N1/2/40 + N1/10 − 233N3/2/720 + 53N2/45], where Ns is the number of fields of spin

s. If we write Rμνλ
κ as a covariant curl of the 4 × 4 matrix formed from the matrix of

Christoffel symbols {Γν}λκ ≡ Γνλ
κ:

Rμνλ
κ = {∂μΓν − ∂νΓμ − [Γμ,Γν ]}λκ, (5)

the action is seen to have a form that is completely analogous to the SU(3)-invariant non-

abelian gauge theory QCD of strong interactions. This similarity is part of the esthetical

appeal of the actions (1), (3).

As in QCD, the coupling constant α is dimensionless, and this makes the theory renor-

malizable, thus becoming an attractive candidate for a quantum theory of gravitation.

Adding to (3) a source term − ∫
d4x (−g)1/2δgμνT μν , variation with respect to the

metric yields the field equation [1]

1

2α
Bμν = T μν , (6)

where Bμν is defined by 2(−g)−1/2δAconf/δgμν ≡ Bμν/2α. Functional differentiation of

(1) yields the covariantly conserved and traceless Bach tensor :

Bμν ≡ 2Cμλνκ
;λ;κ − CμλνκRλκ, (7)

whose explicit form is

Bμν=
1

2
gμνR;κ

;κ+Rμν;κ
;κ−Rμκ;ν

;κ−Rνκ;μ
;κ−2RμκRν

κ

+
1

2
gμνRλκR

λκ−2
3
gμνR;κ

;κ+
2

3
R;μ;ν+

2

3
RRμν− 1

6
gμνR2. (8)

The purpose of this note is to point out a phenomenon that has been observed a

long time ago in the context of biomembranes [6], later in string theories with extrinsic

curvature [7, 8], and after that in a gravity-like theory [9], that the large number of

derivative in the free graviton propagator make fluctuations so violent that the theory

creates spontaneously a new mass term. In the case of biomembranes and stiff strings

this was a tension, here it is an Einstein-Hilbert action

AEH =
1

2κ

∫
d4x (−g)1/2R . (9)
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In this, the constant κ is proportional to Newton’s gravitational constant

GN = 6.672× 10−8cm3g−1sec−2, (10)

in the combination

κ =
8πGN

c3
. (11)

It specifies the attractive force between two planets of masses M and M ′ at a distance r:

F = −GNMM ′/r2.

Instead of κ one may also use the so-called Planck mass

MP ≡
√
�c/GN = 2.1737× 10−5g = 1.22× 1019GeV, (12)

or the Planck length

lP ≡ �/MP c = 1.616× 10−33cm, (13)

to express the prefactor 1/2κ as

1

2κ
=

M2
P

16π

c2

�
=

�

16πl2P
.

Let us see how the spontaneous generation of the Einstein action comes about. First

we observe that the second term in the action (3) is the scale-invariant expression

Asi = − 1

4α

∫
d4x (−g)1/21

3
(Rα

α)
2. (14)

Now we observe that we can set up an alternative scale-invariant action with the help of

an auxiliary field λ(x) as

Asi′ =

∫
d4x (−g)1/2

(
− 1

2κ
λR + 3

αλ2

4κ2

)
. (15)

In fact, integrating out λ in the generating functional Zsi′ =
∮ DgμνDλeiAsi′ leads back

to the initial scale-invariant theory Zsi =
∮ DgμνeiAsi . The field can be separated into

an average background field λ̄ plus fluctuations δλ which have only nonzero momenta.

The fluctuations are necessary to make the theory with Zsi′ completely equivalent to that

with Zsi. But a useful approximation to be applied later will be based by neglecting all

terms involving δλ, and taking the saddle-point approximation to the remaining integral

over λ̄.

Next we introduce an arbitrary mixing angle θ and with it a third version of the same

action Asi′′ ≡ C2Asi − S2Asi′ where C ≡ cosh θ, S ≡ sinh θ. After replacing λ by λ/C2,

we may write

Asi′′=− C2

12α

∫
d4x (−g)1/2R2 − 1

2κ

∫
d4x (−g)1/2λR

− 3α

4S2κ2

∫
d4x (−g)1/2λ2. (16)
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Hence the second term in the action (3) can be replaced by the completely equivalent

action (16), for any choice of the mixing angle θ. This will change the field equation (6)

to
1

2α
Bμν +

λ

κ
Gμν +

3α

4S2κ2
λ2gμν = T μν . (17)

where the Bach tensor has the form (8), except that the last four terms containing factor

1/3 are replaced by C2/3 [10].

Let us now see that the fluctuations of the metric can make the average λ̄ a finite

quantity, which by a suitable choice of the parameters can be made equal to unity. As a

result, the large-distance forces of gravity become Einsteinian (i.e. Newtonian).

Our starting point is the weak-field expansion of the action arising from an expansion

of the metric gμν around the Minkowski metric ημν . Setting gμν = ημν + hμν , we may

write the curvature tensor as

Rμνλκ ≈ 1

2

[
∂μ∂

λhνκ − ∂ν∂κhμ
λ − (μ↔ ν)

]
+ . . . , (18)

implying for the Ricci tensor

Rμ
κ ≡ gνλRνμλ

κ (19)

the small-hμν expansion

Rμκ≈−1
2
(∂μ∂λhλκ+ ∂κ∂λhλμ− ∂μ∂κh− ∂2hμκ)+ . . . ,

and for the scalar curvature

R ≡ Rμ
μ ≈ (∂2h− ∂μ∂νh

μν) + . . . ,

where h ≡ ημνhμν . The Bach tensor becomes B
μν = 1

2
∂2Kμν , where Kμν = hμν − 1

4
ημνh.

For the linearized conformal gravity, the action (3) reads [1]

Aconf ≈ − 1

16α

∫
d4x ∂2Kμν∂

2Kμν . (20)

The quadratic part of the Einstein-Hilbert action (9) in linearized approximation

comes from the Γ2-terms in (5) and reads

AEH ≈ 1

2κ

∫
d4x gμν

(
Γμλ

κ Γνκ
λ−Γμν

λ Γλκ
κ
)
. (21)

It can be rewritten as

AEH = − 1

8κ

∫
d4xhμν ε

λμκσελ
ντδ∂κ∂τhσδ. (22)

The most compact way of writing the action is in terms of the Einstein tensor

Gμν ≡ Rμν − 1

2
gμνR (23)



Electronic Journal of Theoretical Physics 11, No. 30 (2014) 1–8 5

whose linear approximation is

Gμκ=
1

2
(∂2hμκ + ∂μ∂κh− ∂μ∂λh

λκ − ∂κ∂λh
λμ)

− 1

2
ημκ(∂2h− ∂ν∂λh

νλ), (24)

and has as trace G ≡ Gμ
μ = −R = −(∂2h − ∂μ∂νh

μν). This may be written as a

four-dimensional double curl:

Gμν ≈ 1

4
ελμκσελ

ντδ∂κ∂τhσδ, (25)

from which we see that the Einstein-Hilbert action (22) becomes simply

AEH =

∫
d4xL(x) = 1

2κ

∫
d4xhμνG

μν , (26)

With these approximations, the action (16) reads

Asi′′ =− C2

12α

∫
d4xR2 +

1

2κ

∫
d4xλhμν∂

2φμν

+
3α

4S2κ2

∫
d4xλ2ημν(ημν + hμν), (27)

where φμν ≡ hμν − ημνh/2. This action can now be used to replace the second term in

(3) without changing the conformal field theory in the weak-field limit.

For the new action Asi′′ , the linear approximation to the field equation (17) turns into

the simple differential equation

− 1

2α
∂2∂2φμν +

λ

2κ
∂2φμν +

3α

4S2κ2
λ2ημν = T μν . (28)

The correct long-range behavior of the gravitational field is ensured if the average value

of the λ-field is λ̄ = 1. Moreover, the dimensionless constant α can be chosen such as to

reproduce the experimentally observed cosmological constant.

Note that the full theory described by the action (27) is independent of the mixing

angle θ. However, if we calculate the effective energy only up to a finite loop order in the

fluctuating hμν-field, the result will depend on θ. The optimal result is obtained from

that θ-value at which the energy has the weakest dependence on θ. At the one-loop level,

this is the place where the derivative of the energy with respect to θ vanishes [11, 12].

This criterion has been used successfully in the calculation of critical exponents in all

O(N)-symmetric Φ4-theories at large coupling constants [13, 14].

The one-loop Euclidean effective action is obtained by functionally integrating out

the fields hμν in the exponential eiAsi′′ in which λ is approximated by its average value

λ̄. The result is e−iV4Γ where V4 is the total four-volume of the universe, and Γ is the

effective Euclidean Lagrangian

Γ =

∫ ′ dDk

(2π)D
log

(
k4 +

λ̄α

κC2
k2
)
− 3α

4S2κ2
λ̄2. (29)
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The prime indicates a trivial subtraction of the leading divergence. After this, the integral

can be done and yields in D = 4− ε dimensions

Γ =
α2λ2

32π2C4κ2

[
log

4αλ̄

C2κμ2πeγ
− 1

]
− 3α

4S2κ2
λ̄2, (30)

where μ is an arbitrary renormalization scale, and we have not written down the pole

term ∝ 1/ε since this can eventually be discarded in a renormalization procedure by

minimal subtraction[14].

The saddle point in λ̄ is now determined by the vanishing of Γλ̄ ≡ ∂Γ/∂λ̄, where

Γλ̄

λ̄
=

α2

16π2C4κ2

[
log

4αλ̄

C2κμ2πeγ
− 1

2

]
− 3α

2S2κ2
= 0, (31)

and we may ignore again a pole term ∝ 1/ε in minimal subtraction.

Finally, the optimal value of θ is determined from the vanishing of the derivative of

Γ with respect to C2, ΓC2 ≡ ∂Γ/∂C2, i.e., of

C6ΓC2

2λ̄2
=− α2

16π2κ2

[
log

4αλ̄

C2κμ2πeγ
− 1
2

]
− 3C6α

8S4κ2
= 0. (32)

and we ignore once more the pole term ∝ 1/ε. In the combination λΓλ + C2ΓC2 = 0 the

pole term is absent and from the zero we determine the optimal C2 to have the value 2,

so that S2 = 1.

From the vanishing of the λ̄-derivative (31) we find that the extremal λ̄ is given by

λ̄ =
C2κμ2πeγ+1/2

4α
e−6π

2C6/S4α. (33)

For any value of the dimensionless coupling strength α, we can choose the renor-

malization mass scale μ, in such a way that λ̄ has the value 1, that will guarantee the

correct gravitational forces at long distances. It is the dimensionally transmuted coupling

constant of the massless theory. Its role here is completely analogous to the role of the

dimensionally transmuted coupling constant in the Coleman-Weinberg treatment of the

scale-invariant quantum electrodynamics of a scalar φ4-theory [15], and to the famous

QCD mass-scale ΛQCD ≈ 217 ± 25 MeV in the massless quantum chromodynamics of

quarks and gluons.

The question may arise whether the field λ could have a gradient term and thus have

a particle associated with it. However, such a term would destroy the renormalizability

of the theory so that we have to keep λ purely auxiliary. Its spacetime fluctuations are

important for the short-distances behavior of the gravitational forces but not for the

evolution of the cosmos, except for the baby stage.

From the outset, conformal gravity has many problems, such as states with negative

norm. These problems can be shifted to such large masses, for instance a Planck mass

or a multiple of it, so that they will not contradict experiments at present and in the

foreseeable future. Thus they should not worry us, in particular, if we recall that similar
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problems exist within the best quantum field theory in use, quantum electrodynamics

(QED). This also possesses unphysical states known as Landau poles which fortunately

lie at such large masses that other physical phenomena intervene at much lower energies,

long before the diseases of QED show up. In conformal gravity, there have also been other

proposals for dealing with such states: One is based on the choice of suitable boundary

conditions at large infinity [16], the other sees hope in different quantization procedures

[17]. The spontaneous generation of an Einstein action proposed in this letter seems to

be a much more satisfactory way towards a physically acceptable quantum gravity.
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