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Abstract: The infinitely many local observables defined by expanding the bilocal currents
j*(x, ¥) on the light cone in powers of (x—y)* are used to study scattering processes
where one or two external lines are Reggeons. The algebra of bilocal form factors of
Fritzsch and Gell-Mann implies the existenc of an algebra of infinitely many form factors
F* (k) of any spin J, definite signature+, and arbitrary momentum transfer k. These ““sig-
natured form factors” can be continued analytically in k as well as in J and superconver-
gence relations are obtained for the couplings of strongly interacting particles of arbitrarily
high spin and for Regge couplings. Also the commutator of form factors with Regge resi-
dues vanishes, except at certain momentum transfers, In particular, the charges FIn(0) of
spin J and signature n = (-} act as “‘daughter lowering operators’’. The range of validity of
these sum rules in momentum transfer is discussed by continuing the scattering amplitudes
involving the spin J and spin J' currents analytically in J and J'.

When the sum rules break down one can truncate the intermediate sums at some value
of the intermediate masses. In this way one obtains an algebraic form of finite-energy sum
rules. They consist in commutation rules among Reggeons with the right-hand side being
given by the Regge couplings that can be exchanged in the corresponding scattering pro-
cess. The structure constants of this algebra are the corresponding triple-Regge couplings.
As an example one may assume dominance of leading trajectories and finds that p, Ay, 7
and f residues commute like O(5). Including also the commutators with vector and axial
vector charges, one obtains the “Supe;group” SU2)XSU2)X0O(5).

The Regge couplings we are dealing with here are all in the infinite-momentum frame.
In order to give the connection with standard s~channel couplings the angular condition
for bilocal form factors are derived and continued in angular momentum.

As another technical side results we point out that under very weak assumptions the
bilocal form factors F(k, z) are analytic in z. F(k, z) does not, however, possess Regge be-
haviour for |z | — < as often stated. Only signatured bilocal form factors do, as shown in
this work.

This work is dedicated to the memory of my friend Bruno Renner who never re-
turned from an excursion in the Geneva mountains.

1. Introduction

The hypothesis that the leading light-cone singularity of current commutators be
the same as in the free-quark model [1, 2] has brought to our attention the existence
of an infinite string of new observable local currents of spin 1, 2, 3, ... In the free-
quark model these currents are defined by expanding at (x—)2 = 0:

* Present address: Department of Physics, California Institute of Technology, Pasadena, CA 91109,
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¢ ]'Nﬂl---.uJ—I(R)’ (1_1)
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where® {=x—y, R =1(x + ).
In deep-inelastic scattering processes

“Y(q) +aP)=>“y(@)+ B, g > q'? >t fixed (g—¢')* = —k2,

=—q%/(p'+pN (1.3)

in which *y” can be a virtual photon or W meson, one is measuring structure func-
tions symmetric and antisymmetric in :

FS’A(k, £), For K, ). (1.4)

f “v”(gq) is running with high mass and momentum in the —z direction, these struc-
ture functions are simply the Fourier transforms

FSA (ke 2)= [ o FSAGK, £) ds (1.5)

of the symmetrized and antisymmetrized “bilocal form factors”
Q) (' +p)8(p" — PSP - pL- KV FSA K, (p'+p)'E) (1.6)
=1 {8 l/dR"d2RL kR j*(R*, RL, R™+4¢7 R RL R 1) 7>~}
Expanding

(J(’Z)J L ) (1.7)

we see that all matrix elements of j**~*(R)
@2n)’ @' +p)* st -pH) 8: PV —pt- k) F (k)
=(6p'| fdR™ d2RRekR' /- (R} |ap). (1.8)

are measurable in principle via the moments of the structure functions

FSAW, 2)=2

Fy= [ &1 FSAk 5 dt  for J=odd (1.9)

J=even

Equivalently F (k) may be obtained as the infinite momentum matrix elements of
00...0¢0)-
77%0(0):

* We use the standard notation x* = x0+ x3, X" = %(xo—xa), xt= (xl, x2) .



H. Kleinert, Bilocal form factors and Regge couplings 79

Flpt —phy=lim —— (8, xe, +pV'1 % 00) | xe, +p) (1.10)
X—>o0 (pO’_l_pO)J 3 3

(Since (1.7) is invariant with respect to Lorentz tranformations in the z-direction).
Obviously, only the traceless and conserved part of the current survives the e mo-
mentum limit. Conversely, the matrix elements (1.10) can easily be shown to be suf-
ficient to describe the traceless and conserved part of the local current
jH1--BJ(R) completely. This is done by deriving the Lorentz transformation from
the infinite-momentum form factors F/(R) to the standard helicity form factors.
The resulting equations are commonly called the angular conditions [3]. Since the
derivation is rather technical it will be presented in appendix A (there we shall
also prove another pleasant property of £¥(k), namely that if the states 8 and « in
Fga(k) differ in helicity by an amount Ah, then F° {{a(k)/ |k |A% is analytic in £ = —k2).
Therefore one may conclude that the form factors of the leading spin J of the cur-
rents j#1---#J appearing in the decomposition (1.1) can be uniquely measured by ex-
periment. Notice that the integral in (1.5) can be constrained to the interval
*£ € [~1, 1] since the spectral condition makes F(k, £) vanish for £ > 1 and
FS:A (K £) are symmetric and antisymmetric in £, respectively.
The new fundamental hypothesis put forward recently by Fritzsch and Gell-Mann
[2] is that the bilocal form factors satisfy an algebra suggested by the bilocal opera-
tors of the quark model (with the quarks being held together by gluons):

(F,(k,z), Fp(k', 2')] =ifp, F.(k tk', z +2"),
[F,(k, 2), Esp(K', 2)] =if . Fs(k + k', z +2),
[Fs (k, 2), Fsp(k', 2)] =ifpp, Fo(k tK' 2 +2). (1.11)

These sum rules are derived in the following way: First one sets {* = {1 = 0in the al-
gebra of bilocal currents. Then one obtains an algebra of the form (1.11) for the ope-
rators

Fy(R*,k, ) = [dAR"Q2R}* (R, RLR+E3 R, RY, R — J5)eFR™
when commuted at equal R*. Finally one assumes that the operator relation can be
saturated by physical intermediate states of finite masses.
Expanding the bilocal form factors according to (1.7) we find that the form fac-
tors FJ(k) satisfy the algebra
J J (L] = 1 J+J' 1 '
[FIW), B (k)] = i fype FI 1K +K),

abc * ¢ 7
(FIW), FL ()] = if e FET Ve + &),
(L (), FL ()] =10 B 1k + K. (1.12)

abc

* This fact follows basically from the dimension of the currents in the light-cone algebra being ca-
nonical. In the presence of anomalous dimensions the structure functions would not have this
nice compact support. See ref. [4].
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The subalgebra for J =J' = 1 coincides with the old algebra of form factors of vector
currents proposed by Dashen and Gell-Mann [3] a long time ago.

There are several points we want to make in this paper.

(i) Upon introducting properly signature, F/*(k) can be continued analytically
in the J plane. :

(i) F/*(k) coincides essentially with the z-channel partial wave amplitude of the
scattering amplitude (1.3). If Regge poles survive the scaling limit, F/*(k) is expec-
ted to show the standard Regge pole structure in the J-plane.

(iii) F(k, z) is analytic in z. Its properly signatured parts have Regge behaviour
for | z| = == in the upper or lower half-plane. F(k, z) itself is not, however, Regge be-
haved.

(iv) The algebra of form factors of Fritzsch and Gell-Mann gives rise to an algebra
of signatured form factors. This algebra can be used to derive superconvergence rela-
tions for the scattering of hadrons of any spin J > 1, for Regge-particle scattering and,
for the production of a reggeon by means of a spin-/ current.

(v) In kinematical regions where the superconvergence relations break down, an
algebra of finite-energy sum rules remains between form factors and Regge couplings.
The charge of the spin-J current acts as a “‘daughter lowering operator” on Regge
couplings.

(vi) The particular case of the algebra of isospin, axial charge and p, 4;, , f tra-
jectories is shown to yield the algebra SU(2)XSU(2)XO(5) and a solution is given for
a system mesons consisting of 7, Al, p, O.

(vii) The form factors F/(k) are analytic in k and obey a simple angular condition.

2. Analytic continuations of Fl (k)in J

Let us recall that the structure functions F(k, &) are defined as the absorptive
part of some Compton amplitudes T(k, g2, g'2, v) in the scaling limit (1.3):

Flk, ) =~ Tm Tk, £). .1

As an example, consider the structure functions measured in deep inelastic scattering
of electrons or neutrinos on nucleons:

FA®)=§ Fy(®), 22)

FS®)= Fy), (2.3)
where the argument & has been dropped since it vanishes. Here the corresponding
amplitudes T'(§) are given by the scaling limits

2v2
q2

TA®=lim = 1,(¢% »), (2.4)
‘S.L.

. 14
i@ =lm Ty ») 2.5)
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Using (2.1) one can write for T(k, £) a dispersion relation which may in general con-
tain NV(k) subtractions

Tk, £) = ——L f gV~ IM +Py_ (K &), (2.6)
- EFE+i
For |£] > 1, the denominator can be expanded in a power series giving
o 1
Tk 5= 2 ¢V [Vl pe )ag + By_y (k7). @)
n=0 -1

If we denote the expansion coefficients of T(k, £) with respect to powers of £~ 1 by

T/ (5):
Tk, 5= 27 £ T'(k), (2.8)
J=0

we see that for J = N(k) the coefficients T (k) coincide exactly with the previously
defined form factors F* (k) [see eq. (1.9)]:

T/(k)=F/(k), J=N(k). (2.9)

Notice that in the important particular examples (2.4) and (2.5) this equality holds
even foralln=1, 2, 3 . The reason is that Tz(q'2 v)and Ty (g2, v) are expected
to behave for fixed g2 and large » like ¥*~2 and »®~1, respectively where a is the
leading Regge trajectory exchanged in the f-channel. If we assume this Regge beha-
viour to govern the amplitude also in the scaling region and use the experimental fact *
that @ <1 we see that TA(£) and TS5(¢) cannot diverge faster than £7! for £ 0.
This excludes more than two subtractions. On the other hand, T5(£) has a single
zero, TA(%) a double zero at £ = o, Due to the symmetry properties of T5(§), TA()
this forces the subtraction polynomials to vanish identically.

With the standard argument [5] one can now show that upon introducing sig-
natured amplitudes

A,S
Tk, ) =— f Nl ETR A L ke (2.10)
V-1 £ — ftie

=22 £ 17 k),
J=0

the expansion coefficients
1

7y =2 [ £1-L FAS(k, £)d 2.11)
0

* Or one invokes the Froissart bound on strong amplitudes.
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can be continued analytically in J into the whole half-plane Re J = N(k) such that
|7/* K)|I< e’V with v <. This latter property makes the continuation unique
according to Carlson’s theorem.

The only quite weak technical assumption needed for the proof is that F(k, £) is
bounded for £ ~ 1. This assumption can be justified by extrapolating from what we
have learned in the discussion of deep-inelastic e-p scattering. Here the structure func-
tions close to £ = 1 can appearently be described as a superposition of resonances only
and F,(£) tends to zero as (1 — £)2P 1 if the form factors drop as (g2)™P. The same
picture should be expected to hold also for all other structure functions F(k, £).

With this weak assumption, eq. (2.1) written in the form

i
T’i(k)=2fe“—1)1°gE FAS(k, £) (2.12)
0

is seen to supply indeed the desired continuation. Since FAS is positive, T‘Ii(k) is
bounded for large |J|by

ITJi(k)|<T%. (2.13)
It is obvious that eq. (2.12) is the exact analogue of the Froissart-Gribov projection
in standard Regge pole analyses [5]. Just as usual, this analytic continuation can be
employed to extend the validity of the expansion (2.10) from the outside region of
the circle |£]= 1* to the whole plane cut from £ = 0 to infinity. One first performs
the Sommerfeld-Watson transform:

Nik)

Tk, §)= 2, £/ 1™*k)
J=0

N(k)tioo

-ind o -J
L[ W (2.14)

2i NG — oo sin J

Then one makes the standard assumption that the Compton amplitude possesses in
the J-plane only poles between the lines ReJ = —; and ReJ = N(k), moving Regge
poles as well as possibly fixed poles, and that these poles survive the scaling limit. **
Then 7V* (k) will have the form***

7 (k) = Z} Jf;g% o, (2.15)

where R'(k) denote the Regge residue of the trajectory (k). The sum may run over
infinitely many daughters. Every pole contributes a term

* This is the ““Lehmann ellipse’ of this expansion.
** Qut of ignorance, we shall completely neglect diffraction effects.
*** Notice that we write (k) instead of the conventional form ej(—k?), for convenience.
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imai(k)

—1 —
0+ sin mey(Kk)

T*(k, £) Ri(k) g0 (2.16)
£
and the highest trajectory dominates in the limit £ - 0*.
In complete analogy with T%(k, £) we may introduce signatured bilocal form fac-
tors

1
F'k,z)=2 [ 7 pAS(k g)d. (2.17)
0
Their Taylor coefficients in an expansion like (1.7)
1
Fitgy =2 [ 971 FAS K, B (2.18)
0

are called signatured form factors. They coincide with T* (k) for J = N(k) and have
therefore the same singularities in the J-plane.

Notice that the pleasant asymptotic behaviour (2.13) of F I (k) makes the bilocal
form factors (2.17) analytic in the whole z-plane due to the strong convergence factor
- D! Asa consequence, also the original bilocal form factors

FAS(k, 2)= L(F*(k, 2) ¥ F*(k, —2)) (2.19)

are analytic in z everywhere. It is a curious fact that the Fourier transform of the
imaginary part of an amplitude has Taylor coefficients which are by a factor (/— 1)1
smaller than the Taylor coefficients of the amplitude itself. One often finds the state-
ment that F(k, z) has a Regge limit for |z| = o analogous to the £ = 0% limit (2.16).
This cannot be proved in general and counterexamples are easily given. Also for this,
the reason is the occurrence of the denominator (J — 1)! in the expansion (1.7). While
this denominator is pleasant in enforcing the convergence of the series (1.7) for all z,
it makes the Sommerfeld-Watson transformation of this series convergent only inside
the half-plane orthogonal to the cut * of the asymptotic term (—iz)®®). There one
has for large |z|:

1

Fo(k z)=—n sin mo;I"( ;)

Rik) (~iz)®) + . i; 0<argz <. (2.20)
The limit | z|[-> oo inside the other half-plane may have no relation to the Regge
pole. As a consequence, the original bilocal form factors FA:S(k, z) will not, in gener-

al, have a Regge limit as |z| & oo,
Take as a counterexample the confluent hypergeometric function

. 2
(43 X & X
M—aq —at+1;x)=1— —— = —
(o, ) T—all 2-a2l
1
* Since (J—1)! decreases like e‘2”m along the imaginary axis of J, killing half of the convergence

factor 1/sin nJ ~ e W,
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It can be considered a form factor F~ (k, x). Careless reggeization would give the
asymptotic behaviour

1

-, —a+ |; >
M(-a, —a I’x)m_,mﬂsinﬂozl‘(oz)

(—x)*=T(~a+ 1)(—x)=. (2.21)

A short look at the tables * shows us that this is indeed only true in the half-plane
1 m<argx < 3. In the other half-plane one rather [6] finds

M(—a, —a+1;x) ﬁ: —o ex;lc— (2.22)

which fastly outgrows the Regge limit. The factor e* is due to Kummer’s reflection
identity

M(a, b; x}=e* M(b-a, b, —x). (2.23)

As a consequence we see that the symmetric and antisymmetric combinations of
M(a, b; x) (which would correspond to F S’A(k, x)) do not have a Regge limit as
|x] > oo,

The important point for our future discussion is now the following: The signatured
form factors F/* (k) carrying all Regge information fulfill the same algebra (1.12) as the
unsignatured ones, with % signs distributing according to the scheme [++]} = —,

[+—] =+, [-—] = —. The proof is quite simple. We shall show it only for the first
commutator (1.11) and drop the argument & for brevity. According to (1.11), the
symmetric and antisymmetric combinations satisfy

[F3(2), F@) = Li fppe {FS( +2') + FS(z - 2')},
[FS@), FAE =Lif, (FA@E+2) - FAE - 2,
(FR@), F{E =i fope (FSG 42— FSG - )} (2.25)

Fourier transforming according to (1.5) we find that the structure functions commute
according to

[F3(E), Fy(£)] = 3 fpo(B(E — EVFS(E) + 8(k +£) FS(®)),
[F2(), FAE)) = 11 fpe(B(E — EYFAE) - 8¢5+ £) FA®)),
[FAE), FRAED) = 4 Fpe(B(E — E)FS(E) - 8(5 + £) FO(8)). (2.24)

If we now form the moments of eq. (2.25) according to eq. (2.18) we indeed find
the algebra for the signatured form factors

[F* (), Fy D) =iy FJT 717 kK,
[ R, B~ =i fgpe B 1 e 1),
[FI=(k), F]= (k" = if e F7 "1k + 1, (2.26)

* See for example p. 504 of ref. [6].
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with similar commutators for [F,(k), Fs5(k")] and [F 5(k), Fy5(k")].
The algebra (2.26) together with the Regge properties (2.15) of F/*(k) have some
immediate consequences which will be discussed in the next section.

3. Consequences of the algebra of signatured form factors

There is a number of interesting sum rules which can immediately be obtained
from the algebra of signatured form factors. As usual, these sum rules will be valid
only for certain regions of the momentum transfer —(k + k)2 which depend on the
properties of the Regge trajectory that can be exchanged in the #-channel. When the
angular momentum oy (k + k') of the exchanged Regge pole moves too high up, the
sum rules will break down and the sum over intermediate states diverges. In this situ-
ation only certain finite-energy sum rules can be written. These points will all be dis-
cussed in detail in the next section. Here we shall proceed by deriving some sum rules
in a purely formal manner and not worry about their range of validity.

(i) The first sum rule is obtained by an argument of the type of de Alfaro, Fubini,
Furlan and Rosetti [7]. If we continue k2, k'2 to places where the form factors
Ff(k) and F 5‘2‘* (k) have particle poles, the left-hand side of (2.26) will diverge qua-
dratically and the right-hand drops out. As a result, the particle couplings satisfy a
superconvergence relation

[GH (&), G (k"] = 0. (3.1)

Here we have denoted the residue Ri(k) at the particle pole aik)=J by Gi’J(IE) *,
As we shall see more clearly in the next section this statement is equivalent to saying
that in the scattering amplitudes of strongly interacting particles of any spinJ =1
there can be no fixed poles of spin J' +J — 1. Previously this result was obtained
from current algebra for vector mesons only. Here it holds for most mesons of spin
J 2 1, just as long as they can be found as a pole in some form factor F Ji(k),

FI* k).

(ii) Another interesting sum rule is obtained by continuing the algebra (2.26)
analytically not in k but in J and J' for arbitrary fixed k, k' with restrictions to be
specified in the next section. Then we obviously obtain superconvergence relations
for the residues of the Regge poles

[R'(K), R7(K")] = 0. (3.2)

(iii) As a third possibility we may continue the index J' to a Regge pole and leave
J fixed. Then we pick up a single pole on the left-hand side of (2.26). The right-hand
side will, in general, not have a pole except for certain discrete values of £. Thus ex-
cept for those isolated situations we find that the form factors F7* (k) and'FSI *(k)

* Note that the particle couplings G'.’J(l?) still depend on the direction k of the transverse momen-
tum transfer in the infinite-momentum frame.
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commute with all Regge residues Ri(k"). The most important exception arises for the
commutator of the charges F; (-} (0). Going to the pole J = o;(k), the right-hand side
will diverge if there is a daughter trajectory of a;(k) spaced / — 1 units below.

If we denote its residue by R4/ —1(k) (with R>0(k) being again the original residue
Ri(k)) we find the sum rule

(Y 0), R (k)] = i e RET V(K (3.3)

This can be interpreted by saying that the charge F &I’ (_)J(O) of the current jH1---#J
acts as a daughter lowering operator on the Regge residues. In the particular case /=1,
Fal —(0) becomes the SU(3) charge. The Regge coupling is transformed into itself and
(3.3) just shows that R transforms as an octet under SU(3).

4. Validity of the superconvergence relations and algebraization of finite-energy sum
rules

The full meaning of the sum rules derived in the last section can be understood best
by studying the scattering amplitudes of the currents j¥1---%/'(R"), j*1-#/(R) on any
target

Ty R (90" p, @) = if AR’ CR (B TG (R') jE1-H(0)) | ap).
(4.1)

It is this amplitude that directly describes the process

“Ya,- D+ "y ”(612+Q)+5(P)‘—“ 77(@,) +“17(g,) t o(p)

in the deep-inelastic limit q 1 q2 >, pgy >, p 'q5 > and Q, Q' = finite. If the
momenta g, g, are taken to infinity along the z-direction, only the good compo-
nents of this equation

T, 0 p, @) = ifdR' QR BN TUL (R 71(0)) ladp)) (4.2)

are measurable where we have introduced the abbreviation

bt

=Ty J (4.3)
t+...+
o=

The whole kinematic range of the free variables ¢ = (Q' — Q)2 =(p'—p)? and
v=1(p' +p)(@ + Q)= L(s~u) at spacelike ', O, (@ — Q') can be reached by setting

0"=0Q"=0. (4.4)

In this case the invariants become
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p= %(m% —m2) + P'Q7'+ PLK’

=—30m; —m)+P Q™ Pk, (4.5)
t=—(k +k'?, 4.6)
02 =—k2, Q2 =_k2, @7

where P=p’ + p and k', k are the transverse momenta of Q’, Qi.e.
Q¥ =(Q"=0,-K,0Q7), ¢*=(Q"=0,k, Q). (4.8)

It is obvious from the form (4.2) that at fixed k', k, p’, p, the amplitude is analytic

in @~ and hence in v. Another way of seeing this is by noticing that 7/ I coincides,
up to a constant factor (P*)’"*/, exactly with the first invariant amplitude A(v, ) in
a kinematic decomposition

TP1U Rl (p! Qs p, Q) = PP PYTPML PR A, 1)
+PP1 PY PR QM B(w, 1) (4.9)
+ ..
But this decomposition is well known to yield invariant functions A, B, C, analytic
in v (since they are essentially z-channel helicity amplitudes).
We now use the standard method of deriving fixed-mass sum rules from light cone

commutators. Performing the Bjorken limit on (4.2) we find the asymptotic beha-
viour *

17,0

b

s LR dR R T (R), T (0)] ey lat@):
crememm e (4:10)

Upon using the commutation rule of the type (1.12) in the original operator version
(i.e. before saturation with single particle states) one obtains

i, bac
-
Qr=Q"=0 Q" —~ = o
This allows that the amplitude has a fixed pole at angular momentum J' +J — 1 in
the O~ or v plane. In the special case of the scattering of vector currents,J' =J = 1,
this is a well-known result. If the imaginary part of T is sufficiently well-behaved, i.e.

Im TJ'J

ba

JJ
Tba

B 7)) - (4.11)

< C@)lee>0 (4.12)
QY=0"=0 Q" o

* We remind the reader that the so called class II graphs have to be well-behaved in order to allow
the integration of the local equal-R* commutation rule. This is usually assumed to be true.
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the limit (4.11) can be phrased in form of a dispersion relation
1 - o N Y
—fdQ" Im )7 =if, B L0 @) . (4.13)

Saturating the left-hand side with physical intermediate states yields *
LG FI0) =i gy B ). @.14)

In this way of deriving the commutation rules (1.12) of the form factors one can im-
mediately judge their validity. The sum rule holds if the integral over the imaginary
part converges, or equivalently, as long as the sum over all intermediate states in the
commutator gives a finite result. The behaviour of this sum is judged on the basis of
Regge theory. If the trajectory, oy (k' + k) can be exchanged, the asymptotic beha-
viour of Im 77 is expected to be

T gl REK ) )T, 15)
Q"=0"'=0 Q" e
Such a Regge behaviour may be read directly off eq (4. 9) upon forming helicity
amplitudes which are known ro behave like (s/m )*k=7"=J Hence the algebra (4.13)
is valid as long as

k' +EY<J +J— 1. (4.16)

Since J', J > 1 and all known trajectories lie below oy =1forr=—(k"+ k)2 <0, the
sum rules (4.14) hold for sure as long as k', k are in the physical region of the infinite
momentum frame.
Let'us now do the analytic continuation of k", k to physical spin J', J poles in
F’ (KN, F (k) **. This is justified as long as one remains inside the region (4.16)
where the sum rule keeps converging. Hence the superconvergence relations (3.1) for
the hadronic couplings G/ (fc) are correct for small enough momentum transfers
= —(k’ + k)? fulfilling (4.16). In particular this is true in the scattering region ¢ < 0.
Let us now discuss the Regge-Regge and form factor-Regge commutation rules. In
order to do so we may continue the infinite set of amplitudes 77 J analytically in J'
and J just as we have done for the individual form factors.. For this we have to intro-
duce signatured amplitudes ***

TJ+;J+, TJ"‘;J—, TJ ‘—';J+’ TJ —-,J—.

These can be defined in complete analogy with F Tt (k) by forming the analytic func-
tion

J-1

* Upon using eq. (1.8).
** This does carry us outside the physical region of the infinite-momentum frame, in which the
virtual masses of all three form factors are spacelike.
*** We have dropped the other labels b, a; p', @', p, @ in /7
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and its symmetrized and antisymmetrized combinations
T"(', ) =4 (T, 2) + ' T(~2', 2))
+(I(Z, —z2)+n'T(-2, —z)};  n,n=%£1.
These functions are Fourier transformed according to

T, ) = 1 Sz’ dz e TEZHED) TN g, (4.18)
(2m)

2

The signatured amplitude 77710 are now obtained as the positive frequency mo-
ments of TR-1(§', £):

7770 =4 f f dg' dg g7l gl rh e g, (4.19)
0 0
Clearly the amplitudes 77" coincide with
J', J are {g‘é%‘j’(i‘l’gn +or {g‘;ﬁ;j’ e‘\’gg}, respectively. .

The integral over the imaginary parts of the signatured amplitudes is now given
by the left-hand side of the commutators (2.26). The right-hand side determines the
fixed poles.

If we continue the amplitudes 777 and T7*7% in J', J to Regge poles, the
left-hand side of the dispersion relation (4.13) becomes the commutator of the cor-
responding residue functions and we obtain the left-hand side of sum rule (3.2). The
right-hand side, however, has to be treated with caution. While the fixed pole contri-
bution obviously drops out since it cannot produce the quadratic divergence as J'
and J both hit a Regge pole, the Regge asymptotic behaviour (4.15)

plede I depending on wether

(S/m(Q})ak(k'+k)—J'—J
continues analytically to
(S/mg)ak(k'+k)— oz]-(k')—ai(k). (4.20)

As a consequence we may conclude that Reggeons fulfill the superconvergence sum
rule (3.2) as long as

aq k' +k)< aj(k') +afk)— 1. 4.21)

Certainly, the whole argument holds only under the presently popular assumption
that the couplings g{ 7 have poles when J', J hit Regge trajectories and that it is
really the emerging triple-Regge couplings that are responsible for the high-energy
behaviour of the Regge-particle scattering amplitude. Explicitly we may assume that

close to the Regge poles

it k'+k)—J'—J

3% k', k) (Lz)“"( 1= Rk e,
0"=0'=0 g > (=i N~y (k)) N

Im 7/ ™/n

4.22)
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There is now an important difference between the condition (4.16) and (4.21). While
in the case of scattering on the currents both J' and J were > 1 and (4.15) was conver-
ging to zero like (4.12) for any ¢ = —(k' + k)2 < 0, their continued values aj(k'),
o;(k) may be small and even become negative. Thus Im 7/ I will diverge worse
and worse if one considers the commutator between lower and lower trajectories.
Even at forward scattering of zero-mass Reggeons the right-hand side will, in gener-
al, grow too fast for the sum rules to converge. For example, if o and a; are p tra-
jectories the leading trajectory exchanged can be p again and o — o; — o R — 5.
In this situation we can still obtain interesting results by taking recourse to an
algebraic version of finite-energy sum rules. Eq. (4.22) can be understood as carry-
ing two types of information on the commutator of two Regge couplings

N
Jer' i _ pi Fer!
mZZ;JO {RIGK),, R(K), , — R(K), RIGK), ). (4.23)
bt

(i) The intermediate sum over m,% diverges in a well-defined way as a function of
the cutoff mass V.

(ii) There will be terms diverging with different powers in NV, everyone of them
giving a certain Regge residue Ry (k' + k). Explicitly, we obtain [8] the following

type of sum rule*

2RI, R = T gl ) () RK(K'+).
m,y=0 k mg
(4.24)

a (k' +k)— aj(k) - a;(k)+1

Notice that under the former condition (4.21) the cutoff may again be removed to
infinity and the superconvergence relation is recovered. Qtherwise, however, trunca-
tion is necessary to make the commutators exist. If the set of commutators among
these Regge couplings closes, we obviously obtain for every fixed NV a Lie algebra,
whose structure functions are proportional to the triple Regge couplings multiplied
by a power of the cutoff parameter V. As an example, the commutator

[v,, v, 1 =ieg, v, N% (4.25)
is solved by matrixes ”

©)pn =% [mn]"a 5 (4.26)
in the sense

N 1

g Wt Wyl — gy Wy Ninege €abe Ve N?- (4.27)

* We have dropped a factor (ak—aj—aﬁ-l)'l on the right-hand side in order to simplify the later
formulas. 1t would have been convenient to define gf: (k', k) with such a factor to begin with
since there can be in general no pole at ag = aj +a; —1 (see the Veneziano amplitude as an illus-
tration of how the pole is avoided). We have used the conventional definitions.
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Finally let us keep one J integer and continue J' to a Regge pole oz]-(k'). Then the
left-hand side of the sum rule (4.13) becomes

[F/ (), RIGK)]. (4.28)

On the right-hand side consider first the Regge contribution. It is expected to have
the form

o (k") T — e k') +1 ,
25 gl K (L)ak T RE K + k). (4.29)
x m>
0
Thus if
a (k+k') <J+ aj(k') — 1. (4.30)

This contribution vanishes and the sum rule obtained previously by continuing direct-
ly the algebra of form factors holds.

[F/), RIGIN] =0, oy <J+o;— 1. (4.31)

Notice that under the condition (4.30) the right-hand side of (2.26), F° S+ - 1(k+k'),
cannot contribute a Regge residue asJ' hits the pole 0 (k).
Let us now increase ¢ such that oy (k + k') passes the line

oy (k + k') =J+ a].(k') —1 (4.32)
to
oy (k + k') >J+ a]-(k') — 1. (4.33)

Then the Regge term will diverge and a finite-energy sum rule can be written:

N

220 [F/(k), RI(K")] = ? gk, k') (N/mg )k kRO =T=ej(0+ gl 4 gy,
m =

Y (4.34)

Again, there is no contribution from F JHT— 1(k +k"). Observe that the sum rule
(4.34) can be continued analytically in ¢ into the region (4.30). As a;, hits the
critical line (4.32) the trajectory R contributes without any N dependence. Exactly
the same type of term is obtained by formally continuing the commutator (2.26) to
the line (4.32). Thus we understand why in sect. 3 the right-hand side of form factor
Regge commutators would pick up another Regge term only at certain discrete values
of t = —(k' + k)2 for fixed k'2. At this point the exchanged Reggeon passes through
the value where usually a fixed polé would be sitting. If we thus accept the formal
result which the commutators (2.26) try to tell us at the singular point where Regge
theory fails to justify it, we find the following interesting normalization condition
for the current-Regge-Regge coupling

gk, k=1 for a(k+k)—a(k)=J-1. (4.34)
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This relation can be tested for J = 1 in a high-energy reaction like
np—~>apete”

when the e*e” pair is coming out fast with respect to the proton but slow with respect
to the pion.

At arbitrary J but for k = 0 we reobtain the “daughter lowering” relation written
down before [eq. (3.3)].

5. The algebra of vector, axial vector and Regge charges

In this section we want to illustrate our algebraic methods by applying them to
the commutators between vector and axial vector from factors F1—(k), Fs 1 (k) and
the couplings RP (k), RAl(k) R™(k)and R7(k) of p, A pmand f trajectorles We shall
restrict ourselves to SU(2) multiplets and consider only the charges by setting £ = 0
everywhere. For the sake of brevity, the argument & will then be dropped in all equa-
tions. The charges F, 1- pl- 5, are commonly denoted by T, and X,. According to eq.
(2.26) they fulfill the well known algebra of SU(Z)XSU(Z)

[Ta’ Tb] = z‘eabc Tc’
[T, X,]=ic, X, (5.2)

[Xa, Xb] = ieabc Tc.

Then commutators of the charges with the reggeons and of the reggeons among
each other satisfy the sum rules (4.34) and (4.24). They form a closed algebra if we
neglect the influence of Regge daughters and assume the leading trajectory to be do-
minant on the right-hand side of every sum rule. With the intercepts o, = oy = 5
oy =a, =0, this algebra reads [8—13]

(X, R'] = (V/m})2 ngzR“ (5.3a)
[X, R"]H(N/mO)TgX”zé R, (5.3b)
[X, RE| = (N/m})2 gsze RO (5.3¢)
(X, R = (N/mo)?- g% e, RE, (5.3d)
and [12]
[R?, RP]—(N/mz)% 8% i g, R2, (5.42)
[RE, RM = (Vjm2)? gﬂA ,,,,CRAI, (5.4b)
[R;j‘l, R} = (N/mg)i g;j‘A ie . R?, (5.4¢)
Rg,Rg]=(N/mg)% gie , R, (5.4d)

|
3
[R], RY| = (N/mp)2 g7™ iy, RE, (5.4¢)
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[R?,Rf} =0 (5.4f)
[RM R = (N/m0)2 gAf iR, (5.4g)
[RM, RT] = —(N/m0)2 gimis R (5.4h)
[R™, R} = —(N/mo) g szj‘l, (5.4)
[RL Rf] =0. (5-4))

The commutators of the isospin charge T, with the Regge couplings according to
(3.3) has been left out since it shows merely that R®, RAl R} are isovectors while
Riisan isosinglet operator.

At first there appear 4 unknown charge-Regge-Regge and 8 unknown triple-Regge
couplings in these commutation rules. However, the sum rules are consistent with
each other only if they satisfy the Jacobi identity. This cuts the number of indepen-
dent couplings down to six. In the commutators (5.4), one finds the relations:

gpp :gvoAAzgpn, (55)
e g =g g, (5.6)
gt gy =gt g (5.7)

Only gz", ;"’, £y A and gﬁ‘f remain free parameters. This freedom amounts to the
normalization of the four Regge trajectories being undetermined by algebraic consi-
derations.

The couplings occurring in eq. (5.3), on the other hand, have to satisfy:

o et =1, (5.8)
&g =l (5.9)

Inspection of the commutation rules shows that we are dealing with the group
SU(2)XSU(2)XO(5). This can be seen most explicitly by forming the auxiliary opera-
tors *

TQETa_ P ;XvaEXa_Aa’
Py =RE [(N/mg)2 82171,
= pA 2\2 AA -1
m, =R [(V/m3)? &7 620172,
f =RUIWV/md)(gAh)2 g [ghA 72

Then f;, X , completely decouple from the remaining 10 generators of O(5) while
still obeying the same commutation rules of SU(2)XSU(2) as T, and X, did before.

* Remember the commutation rules of O(5): [LAB, LAC] = iLBC, A B C=1,..,5.
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The physical chiral SU(2)XSU(2) is recovered by adding the two commuting
SU(2)XSU(2) groups formed by ?“a, X, and by p,, 4, of O(5).

Nature provides us with prominent particle states only for isospins T'< 3. All
other states are called exotic. In a first approximation of solving the algebra we shall
reject such exotic states.

The set of all allowed unitary irreducible representations of our algebra can then
easily be listed. As a manner of speaking, we shall call representations of integer iso-
spins boson, those of half-integer fermion representations (as if we were dealing with
mesons and baryons of strangeness zero only). For the SU(2)XSU(2) subgroup, the
only non-exotic representations are for bosons

0,0); (,3) (1,0% (0,1) (5.11)
and for fermions *
(G,0) (1,3); (3, 0) +conjugate. (5.12)

The group O(5) has the two fundamental representations [14], a four dimensional
and a five dimensional one. Their chiral contents with respect to the SU(2)XSU(2)
formed by p, and 4, are

4 =(3,0+(0,3),
5=(0,0)+(3,3) (5.13)

Notice that the group O(5) is only a little smaller than SU(4). There the fundamental
representations are

4=(7,0+(0,3),
6=(0,0)+(0,0)+ (3, 3),

i.e. there is only one more singlet in the six-dimensional representation. Arbitrary re-
presentations can be obtained by applying the generators of the group to the state of
maximal weight in the direct product 4X4X4...X4.X §X5X...X5. The resulting repre-

sentations may be denoted by (p, q) J7 q
and have dimension
d[p,q] =:(+)@+Dp+tqg+2)(p+2g+3). (5.14)

The only non-exotic representations of O(5) can thus be found to be for bosons
[0,0] =1=(0,0),

[0,1]=5=(0,0)+ (3, 3),

[2,0] =10 =3, 3) +(1,0) + (0, 1),

* By conjugation we mean (n, m) — (m, n).
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and for fermions
[1,01=4=(.0)+(0,3),
[1,1]=16 =G, 0)+(1, 1) + (3, 1) +(0. }),
[3,01=20=(1,)+(3,0)+(0,) + G, 1)- (5.15)

The representations of SU(2)XSU(2) and O(5) can now be coupled, again with
only non-exotic combinations being allowed. This leads to the following representa-
tions:

A) Boson representations

la) (0,0)X1 =1 =(0,0)

b) (0,0)X5 =5 =(0,0)+(3,3
¢) (0,0)X10=10=(,1)+(1,0)+(0, 1)

10=
2) (E’O)Xi § (0 0)+(2’2)+(1 0)
4
3

il
]

3 GXL (7.3
4)  (1,0X1 =3 =(i,0)

B) Fermion representations

la) (0,0)X4 =4 =(3,0)+(0,3)

b) (0,0)X16 =16 =(3,0)+(1,3)+ (3, 1)+ (0, 3)
¢) (0,0)X20 =20 =(1,3) + (3, 0) + conj.

2a) (3, 0)XL =2 =(3,0)

b) G 0X5 =10=(G,0+©0,3)+(1, 3

¢} (5, 0)X10 =20"={(3,0) +(1,) +conj} + (3, 0)
3) (5,2)X4=~'1 (2,0)+(1 )+conj

Ii

n

4) (1,0)X4 =_2*‘-(5,0)+(1:5)+(%,0)
5) (1L,XL =6 =(1,3
6) @,0x1 =4 =¢,0) (5.16)

The ordering has been peformed according to increasing representations of the
SU(2)XSU(2) generated by 7, X In the representations 1a)b)c) these matrices
vanish for bosons and fermions In these cases the chiral SU(2)XSU(2) generated by
T,;-X, coincides with the Regge SU(2)XSU(2) generated by p, and 4,. Hence the
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p trajectory conserves isospin and its coupling strength is the same for all states of
the representations. This state of affairs may be called “p universality”. In the alterna-
tive representations in which O(5) is represented by 1, all Regge couplings vanish.

Clearly, the physical representations will consist of some unitary mixture of these
irreducible representation. Observe that due to k = 0 all operators leave helicity in-
variant. Thus a different representation has to be constructed for the states of every
helicity separately. They can only be connected upon including £ # 0 operators in
the algebra.

As a simple example we take the boson representation 10 and identify the chiral
states as the particles w, 4;, p and o according to the old mixing scheme of Gilman
and Harari, and Weinberg [16]:

y (10)-(01)
V2

Ay = —siny (_—-———10)_(01)

T=cos +sin ¥ (3, 5)1,

—cosy . 1),

p= (10)+(01)
-——-—\/2_ )

For charges and Regge couplings we then find the reduced matrices *

T A po
7/10 00
AO0O1 0O
T=p-1 0o 1Lol°P (5.18)
o \00 00
m A P 07
7l 0 0 cosy sin
_A O 0 —sin Y cos Y -
X plcosy=-siny O 0 4, (5.19)
o \siny cosy¢ O 0
0 0 —siny cos Y
. 0 0 —cos ¥ —sin ¢
= Hsin Y cosy 0 0 ’ (5-20)
—COs Y sin Y 0 0
sin 2y cos2y O 0
cos 2y —sin2y¢ O 0
p=eR Tshavo o (5.21)
0 0 0 0

* Defined in ref. [9].
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Eq. (5.19) shows the property of p universality of this saturation scheme.

Let us recall that the same Regge couplings have been found in quite a different
fashion before in refs. [8, 9]. There it was shown that in any chiral saturation scheme
the SU(2)XSU(2) breaking part in the mass matrix

my 6, =X, , X, m?]] (5.22)
converges against the coupling of the ftrajectory as the size of the scheme /V goes to
infinity *:

m? & (Njm2)2 RY (5.23)

4 0 : .

Algebraically, the commutator (5.22) states that mﬁ is a fourth component of a

(3, 3) representation. This is exactly what we obtain by combining our new commu-
tators (5.3 a and b). But there is additional information in (5.3a) itself: According to
this commutator the chiral partner of f is given by the residue of the = trajectory. The

chiral partner of the matrix mi, on the other hand, is the isovector matrix mg:

(1] )g = —i [ Xgu 3] go = — il Xg m2) go = im—~m) X, . (5.24)

Hence (5.3a) is telling us that mg should represent coupling of the Reggeized pion at
Zero mass

This result is not really astonishing at all. If 7 = (1/f,u2)34 is used as an interpolating
pion field, m2 is well known to give the coupling of the elementary pion continued
to zero mass:

1 .
GO utrla)| ,_ =7 (BloA |a>=iﬂ(m§ ~m)X, (5.26)
—f—ma .

Since both extrapolations, Regge and PCAC, are expected to be quite smooth and
since they agree on the near-by pion mass shell, they should indeed lead to about
the same result.

The next two commutators can be compared with the old approach in a comple-
tely analogous fashion. There it was shown that the commutator [mg, mg ] conver-
ges to the p residue [8, 9]

[mg, mg] o« (N/m%)% RP, (5.27)

Now with mg being a (}, 3) vector, the commutator is necessarily a member of a
(1,0)+(0,1) representation. This is also what eqs. (5.3c and d) are telling us. In addi-
tion (5.3c) itself states that the chiral partner of p must converge to the A; residue.

* Remember it is the good high-energy behaviour of the /, = 2 amplitude that forces any /, = 2
part to be absent in (5.22).
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Commuting X, with (5.27) we find the new result:

—i[mf, m?] oc—j%RAl. (5.28)
My
Summarizing we can say: Given any chiral saturation scheme of SU(2)XSU(2)
(eq. 5.2) we can construct approximations to p, A, mand f Regge couplings purely
by additional commutation with the mass matrix

m: =m? s (5.29)

Ba a fa’
Flrst one makes sure the mass matrix contains at most a (3 ,1) chiral breaking part
m4 by enforcing the double commutator to be free of isospin 2. Then one uses this
matrix m% together with its chiral partner m to calculate the Regge residue of p,
A, 7 and f trajectories according to

_3
p, & —i [m2, m2] WVjm2)y2,
Ay «—i[my,m}] Nim3)™!,
m, m?,
1
fomy (Vfmd)72. (5.30)

One may now wonder under what conditions do the matrices (5.30) satisfy also
the new O(5) algebra of Regge residues. A short glance at eq. (5.4) shows us that two
of the commutators, eqs. (5.4¢ and g) are fulfilled by definition (5.30) while eq. (5.4)
is true trivially. It can now easily be demonstrated that the necessary and sufficient
condition for all others to be fulfilled is given by the commutator:

—i [[m, my], m2} o (N/m2)* (8, mE — &, m?). (5.31)

That this is necessary is seen from eq. (5.4d). It is certainly sufficient for eq. (5.4a)
such that p generate rotations. For eq. (5.4f) we have to make sure that m% is inva-
riant under p. For this take (5.30) in the form

[[m3, m3],m3] =0
and commute with X 3- This leads to
[[m], m3],m3] =0 (5.32)

proving eq. (5.4f). With mi being invariant and (5.31), A, is a vector under p and
eq. (5.4b) is seen to hold. For the commutators (5.4g) and (5.4h) we take (5.31) in
the forms

[[m], m1m2] & —(N/m2)y* m3
[[m], m3]lml] =0,

and apply X, in both cases obtaining



H. Kleinert, Bilocal form factors and Regge couplings 99

. 2 2 2 . 2
~i [[mg, mi],my] & —i Njm)* mg, (5.33)
—i [[mg, m{], m3] <0, (5.34)

which demonstrates eq. (5.4h). Commuting these last equations with X, and X5,
respectively verifies eq (5.4g). Finally, eq. (5.4¢) can be checked by using the Jacobi
identity and the other commutators. Thus the Regge couplin%s (5.29) of any satura-
tion scheme will indeed form the group O(5) if and only if m is a vector operator
with respect to [mg‘, m%].

A practical way of constructing chiral saturation schemes satisfying the whole al-
gebra proceeds in the following steps:

(i) One chooses certain representations of the whole supergroup
SU2)XSUR)XO(5).

(ii) One introduces representation mixing of the chiral states.

(iii) One uses the selection rules to enforce mﬁ to be a (3 ,3) representation. Be-
tween the unmixed chiral states, certain matrix elements will have to vanish.
This gives rise to mass formulas. The allowed matrix elements of m?; are free
parameters at this stage. Given m%, the Regge couplings (5.30) can be calcula-
ted.

(iv) The group O(5) is now enforced by making the matrix elements of mi be-
tween the unmixed states coincide with the generator f of O(5). This amounts
to fixing the relative sizes of many of the formerly independent matrix ele-
ments of mi It gives rise to additional mass formulas.

Notice that in the above example for mesons, the group O(5) is fulfilled automatic-
ally by the matrices (5.30). The reason is first of all that we are dealing with a represen-
tation space of O(5) and second that in this representation there is only one non-zero
reduced matrix element of mdzf.

It will be interesting to discuss a saturation scheme in which the new mass formu-
las can be tested [13].

Let us finally point out that in the former work two of the proportionality factors
occurring in egs. (5.29) have been determined. The results are

a

=—'C[2 2]N 2-% C. = 3 p (5.35)
P ! pmb’mc (/mO) ! p T 2.2 Tmm’ ’
4"’rarrmO
-1 1
f=Cemi (N/m3yz, cf=n?4_f?Rfm, (5.36)
ki)

where R?  and R{m are the couplings of p and f trajectories to two pions. In addi-
tion we know from PCAC:

= m2. (5.37)
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With these three constants being known, our new algebra (5.4) allows us to calculate
directly two of the independent triple-Regge couplings, g0° and g7™ and two relations
involving g?f , gj‘ﬁ\” and the unknown normalization C . If also C, was known, all
triple-Regge couplings would be determined [using egs. (5.5)—(5.7)]. Of the two
independent charge-Regge-Regge couplings of eq. (5.3), on the other hand, one is

determined in terms of Cr. The other depends again on the unknown Cy .

6. Conclusion and outlook

We have gained some combined algebraic view of current and Regge aspects of
hadronic interactions. There are many open questions that will have to be answered
in the future.

On the current side it appears as if the infinitely many local tensor currents
741 #(x) will provide an important tool for the study of many strong interaction
phenomena. It is exciting to speculate that there may well be a current-current type
of effective Hamiltonian, analogous to that the weak interactions, that allows for a
rather complete description of scattering processes:

S « JZ% ay Pyl W p ) pyli, 1Py (6.1)
There are now certainly enough spins exchanged to build up Regge poles and cuts
(from cuts in the form factors). The phenomenon of duality will make sure that the
s and u channel pole structure will be contained properly in a pure #-channel exchange
picture like (6.1). As a first step in this direction one may try and construct a theory
of currents of the Sugawara type [17] containing only the energy momentum tensor
6" and the infinitely many tensor currents j#1***J, The canonical commutators
would all be replaced by light-cone commutators among the currents. There is also
the possibility that the traceless part of 8* coincides with j*” itself, which is the
content of the no-gluon hypothesis.

Also we would like to learn how diffraction scattering enters into the form factors
F/* (k). We have left this point completely out of our discussion since we don’t
know what singularity it would cause in the J-plane.

On the Regge side we would certainly like to understand more the mathematical
features of a system of diverging matrix commutators with a cutoff N, Are solutions
determined uniquely? Maybe in the limiting case N = «o? What are the errors to be
expected? The study of infinitely rising saturation schemes will probably provide
some hints to this question. We have neglected Regge daughters in our algebra in or-
der to make the group as small as possible. Is this a grave omission? What is the role
of the pomeron here? Since we are saturating the sum rules with resonances we
should not expect to see any pomeron in the f-channel. But what about the external
Regge legs?
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Appendix A: Angular conditions for the form factors ¥ T (3]

The connection of the form factors F/(k) with the standard spin-/ helicity couplings
is derived in the following fashion: One starts out with the infinite-momentum defi-
nition ofFJ LK) [3,18]:

J
FJ L) = lim I 8 xe3+pl’|j00’”0(0)ia xe3+pl), (A.1)
x> (p0' +p%)’

where k = p’ — pl is the transverse momentum transfer. Then one transforms the

external states to their rest frames
J

FI @)= lim ——— (015 (0") /%0 B(p)la0) (A.2)
x=e (0" +p%)
with B(p) =e %M Using now the formula ;
. 1 - AT
lim ————8 1(p)z°° OBEy=——/ (A3)
x> (p= +p°) (2 mﬁ)
and the fact that
lim B (p')B(p) = K(my, m . k) (A.4)

X—r oo

with a finite transformation K (mﬁ, m,, k), we can write
J

Fga(k) = Z4BO1 " K(mg, m, K)aD) (A.5)
(2my)

For the next step it is useful to assume k to point in the x-direction (i.e. k = (k, 0),

arbitrary transverse momenta k = (k1, k%) can be reached by a mere phase transfor-

mation efarctg(k” k) (see appendix B). Then K(mg, m,, k) can be decomposed in the

following fashion [3, 18]

K(mg, m,, k)= elwgla ¢~liM3 olwyfa (A.6)
with the angles

. 1 1 2,2 2
= i [ — L —

sin @y g T oshE 2my gk, cosw, g o, m_sh 23 tmg m. ],
1 1

sh = 5———[(k? + (my+m VYK + (my—m )] 2. (A7)
g o

Notice that £ is the relative rapidity of particles o ar}r(}r 6.+The rotation on the left-
hand side can now be passed through the operator j—7— with the result

ciwpgly o dwely = ittt
e 'WB/2 e'wWal2 = (A.8)
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with

it =79 + cos wg
and every index +in j** " treated in the same way. Initial and final rotations can
now easily be performed. For this we introduce the third componenets Ag, 1, of the
spins of particles 8 and « explicitly and F”/(k) takes the form

1 $ vy ot —iEM s
—thgh.ﬁ(—wﬁ) (Bhz01 7 e 3|aha0)>(dhg'#a ().

(2mg) (A.10)

As a final step we merely have to decomposej ™" into contents of pure spin
orientation M in the z-direction. For simplicity we assume current conservation. In the
frame in which the matrix element in (A.10) is written, particle §is at rest and part-
icle a runs with rapidity £ in the z-direction. Hence

gt = (mﬁ —m ch§, 0,0, -m_sh). (A.11)

]'3 + sin W ]’1 (A.9)

J =
Fﬁhﬁ,aha(k) -

Then current conservation tells us
m,—m, ch§ '

3 B e 0. _ 0

J m_sh § Jj €08 g ] (A.12)
such that (A.9) can be rewritten as

j* = sin? wg 70 +sin wﬁjl. (A.13)

Forj! the decomposition in states i = F(12) Ly j2) of pure spin orientation
is trivial

SU B OB e
jrE-—=0"" =7 (A.14)
V2
For the state of spin orientation zero we have to specify the phase. At timelike mo-
mentum transfer we would have

i9=¢,0,9)* (A.15)
with

e4(0,9)= —(d*,0,0,4°)n/a". (A.16)
Continuing q'2 = k2 negative values below the square root cut gives

€(0,9)= ~i(q", 0, 0,4°)/k (A.17)
such that

. . ko_. k o_.. 0 ,

i lq3] lmashE] i sin @, j. (A.18)
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Hence (A.13) can be rewritten simply as

A+t .. {0y i +) (_)
] =-1smnw Q ] + ) . (A.19)
Similarly /***" is given by
n J—n
-(—z sin “’B)J Z) ( ),-J—n ]-(0,...,0, 1,...,1)
n=0 n

AN S 2= AW et
n=0 AV, J-

Let us reorder the sum according to states of pure spin orientation [19]

_ JM)! (J-M)! 3
JM_hlZ’;’2J =1k M()QJ()' M)! ] jeh))

n k J—kn

J+M)! (J-M)! (0 =)
V( A?zf§1 nz V2'i (A.22)
n=0,...J
Then (A.20) becomes
!
= (—isin wﬁ)J Z} )M~ (2J)! ™, (A.23)
M=—J 2T+t (T-M)!
where we have used
(=ifM = (i ~GEm = (g (A24)
Finally we introduce the standard form factors of the current
LM 2\ = JM .
Gahﬁ,aha (q°) =(Bh0| ™" |ah, pe,) 6Mh5—ha (A.25)

and obtain the result referred to in sect. 1:

;o (S0 Sg—)
Fﬁhﬁ’ah (l 2myg ) M—E =D 27 (M) (J-M)!

JM s,
dhgh ﬁ( wg) G hgahy iy (). (A.26)

Notice that the factor in front is symmetric in  and a:

sin w
b4 (A.27)

2myg - 2mgmy, sh &

as it should be.
The analytic continuation of (A.26) in J leads to the angular condition for the
Regge couplings Ri(k).
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The set of equations (A.26) is in general singular. The left-hand side contains
(255 + 1) (25, *+ 1) components, the right-hand side only the kinematically indepen-
dent form factors. From angular momentum conservation we have

Gg;f‘g =0, M#hg~h, (A.28)

and hence G vanishes for |hg—h,| > J. A direct count shows that the number of inde-
pendent G’s is

(2J¥1)(2s+1) for J<As,
(27+1)(@2s+1) - - As)(J+1 = As) for As<J<s5+5,, (A.29)
(253 +1)(2s, t 1) for J=s5+5,,
where
$ =min (sg, 5,), As= s — 5, l. (A.30)

Thus except in the third case, there will be many constraints of the form factors
r Ba(k) Certainly, parity cuts the number of independent components by a factor 2.

If ng, n,, and n are the normalities of the external particles and the tensor j#1---#/ *
(0= parity X (254 B )
then **
F{i,hﬁ;a,h (kl’ kZ) - hngh ( )Ah hﬁ a,—hy (ky, —k3) (A.31)
JM
Gﬁhﬁ’ I, (n= nngn, Gﬁ, hgio—hg ()

As an example consider the well-known case of a vector current between spin-;
partlcles of parlty +. Taking care of parity, there are two 1ndependent form factors
F M(k) and F' T(k) and also two independent GT (t) and G . Thus there are no con-
straints among F' M(k) and F H(k) The connection of GlM w1th the standard Sachs
electric and magnetic form factors is given by

G%?(r)=Gi?<r>

K .
E (T0|] ITpe “—“T%EGE(I) =iGp(t) ,
G1;1<r)= G )
=i (401/7)1tpe,) = V2 sh 3§ Gy (1) =VZ 53— Gy (0)- (A.32)

* n =1 is a tensor with normal spin parities JP= 0%, 17, 2% ..., n = —1is a pseudotensor with
A=0,1%2, ...
** Notice that the angular condition (A.26) conserves these parity relations.
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With the rotation matrices

1 cos fw —sin w
di(w)={ | ) (A.33)
8in w0  €OS W
we find
sin wg 10 1
T(k) = —— o (sm Wg Gy, —icos W, G T/\/_) (A.34)
sin wg
'r(k) = —m——(—sin wg COS Wy G}? —isin wg G}T_/\/f).
Inserting the angles
. _k _k k2
sin wﬁ—m, ShE—-n; 1 +m (ABS)
or
K2 -3 k k2 -3
sinwﬁ=[l+~—] , cosw6=———[l+——~—] , (A.36)
we find
Pl = ! G, L ) “LF o, (A37)
t 2m |+ k2/4m2 am? M/ 2m :
k 1 k
(k)- 5 (Gp = Gy) = ———= I, (D).

Thus the form factors FL (k) are essentially equal to the standard Dirac form factors
F| (1), F5(1). It is well known that these do not satisfy any constraints.

We would like to remind the reader that the procedure of transforming the tensor
790---0 6f (A.2) into the combination j**--* of (A.23) could certainly be replaced
by a Wigner rotation. It turns out that such a calculation is somewhat more tedious
than the tensor method used before. For completeness we present this calculation
here. The little group is generated by L3, M;, M, in the standard frame in which

qt =(0,0,0, k). (A.38)

Consider the spacelike current M (g)- In the standard frame, the polarization states
of a vector with respect to the 3rd direction are given by

. — 1 14
i) = +—J_2‘]1 t2,
19, = €,(0,q5) *, (A.39)

et(q, 0)=-i(1,0,0,0). (A.40)
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The phase —i arises if one wants i*), ]-(0) to have positive phases under the raising
operator M* = M1+ iM?:

M%) =27,

[M*, 1 =2 (-i°). (A41)

Since a spin-1 representation of O(2,1) is non-unitary, M~ has all negative phases.
One may now couple vectors of this type to any higher spin J by using standard
Clebsch-Gordan coefficients. The resulting spin-/ object transforms under an O(2,1)
Wigner “rotation” as

R ]-JM(qS) oM £ =]'JM' dAJ{’M (i®), (A.42)

where dAJJr 27(B) denotes the usual spin-J representation of the rotation group. The
imaginary angle 8 = i£ has to be used since M 1 M2 transforms j(i), j(O) in exactly the
same way as iL2, —iL! would do with a usual spherical three-vector. With this phase
convention we can now proceed in the following fashion:

The infinite momentum value of g is (leaving out the y-component)
2

mg — mi + k2
= (o 0). (A43)
It may be obtained from the standard momentum by a Lorentz transformation

1 2 : agr3
L(qw)=e-liﬂf e—zeM q

g
2 2 2
m —ma+k

B
1 0 0 1 0 ek
=10 0 1 0 1 0 qg,. (A44)
mé - mi + k2
0 -1 0 Tk 0 1
Under L(g_ ), the polarization vector (A.40) becomes
' mé — mi + k*
¢“(0,q,,)=—1 (1, Tk , 0) (A.45)
Hence the spherical component j19(g ) is
2 2 2
ms; —m-tk
.10 P B8 o 1
g )=—ij +i ok i (A.46)

In the infinite-momentum frame, j! has elements of order O(x71), so it can be drop-
ped in (A.46). As a consequence, the component j00---0 is identical with

]-00...0 = I-J]-(OO...O) (qm) . (A47)
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Inverting eq. (A.22) and keeping trace of the tracelessness of j (- h i it spherical
indices

(00h3...hp)

; _].(+—h3...hJ) _]-(—+h3...hj) =0 (A.48)

we have

OO0 =i I/sz((g!z i°@..) (A.49)

The Wigner “rotation” is now computed by decomposing

Bl(p") L(a,,) = Llg*) W, (A.50)

where g* is the momentum of the current in the frame in which particle g is at rest
while particle « is running with the momentum

1. mg—mi~k2 mé~m§—k2
B (p)pazp:=< zmﬁ vla“‘ 2’”,3 ) (ASI)

As should be clear from the decomposition (A.6) of K, the rotation may be taken
out of L(g*)

Lg*) =82 L(q,), (A.52)

such that L(g;) becomes a pure Lorentz transformation in the —z direction bringing
the standard momentum to the final form

q¢ = (mﬁ —m,ch§ 0,0, -m, sh¥). (A.53)
This Lorentz transformation is obviously given by

L(gp) = ™2 ¢ M3 (A.54)
with

LS

ch¥ =-2m‘—ﬁk (62 + (mg — my)?) (K + (my + m D)),

m2 — m? — K2
(o4

>__B
sh & 2mgk : (A.55)
Inserting (A.54) into (A.50), we finally obtain the Wigner “rotation”
w=e M1 shp~chp (A.56)

~ Dhx [(K2 + (mg — m ) (2 + (my + m )2

We have left out lower powers in the (infinite} momentum x. The matrix elements
of W are then
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J — g .
D M’M(W) = dM'M(lﬁ)

1 M -M
N 2! 1 ! (chB)’, M =M (AS57)
[(J+MN T -MNT+M G -M) 3 27
with a factor (M —M for M' <M. Hence, the component "0 is to be transformed
by (A.42) with

: M) 11 (x J
J J
dMO(Iﬁ) [(J +M)! (J—M)!]';— S oJ mg) (sin wﬁ) ’ (A.58)

Together with the normalization factor (A.49) this renders

isinw Ny J M 1
F, (k)= (—ﬁ-) : @) A.59
ﬁkﬁ,mka( ) 2mg MEJ T ¥+ M) (J-M)! ( )
432y () (B01 M (@)l ang pe)) i, (w,)

This is not yet the former resuit (A.26), since the polarization vectors of T (q¢) are

e*(0,4;) =—i(ch£,0,0,5h %),

1
(%, q,)=+—(0, -1, =i 0). (A.60)
f \/5

Hence there is a factor (f)J"M with respect to the former definition of 7™ Then
(A:59) agrees with (A.26).
Let us finally remark that the angular condition may also be phrased in a differ-

ential form. If we introduce the operator J4 as

7 _ M
(3 ° G sngiang = V3 G g,

- JM
=Ah Gﬁhﬁ;aha (A61)
we can write the constraint (A.28) as
3 - Mo Ggf =0 (A.62)
If we invert eq. (A.26), we find a combination of G?’s which therefore satisfies
Jy 005 =1%o o (2 -T2y o el F3(k)e@al2 =0 (A.63)

Due to (A.29), this constraint has non-trivial content only for J < sg 1 5, Pulling
the rotations outside gives

Joo P2 =120 oo T =T o FI(k)=0, J<s+s,, (A.64)
where f'3 denotes the commutator

I,oF =R F - F1s. (A.65)
with

Jg,ﬁ = efwa,BJ2J3e'i“asBJ2 = 0S8 wa’ﬁf_«, —sin wa,BJl . (A.66)
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For J= 1 the old differential angular condition results [18,20]. In that case the tri-
gonometric functions cos w,, 5 and sin w,, ; have also been rewritten in terms of
commutators with momentum and mass operator. The resulting formula is little illu-
minating since it is extremely complicated. So we do not write it down explicitly.

The reader not familiar with the history of the subject may wonder why so much
emphasis is put on these angular conditions. The point is that it is these conditions
that will make the construction of models of bilocal form factors extremely difficult.
It is no problem at all to satisfy the algebra (1.11). Every ansatz

F(k, z) = ¢/ KX+22) (A.67)

will do if the matrices X 1, X 2, Z commute with each other. But in order to satisfy
the angular conditions, the matrices X, Z will have to fulfill complicated multiple
commutator and anticommutator relations.

Physically, the angular conditions ensure that a solution (A.67) of the algebra can
really be considered as an infinite-momentum form factor of a bilocal relativistic
current j#(x, ). In the past, great effort has been invested to find general solutions
for z =0 [18, 20]. However, no solution was found that had not previously been ob-
tained directly from of fully relativisitic currents as provided by infinite component
wave equations [20, 21].

Thus attempts at constructing models of structure functions which do not take
the angular conditions into account at all [24] should be viewed with great suspicion.
Probably also here, the only consistent feasible models will be those derived from
infinite-component fields [22, 23].

Appendix B: Analytic properties of F‘;a(k)

Analyticity of F'in k|, k, follows immediately by observing that K(mg, m,, k}
in eq. (A.4) can be written in the form

K(mg, my, k)= oilogmo/mMs ik By +k°E3)myg silogno/m)My (B.1)

with some arbitrary mass parameter mg. Here £}, E are the usual Euclidean gener-
ators

E =My+L,, E,=M,-L, (B.2)

leaving j* invariant (since [M, /O] =il and [L,,73]=41). ’
The decomposition (B.1) is easily proved by writing B(p) = e M in the 2X2 re-
presentation exp(—¢o/2). In this representation the limit (A.4) gives

1 m, k* ! 42
K(mﬁ, m,, k)y=——— « , k*=k — ik°, (B.3)

‘\{mBma O mﬁ



110 H. Kleinert, Bilocal form factors and Regge couplings

which decomposes according to
(\/mo/mﬁ ) (1 k*/mo) (\/ma/mo
Vimgimg/ N0 1 0 Vmy/m,

Rewriting this in terms of generators leads mdeed to (B.1).
With (B.1), the k!, k2 dependence of F (k) is given by the power series:

K(mg, m,, k)= ) . (B4)

J (kl k2)= 1 3 (6()' eilog(mO/mB)M3 ]-++...+ Em En e—ilog(molma)M3 |a0)
¢ (2m )j 1 72
0
kl m k2 {3
%)_ . (B.5)
mo
Thus F, is analytic in k, k, with at most dynamical singularities.

The phys1ca] mterestmg varlable is, however, ¢ = —k2. Also here the analytic pro-
perties are very simple. If r Bhgchg contains a spin flip

Ah=hg— h,
we first rotate k into x direction, obtaining

thﬁ’ ha(kl, k2) = glvah pJ Shg,ah (k,0), y=arc tg—:j; . (B.6)
Now we observe that the expansion for F Bhg.cthg (k, 0) starts with k'A% and is fol-
lowed by higher powers spaced by even mtegers Hence we can write

Fangiany & O = KM 3o, H2), (B.7)

Bhgiahg,
where fﬁh oy, (¢) is analytic in ¢ = k2.

Thus apart from a threshold factor k'AR| E s analytic in t. The reason for these
pleasant analytic properties of F o(k) is certainly, that in the infinite-momentum
frame the helicity of a particle is always well defined.

As an illustration for this theorem we refer to eq. (A.37). It is well known that
F(¢) and F5(¢) are analytic in ¢.

It is worth pointing out that the angular condition together with the nice analytic-
ity of F, Er (k) can be used to derive all kinematic singularities and constraints of the
helicity form factors G (t) (and therefore also of the multipole couplings): For
J =355 +s,, the angular condltlons are inverted and singularities and constraints can
directly be read off the system of equations. All singularities come from the Wigner
rotation (as an example see again (A.37): Gy and Gy have no singularities and at
k2 = —4m? there is one constramt Gg, = Gy ). ForJ<s; + 5, one has to first find
all the constraints among F o (k) resulting from the selectlon rule (A.28). Then one
may solve for Gm(z‘) in terms of the independent F «(k). The labor involved using
this method should be about the same as in standard derivations [25].
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