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In its geometric form, the Maupertuis Principle states that the movement of a classi-
cal particle in an external potential V (x) can be understood as a free movement in a
curved space with the metric gµν(x) = 2M [V (x) − E]δµν . We extend this principle to
the quantum regime by showing that the wavefunction of the particle is governed by a
Schrödinger equation of a free particle moving through curved space. The kinetic oper-
ator is the Weyl-invariant Laplace–Beltrami operator. On the basis of this observation,
we calculate the semiclassical expansion of the particle density.

Keywords: Schrödinger equation in curved space; quantum particle motion in curved
space; exact solutions; curved space quantum mechanics; geometric physics.
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1. Introduction

The famous Maupertuis Principle was discovered in 1741 by Pierre Louis Mauper-
tuis, later refined by Hamilton and Jacobi, who also gave a geometric interpretation
of the situation [1]. It laid the foundation to the geometric formulation of Newton’s

∗Present address: Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg,
Germany.
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laws, and was an important stimulus for Einstein’s general theory of relativity.
In this paper, we want to point out that this geometric view of classical physics
remains also valid in the quantum regime, i.e. the quantum mechanics of a particle
in a potential V (x) may be described alternatively by a Schrödinger equation in a
general curved space with D dimensions with the Maupertuis metric

gµν(x) ≡ 2M [V (x) − E]δµν . (1)

The Hamiltonian of this Schrödinger equation contains the Weyl-invariant (confor-
mally-invariant) version

∆W = ∆ − 1
4
D − 2
D − 1

R (2)

of the Laplace–Beltrami operator

∆ = g−1/2∂µg
1/2gµν∂ν . (3)

Our result supplies us with an answer to an old, very fundamental problem left open
by Einstein’s classical equivalence principle. That principle states that the classical
laws of motion of a point particle can be derived from a coordinate transformation
in spacetime whose inertial forces simulate the gravitational forces at the position
of the particle.

Since a quantum particle is always an extended object described by a wave
packet, there could, in principle, be a correction term ξR proportional to the cur-
vature scalar R, whose size ξ is undetermined by the classical equivalence principle.
The geometric method, which we shall call the Quantum Maupertuis Principle, fixes
the size of the R-term.

The paper is structured as follows:

• Section 2 is devoted to the derivation of the Schrödinger equation of a particle
in curved space, thereby fixing the above-mentioned extra R-term.

• In Sec. 3, we calculate the propagator in curved space.
• Section 4 contains the application of the Quantum Maupertuis Principle, where

the particle density is calculated explicitly.
• Section 5 treats two explicit examples in the Maupertuis metric.
• A summarizing section and an Appendix with calculations conclude the present

paper.

2. Formulating Quantum Mechanics in Curved Space

Consider the classical eikonal of an arbitrary trajectory of a point particle moving
in Euclidean space with a potential V (x). It is given by the integral

S(E) ≡
∫ √

gE
µν(x)dxµdxν , (4)

with the Maupertuis metric (1). It is a functional of the trajectory which may
be parametrized with the help of an arbitrary variable λ as xµ(λ), and rewritten
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as

S(E) ≡
∫
dλ

√
gµν [x(λ)]ẋµ(λ)ẋν (λ) ≡ l. (5)

The integral coincides exactly with the invariant length of the trajectory.
According to Maupertuis, the eikonal S(E) is extremal for the classical tra-

jectory, i.e. the classical orbit is a geodesic trajectory. If λ is chosen to coincide
with the invariant length l, the extremization produces the geodesic differential
equation

d2xδ

dl2
+ Γαβ

δ dx
α

dl

dxβ

dl
= 0, (6)

where Γµν
λ are the Christoffel symbolsa

Γµν
λ =

1
2
gλσ (∂µgσν + ∂νgµσ − ∂σgµν) . (7)

Inserting the metric (1) into this equation, we see that Eq. (6) is fulfilled if the
trajectory follows the Newton equation x′′µ = −∂µV . (Here, the time is chosen as
the non-affine parametrization parameter and the prime denotes the derivative with
respect to it.)

The Maupertuis metric in Eq. (1) differs from the flat Euclidean metric ḡµν ≡
δµν only by a conformal factor

Ω2(x) ≡ 2M [V (x) − E]. (8)

It is therefore called conformally flat. Calculating the curvature quantities with this
metric (cf. Appendix A) in D dimensions, one obtains the curvature scalar:

R =
1 −D

4

[
2∂µ∂µV

M(E − V )2
+

(D − 6)∂µV ∂µV

2M(E − V )3

]
. (9)

Consider now the quantum mechanics of the point particle of energy E in the
potential V (x). It is described by the Schrödinger equation

(Ĥ − E)ψ(x) ≡
[

p̂2

2M
+ V (x) − E

]
ψ(x) = 0, (10)

where p̂ ≡ −i�∇. Using the metric (1), this can be rewritten as[
Ω−2(x)p̂2 + 1

]
ψ(x) = 0, (11)

or as (
�

2∆W − 1
)
ψ(x) = 0, (12)

where ∆W ≡ Ω−2(x)
∑

µ ∂
2
xµ . It is easy to verify that this is equal to the Weyl-

invariant combination in Eq. (2) of the Laplace–Beltrami operator (see Eq. (3))
and R. The equation linking ξ to the conformal coupling is also known as the
Penrose–Tagirov–Chernikov equation [4, 5].

aWe use the index conventions of the textbooks [2, 3].
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Equation (12) is a simple but very fundamental result. The Maupertuis met-
ric (1) governs not only the classical, but also the quantum mechanical dynamics,
provided that the Laplace–Beltrami operator is extended to the Weyl-invariant
form (2).

3. Propagators in Curved Space

The advantage of the curved-space reformulation (i.e. the Schrödinger equation in
the form of Eq. (12) rather than Eq. (10)), is that, in curved space, the particle is
without a potential. It is a free particle moving through the Maupertuis metric (1).
For such movements, there exist well-developed methods of calculating quantum
properties pioneered by DeWitt [6–8] who studied quantum field theoretical models
in curved space. In particular, DeWitt has given a semiclassical expansion of the
matrix elements of the resolvent operator

〈x|R̂|x′〉 ≡
〈
x

∣∣∣∣ i�

E − Ĥ

∣∣∣∣ x′
〉
, (13)

where Ĥ is a curved-space translation operator in some pseudotime parameter τ ,
and E is the associated pseudoenergy. The pseudotime τ is commonly called
Schwinger time or fifth time. Note that the physical time is eliminated in our con-
siderations by the geometrization method employed. The principle of least action
in the classical case fixes the trajectory of the particle and allows for different veloc-
ities along the path. In the quantum case, the Schrödinger equation contains this
information via the extra term which extends the Laplace–Beltrami operator to the
Weyl-invariant form.

The Green function G(x, x′) =
〈
x|R̂|x′〉 can be written as an integral

G(x, x′) =
∫ ∞

0

dτ
〈
x, τ |x′, 0〉

(14)

over the pseudotime displacement amplitude

〈x, τ |x′, 0〉 =
〈
x|e−i(Ĥ−E)τ/�|x′

〉
. (15)

For arbitrary s = τ − τ ′, the result is given by the expansion

〈x, τ |x′, τ ′〉 =
D

1/2
MV(x, x′)

(2πi�s)D/2
eiσ(x,x′)/s�

∞∑
n=0

an(is/2�)n, (16)

where

D
1/2
MV(x, x′) ≡ g1/4(x)∆1/2

MV(x, x′)g1/4(x′) (17)

is the Morette–van Vleck determinant and ∆MV(x, x′) has the expansion

∆1/2
MV = 1 +

1
12
Rµνσ

µσν − 1
24
Rµν;ρσ

µσνσρ (18)

+
(

1
288

RµνRρτ +
1

360
Rα β

µ νRαρβτ +
1
80
Rµν;ρτ

)
σµσνσρστ + · · · .
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Note that this expression is stated in the form of an endpoint expansion, which
means, that the derivatives are evaluated at the endpoint x.b Here, σ is the geodesic
interval biscalar (cf. Appendix B). DeWitt allowed for the presence of an extra term
ξR in addition to the Laplace–Beltrami operator ∆ on the right-hand side of the
Schrödinger equation (cf. Eq. (B.2)). Then he derived a recursion relation for the
expansion coefficients [7]

σµ(a0) µ
; = 0, (19)

(n+ 1)an+1 + σµ(an+1) µ
; = ∆−1/2

MV

(
∆1/2

MVan

) µ

;µ
− ξRan, (20)

whose lowest terms are

a1 =
(

1
6
− ξ

)
R, (21)

a2 =
1
6

(
1
5
− ξ

)
R µ

;µ +
1
2

(
1
6
− ξ

)2

R2

− 1
180

RµνR
µν +

1
180

RµνρσR
µνρσ . (22)

With these coefficients at hand, the expansion in Eq. (16) can be evaluated as a
function of the curvature quantities.

It is interesting to note that the size of the factors found by DeWitt who allowed
for a “quantum potential” in his short-time expansions is not universal. While in
his paper on “Dynamical theory in curved space”, he had found a factor of 1/12
in order to identify the correct Hamiltonian in curved space [6], two-loop correc-
tions to path integrals in curved space required a factor of 1/8 [9]. Furthermore,
there have been other proposals of Schrödinger equations and the coefficients of
the curvature scalar term in curved space (see [10–12] and references therein). This
shows that the problem of finding the “correct” quantum mechanical equations of
motion in curved space is quite a difficult task and brings many new questions
with it.

4. Application of the Quantum Maupertuis Principle

We now come to the announced application of the Quantum Maupertuis Principle
by calculating the particle density of the Schrödinger equation (10)

ρ(x;E) ≡ 〈x|δ(E − Ĥ)|x〉

=
1

2π�

〈
x

∣∣∣∣∣
∑

n

disc
(

i�

E − En

)∣∣∣∣∣x
〉
, (23)

bSee [2, Sec. 10.3.1].
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where “disc” stands for the discontinuity across the cut in the energy plane. A
simple algebra shows that

〈x|R̂|x′〉 =
1
2
〈x|R̂|x′〉[V (x′) − E]−1. (24)

Now we insert the DeWitt expansion (16) which reduces for x = x′ to

〈x|R̂|x〉 =
g1/2(x)

(2πi�)D/2

∞∑
n=0

an(−∂m2)n

∫ ∞

0

dse−im2s/2�

sD/2
, (25)

where the integral is simply Γ(1−D/2)(m2)D/2−1, so that the sum on the right-hand
side becomes

∞∑
n=0

anΓ(n+ 1 −D/2)(m2)D/2−(n+1). (26)

To be used in Eq. (24) we must take Eq. (25) for ξ = (D− 2)/4(D− 1) and m2 = 1
and evaluate an with curvature terms of the Maupertuis metric (1):

〈x|R̂|x〉 =
(

M

2π�2

)D/2 {
Γ(1 −D/2)[V (x) − E]D/2

− �
2

12M
Γ(3 −D/2)∂µ∂

µV (x)[V (x) − E]D/2−2

+
�

2

24M
Γ(4 −D/2)∂µV ∂

µV (x)[V (x) − E]D/2−3 + · · ·
}
. (27)

The result is valid for V (x) > E where the metric is positive. For E > V (x), we
use the property V − E = e∓iπ(E − V ) to find the discontinuity across the cuts.
Remembering the extra factor (V − E)−1 in Eq. (24), we obtain from the DeWitt
expansion the particle density ρDW(x;E) ≡ 〈x|δ(E − Ĥ)|x〉 as

ρDW(x;E) =
1
π

(
M

2π�2

)D/2

sin
(
πD

2

)

×
[
Γ(1 −D/2)(E − V )D/2−1

− �
2

12M
Γ(3 −D/2)(E − V )D/2−3∂µ∂

µV

− �
2

24M
Γ(4 −D/2)(E − V )D/2−4∂µV ∂

µV + · · ·
]
. (28)

Now we employ the reflection formula for Gamma functions Γ(1 − z)Γ(z) =
π/sin(πz)

ρDW(E;x) =
(

M

2π�2

)D/2 [
1

Γ(D/2)
(E − V )D/2−1
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− �
2

12M
1

Γ(D/2 − 2)
(E − V )D/2−3∂µ∂

µV

+
�

2

24M
1

Γ(D/2 − 3)
(E − V )D/2−4∂µV ∂

µV + · · ·
]
. (29)

This agrees with the expansion in � obtained from the original Schrödinger equation
(10) for E > V (x).c

By virtue of the bilocal character of the DeWitt techniques in curved space, the
expansion of 〈x|R̂|x〉 exists also for the off-diagonal matrix elements 〈x|R̂|x′〉 which
serves to find also the off-diagonal particle density ρ(x, x′;E) ≡ 〈x|δ(E − Ĥ)|x′〉
beyond the result stated in the literature.d

5. Two Physical Systems in the Curved-Space Formulation

5.1. The case D = 1 and the harmonic oscillator

In one dimension, the expression (9) and the coefficient of the curvature term in
Eq. (2) are invalid separately. Although the curvature in one dimension vanishes, we
see in the latter equation that the conformally-invariant Laplacian is well-defined
and can be used to derive the semiclassical density of states as shown in Sec. 4.
The expression for a particle of mass M in a harmonic oscillator potential in one
dimension reads

〈x|R̂|x〉 =
1
π�

√
M

2

{
1

[E − V (x)]1/2
− �

2V ′′(x)
16M

1
[E − V (x)]5/2

(30)

− 5�
2[V ′(x)]2

64M
[E − V (x)]7/2 + · · ·

}
, (31)

where the prime indicates the derivative with respect to x. This can be compared
immediately to the expression of the time evolution amplitude in [2, Eq. (4.255)],
where the semiclassical density of states

ρcl =
1
π�

M√
2M(E − V )

(32)

(cf. [2, Eq. (4.254)]) has been factored out. Following the steps shown in the cited
reference, we recover the time dependence of the series expansion of the following
diagonal time evolution amplitude

(xta |xtb) =
1√

2πi�/M

√
ω

sin(ωt)
exp

{
i
Mω

�

[
tan(ωt/2)x2

]}
. (33)

In this way, we confirm that for the harmonic oscillator, the correct solution for the
time evolution amplitude is recovered by the Quantum Maupertuis Principle.

cSee [2, Eq. (4.262)].
dSee [2, Eq. (4.266)].
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Section 5.2 raises an interesting question concerning the extra term that has to
be added to the Schrödinger equation by treating the hydrogen atom.

5.2. The hydrogen atom in the Maupertuis metric

in momentum space

As mentioned before, the extra R-term found above is not universal. This can be
seen by comparing the result with the quantum mechanics of another system in
curved space: the hydrogen atom in momentum space. It obeys a Schrödinger equa-
tion (

p2 + p2
E

)
Ψ(p) =

2
r
Ψ(p). (34)

Here, r is the radial coordinate and p2
E = −2E (in natural units with � = aH =

EH = 1, where aH ≡ α2
�/mec is the Bohr radius and EH = α2mec

2 is the Rydberg
energy). By analogy with the previous approach, we rewrite (34) as{

1
4
[
r̂
(
p2 + p2

E

)]2 − 1
}

Ψ(p) = 0 (35)

and identify r̂2 with −∑D
µ=1 ∂p2

µ
. By re-ordering the operators we can express (35)

as a differential equation (
1
2
∆p − p2

E + 1
)

Ψ = 0, (36)

where ∆p is now the Laplace–Beltrami operator in momentum space formed with
the metric

gij =
2(

p2 + p2
E

)2 δij , (37)

which is again conformally flat. The associated curvature scalar is now R = 2D(D−
1)p2

E , so that Eq. (36) can be rewritten as(
1
2
∆p − R

2D(D − 1)
+ 1

)
Ψ = 0. (38)

Remarkably, the coefficient of the R-term in this momentum space problem does not
correspond to the Weyl-invariant expression, where the subtracted R-term would
have been (D − 2)R/8(D − 1) = R/16 for D = 3.

6. Conclusion

We have applied the classical Maupertuis Principle to quantum mechanics by for-
mulating the Schrödinger equation of a particle in curved space via the Maupertuis
metric. This procedure fixes the arbitrary extra term that has to be added to the
Schrödinger equation. The quantum version of the Maupertuis Principle allows for
the derivation of the semiclassical particle density.
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The result gives us the possibility of studying the quantum mechanics of an
arbitrary potential problem using the well-developed techniques of curved-space
quantum mechanics. Conversely, it permits us to understand questions about the
quantum mechanics in curved space from the knowledge of Schrödinger theory in
flat space.

However, our study shows that the extra term suggested by this principle is not
universal, which raises further questions about the nature of a Schrödinger type of
equation in curved space.

Appendix A. Differential Geometry in the Maupertuis Metric

In this short Appendix, we derive the necessary curvature quantities in the Mau-
pertuis metric. The geometric properties of the space in the Maupertuis metric can
be calculated directly as functions of Ω(x) = 2M [V (x)−E]. We observe that under
the Weyl transformation ḡµν(x) → gµν = Ω2(x)ḡµν(x), the Christoffel symbols (cf.
Eq. (7)) change like

Γµν
λ = Γ̄µν

λ + Ω−1
(
δλ
ν ∂µΩ + δλ

µ∂νΩ − ḡσλḡµν∂σΩ
)
. (A.1)

Because of this, the Riemann tensor defined by the covariant curl

Rµνλ
σ = ∂µΓνλ

σ − ∂νΓµλ
σ − Γµλ

τΓντ
σ + Γνλ

τΓµτ
σ (A.2)

is related to R̄µνλ
σ by

R σ
µνλ = R̄µνλ

σ

+
(
2ḡλ[νδµ]β ḡ

σα − 2δσ
[νδµ]αδλβ + δσ

[ν ḡµ]λḡ
αβ

) (∂αΩ) (∂βΩ)
Ω2

+
(
δσ
[νδµ]αδλβ + ḡσαḡλ[µδν]β

) ∇̄α∇̄βΩ
Ω

, (A.3)

where ∇̄µvν ≡ ∂µvν − Γ̄µν
λvλ stands for the covariant derivative, and ḡλ[νδµ]β ḡ

σα

is defined as the antisymmetrized expression ḡλ[νδµ]β ḡ
σα ≡ ḡλνδµβ ḡ

σα− ḡλµδνβ ḡ
σα.

The Ricci scalar R ≡ gνλRµνλ
µ is obtained from Eq. (A.2) as

R =
R̄

Ω2
− 2(D − 1)ḡαβ ∇̄α∇̄βΩ

Ω3

− (D − 1)(D − 4)ḡαβ (∂αΩ) (∂βΩ)
Ω4

. (A.4)

Inserting Ω(x) = 2M [V (x) − E] gives the curvature scalar in the form

R =
1 −D

4

[
2∂µ∂µV

M(E − V )2
+

(D − 6)∂µV ∂µV

2M(E − V )3

]
(A.5)

(cf. Eq. (9)).
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A. Karamatskou & H. Kleinert

Appendix B. Derivation of the Propagator in Curved Space

In this Appendix, the time evolution amplitude is calculated in curved space. As
mentioned in Sec. 3, a pseudotime is introduced with respect to which displacements
are evaluated. The pseudotime displacement amplitude

〈x, τ |x′, 0〉 = 〈x|e−iĤτ/�|x′〉, (B.1)

satisfies the Schrödinger equation

i�∂τ 〈x, τ |x′, 0〉 = Ĥ〈x, τ |x′, 0〉, (B.2)

with the boundary condition in D dimensions

〈x, 0 |x′, 0〉 = δ(D)(x − x′). (B.3)

The Lagrangian treated by DeWitt is

L =
1
2
gµν(x)ẋµẋν . (B.4)

This has the pseudotime Hamiltonian H = 1
2g

µν(x)pµpν ≡ 1
2p

µpµ, where gµν(x) is
the inverse of the metric gµν(x), and the action

A(x, x′; τ − τ ′) =
∫ x′,τ ′

x,τ

dτL =
σ(x, x′)
τ − τ ′

, (B.5)

where σ(x, x′) ≈ 1
2gµν(x)(x−x′)µ(x−x′)ν + · · · is the geodesic interval. The action

depends on the pseudotime only via this ratio. This is a consequence of the “free
motion” in the metric gµν(x).

From the Hamilton–Jacobi equations, it follows that

∂A
∂xµ

= pµ =
σµ

(τ − τ ′)
, (B.6)

−∂A
∂τ

=
σ(x, x′)
(τ − τ ′)2

= H =
1
2
pµp

µ. (B.7)

DeWitt gave the solution of the Schrödinger equation (B.2) as a power series in τ

for the Hamiltonian

Ĥ =
1
2

(−∆ + ξR +m2
)
, (B.8)

with an arbitrary parameter ξ. For small τ and x close to x′, the solution is simply

〈x, τ |x′, τ ′〉 ≈ D
1/2
MV(x, x′)

(2πi�s)D/2
eiσ(x,x′)/s�, (B.9)

where s ≡ τ − τ ′ and DMV ≡ det[−∂µ∂
′
νσ(x, x′)] is the Morette–Van Vleck deter-

minant [13, 14].

1450066-10

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

07
/0

9/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

June 5, 2014 16:12 WSPC/S0219-8878 IJGMMP-J043 1450066

Geometrization of the Schrödinger equation

References

[1] C. G. J. Jacobi, Vorlesungen über Dynamik nebst fünf hinterlassenen Abhandlungen
desselben, ed. A. Clebsch (Georg Reimer, Berlin, 1866).

[2] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and
Financial Markets, 5th edn. (World Scientific, 2009).

[3] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravi-
tation (World Scientific, 2008).

[4] R. Penrose, Relativity, Groups and Topology (Gordon and Breach, London, 1964),
p. 565.

[5] N. A. Chernikov and E. A. Tagirov, Quantum theory of scalar field in deSitter space-
time, Ann. Inst. Henri Poincaré A 9 (1968) 109–141.
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