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Abstract

We point ount that large-amplitude collective excitations, tunneling phenomena, condensation of
higher particle clusters, and excitation spectra beyond Landau’s theory of Fermi liquid are most
conveniently described in terms of successive effective actions. These are functionals depending
explicitly on two-particle, four-particle, ete. correlations which have a simple quasi-classical
expansion. Their extrema account for the above described phenomena. Contrary to the path
integral approach to collective phenomena, the lowest approximation contains exchange and
pairing effects and is therefore suited for systems in which the time-dependent Hartree-Fock-
Bogoljubov equations are required for a proper understanding of the phenomena.

I. Introduction

The atomic nuciciuis may be seen as a result of an involved hierarchy of condensation
processes: The self consistent interactions between particles and holes leads to the for-
mation of a localized state of non-zero density. Paring forces generate a condensate of
Cooper pairs. Moreover, four and more particles correlate strongly and may be consi-
dered as sub-clusters of particles or other small nuclei within the system. The final out-
come is an object which at long distances and low energy looks rather classical and obeys
the laws of hydrodynamics. When probed at shorter and shorter distances and higher
energies, however, it reveals more and more quantum structure.

The goal of nuclear theory is to start out with the fundamental Hamiltonian and under-
stand this hirarchy of phenomena using n-body quantum mechanics [/]. Due to the
many degrees of freedom, the quantum mechanical problem can be well defined only
perturbatively which amounts to a power series expansion in the strength of the po-
tential V. The effects described above are, however, strongly non-perturbative in na-
ture. It is gratifying to know that, still, each class in the above hierarchy can be under-
stood by the leading role of a infinite subset of diagrams. For example, density and pair
correlations are dominated by infinite sums of ring and ladder diagrams, respectively.
Corresponding dominant subsets have been found also for higher clusters.

Once subsummations are performed and a single effect has been roughly explained, the
question arises of how to go systematically beyond the lowest approximation in such a
way that eventually the true answer may be recovered. The main problem arising is
that of avoiding the double-counting of diagrams.
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There does exist a powerful method which permits systematizing such resummations.
It is based on the path integral formulation of quantum field theory. The original fluc-
tuating quantum fields are eliminated in favor of composite fields by changes of inte-
gration variables. In this way, the theory is reformulated completely in terms of new
fluctuating collective quantum fields. This has led to successful quantitative descriptions
of important many-body-systems such as superconductors and superfluid 3He [2].
When it comes to studying nuclear phenomena, however, this method runs into severe
ditficulties. The reason lies in a too restrictive selection of the diagrams to be summed to
lowest approximation. When introducing a collective field variable, a choice must be
made once and for all whether one wants to resum, in two by two scattering amplitudes,
a string of interactions in the direct or the two crossed channels. As long as one of them is
dominant, this selection can be inade without difficulty. For example, if the phenomena
are principally caused by pairing forces, the method works perfectly and this is the
reason for its success in the above mentioned areas of physics.

In nuclear physics, however, forces are usually of comparable importance in each of the
three channel unless there is a high degree of degeneracy in the outer shells in which case
exchange forces may be negligible as far as collective excitations of the valence nucleons
are concerned. This is the reason why the author, when proposing the use of collective
quantum fields for nuclear collective excitations 3], restricted himself to a degenerate
shell model with pairing forces for illustration.

The question arises as to how one can find a method in which the crossed channel forces
are properly included from the outset, while preserving all the attractive features of
collective fields. :

In order to answer this question, we must go back and remember what these were:

1) Collective quantum fields are Bose fields which can account for all dynamical pro-
perties of fermionic many-body problems. To lowest approximation, they obey
classical equations of motion which amount to time dependent Hartree equations.
There exist well-known self-consistency methods for their solution.

2) The path integral may be used to study small fluctuations around such solutions. The
resulting spectra give the energies seen in small amplitude collective excitations.
They correspond to the random phase approximation.

3) These excitations render radiative corrections to the Hartree result. Moreover, there
exists an expansion of the path integral into powers of the fluctuation size which
allows for higher radiative corrections. In particular, the forces in the crossed channels
can be included in this way. The correction procedure can be formulated in terms of
Feynman diagrams involving the propagator and vertices of the collective field
only, with no further reference to the original fermions.

4) The path integral supplies an action along any periodic solution of the Hartree equa-
tion. These can therefore be quantized approximately [4] with methods which are by
now standard in relativistic field theories {5]. Sometimes this is called semiclassical
quantization which is slightly incorrect since the fluctnation expansion around the
Hartree solution is not one in powers of /i. Rather: If the fermions had N degenerate
energy levels, it would be one in powers of 1/N,

5) The action yields tunneling amplitudes for metastable states by evaluating solutions
of the Hartree equation which connect different minima along the imaginary time
axis. These methods are well-known in statistical mechanics and have proven successful
in problems such as the decay rate of a superconductive wire [6]. They have recently
been applied in quantum field theories: for determining the ground state of quantum
chromodynamics or the singularity structure in the complex coupling constant
plane [7].
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Tt is the purpose of this paper to point out that there is an alternative approach to
collective nuclear phenomena which shares all attractive features of the collective
quantum fields: It allows for a reformulation of the fermionic many-body problem in
terms of bosonic observable quantities. Thereisan action whose extrema lead to equations
of motion. This may be used to study and quantize large amplitude collective excitations
and determine decay ratesfor tunneling phenomena. Small oscillations around extremal
solutions give experimentally observable energy spectra. Thus there will be no problem
in reproducing all results which have been obtained in previous discussions using collec-
tive quantum fields. In addition, the alternative approach has decisive advantages
which make it far more powerful when it comes to problems of nuclear physics:

1) There is no preference of individual channels when summing strings of diagrams at the
lowest approximation to scattering amplitudes. Al direct exchange and pairing
forces are included. Thus not the Hartree but the Hartree-Fock-Bogoljubov equations
form the basis of all calculations and subsequent corrections.

2) While collective quantum fields can describe economically only one specific conden-
sation process involving either particle-particle or particle-hole channels, the alter-
native approach to be desdribed allows for a systematic understanding of conden-
sation processes involving also higher clusters of any number of particles, With the
importance of tour particle x-like clusters in nuclei this represents an important pro-
gress.

The organization of diagrams accounting for such condensation processes does not pro-
ceed, as for collective fields, according to powers of 1/N with N being the level degene-
racy but in the same way as the experimental investigation: From the global hydro-
dynamic type of behaviour to the involved quantum phenomena. We shall see that the
proper theoretical measure corresponding to this is the number of exact fermion loops
in a graphical expansion in which lines and vertices represent the fully interacting pro-
pagators and scattering amplitudes, respectively. At the two-loop level, a droplet of
nucleons can be formed which contains a condensate of Cooper pairs. Higher clusters
arise at higher loop levels.

The alternative approach to be presented here is based on a theoretical quantity which
provides the perfect tool for such an expansion: The effective action I'. This is a functio-
nal of only observable quantities which are directly the two-point, four-point and higher
correlation functions of the system. It shares an important property with standard clas-
sical actions: Physically admissable configurations move along the extrema of I". There-
fore it is the most natural quantity for extracting hydrodynamic laws of motion. But,
in addition, it contains all quantum aspects of the system and they can all be extracted
from I" in a simple and direct fashion. This is why it deserves the name effective action.
Effective actions of the type to be used here have been introduced into many-body phy-
sics a long time ago and recurred in simplified versions in relativistic quantum field
theory [ 8]. Since some of the original papers are quite high-brow and possibly difficult to
read, it may be useful to present another derivation of the main results, not with the
claim of doing any better, but with the hope that a different point of view may provide a
better understanding for some readers. We shall first introduce the exact effective
action and display its quantum dynamical content. Then we present the loop expansion
and show how standard self-consistency formalisms arise at the lowest level of approx-
imation.

The power of the higher effective action is demonstrated by giving:

1) Equations for large Amplitude Collective excitations and their corrections.
2) A prescription on how to quantize solutions in a semiclassical fashion and how to
evaluate tunneling amplitudes for the decay of metastable states.
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3) A model for the condensation of four-particle x-like clusters.
4) An extension of Landau’s theory of Fermi liquids, in which not only densities but
also vertex functions are subject to small dynamic oscillations.

Part of the content of this paper amounts to a detailed exposition and extension of the
methods and ideas put forward in a series of previous letters by the author [3, 9, 10, 11]
where also references to related work can be found.

II. The Generating Functional

The non-relativistic nuclear quantum theory is usually specified in terms of a Hamil-
tonian of the form

) 1
H=H" L Hint — Zﬂ'afeaﬁaﬁ -+ 5 ﬁz:svnﬁmajaﬁaﬁaa (1)
&y afy

where v,5,; is the two-particle potential. The indices enumerate the orbitals in some com-
plete (for example momentum-)basis and ¢,5 are the corresponding kinetic energies. As
relativistic effects grow important the Hamiltonian description becomes inconvenient
and the action

A = AY | At
1
= [dt(aﬁi Oy, — e te, g5 — 5 ﬁz;vaﬁ],a f dia, " (t) as(t) a,*(t) as(t) (2)
a apyo

is the best starting point. In it, retardation effects can naturally be incorporated by
allowing, in the potential v,,s, for four different times, i.e. by writing the interaction as

i 1
AN == }32:5 dty dty dty di,g,5(t, ta, by, b)) aT (1)) agl(ts) @, (t3) as(ty). (3)
apy

This general action forms the basis of a wide variety of quantum phenomena. The case
(2) amounts to a time independent instantaneous potential

Vapys(bis bas lys ba} = Vapal(ty — t2) Oty — t3) (8 — 1y) (4)

and is particularly simple. It will be invoked if it helps solving equations. In general,
since each index « is accompanied by its own time variable ¢, the notation may be
simplified by absorbing ¢ into «. Moreover, many integral- and summation-symbols can
be saved by using matrix notation and writing

atMa = 2,, [ dty dbsa™ () Mgty t) axp(ls). (5)

E

Thus the free part of the action is simply written as
. A + at{id, — &) a (6)
where ¢ is a diagonal matrix in the time index
eapltys o) = e.50(t; — 13) (7)

and i¢,; is the matrix
(iat)aﬁ (t1t2) = (Saﬁi 3t6(t1 — &) (8)
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The interaction may be considered as a tensor in the space in which'a,*(t,) is a vector with
indices («t,). Thus we shall write

) 1 1
Alnt = 5 atavata or —-—vataata.

2

In what follows, another notation will turn out to be useful: Instead of complex creation
and annihilation operators we shall employ quasi-real objects

%T(t))
@a) ()

01
C:(l 0) (10)

is the matrix by which ¢ and ¢* are similar to each other C merely changes upper and
lower components. With this convention, the free action may be written as

Pa(t) = (

in a doubled space where

= (:;(2)) = Cupppt(t) (9

1

AV = = il ly (11)

where i, ! stands short for the off-diagonal matrix?)

. 0 ) 85 + ST
-1 = . 12
i (z 6 —e 0 (12)
The interaction will be abbreviated in the form
At — —--1— Vot (13)
- Tn’?

where V" has four doubled indices, each of which being contracted successively with one
of the ¢ fields. In order to agree with (9), the potential V may be chosen as

Vastysr = 20apys .- (14)

The remaining entries are determined from the antisymmetry in the doubled indices
of V:

Vabcd(tls t2’ t3: t4) == - Vbacd(t2! tl’ t3’ td) - Vccxab(t3’ ttl’ tl’ t2) (15)
Vavealls, b2, b3, 1) = 0; a+b+c¢+d=50. (16)

Here a + b + ¢ 4 d == 0 means that the numbers of up and down components are not
equal. Equ. (17) expresses particle number conservation of the interaction.
The complete quantum theory is given by the set of all Green’s functions

G(n)(xl’ Lgy veey Xy) == <T(¢'(x1) @) - - - qﬂ(“%))) (17)

where @(r;) are the fully interacting Heisenberg fields: Here we have collected orbital,
time, and up-down index in a single variable x; which sometimes will be replaced even
shorter by ¢ itself. The advantage of this formulation is that many expressions will look

2} The symbol 7" denotes transposition in all occurring indices.
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very much like those of a simple ¢* field theory except that ¢ is a Fermi field and the
interaction —1/4! Vg? isstrongly non-local in z. The symbol 7' denotes the time ordering
operation with the effect that earlier times in x come before later times and a minus
sign is implied for every permutation necessary to achieve this goal. The Green’s func-
tion with » fields will be referred to as n-point function.

Because of the Fermi nature of the field ¢, only Gireen’s functions with an even nunber
of fields can be non-zero.

Statements concerning the set of all thesc Green’s functions are most easily collected in
a single quantity called the generating functional [9]

ZIK] = (TeiViDvEe) (18)
Here K is an antisymmetric matrix
K(xy, 25) = —K(xg, @) = — KT (x;, xs) (19)

acting as an expansion parameter. It may be seen as an external source coupling to the
bilocal quantity

(altg aa ;"
atag  a,'ag

{2y} pl,) = (

Thus A may be written as

+) (%1, Ta) - (20)

)"0‘.8 *lug;g
K(xy, 7)) = 2T (1. 24) (21)
Hap ‘af

where u plays a similar role as a chemical potential in grand-canonical ensembles: Tt is
similar in its coupling to the density, but different by its being bilocal. The source 1 is the
analogous quantity as far as pairs are concerned.

The important property of Z[K] is that functional differentiations with respect to K
generate all non-zero Green’s functions

1 d )

G(zn); s eeey Tap :273 - e e e -
(4. Xan) Z[K] 0iK (x,, 5) Ot K (Tap_q, Xop)

ZIK| (22)

if this relation is evaluated at zero source K = 0. For the following discussion it will be
useful to speak about the objects defined by (22) also for K == 0 and call them Green’s
functions in the presence of the external source K. This will have the advantage that we
can look at the results alternatively in the canonical and grand-canonical ensemble. In
the first case, K has to be set equal to zero at the end. In the second case we simply have
to equate

K@y, ) = Ko™ (2, @) = 0up0{ty — ) (2 0’“) (23)

where u is the proper constant chemical potential which guarantees a certain particle
number N. Notice that in the exact solution this number is always sharp though ap-

proximations may turn out to cause fluctuations of the order 1/ 1/17.
The set of all free Green’s functions is well-known from Wick’s theorem: It consists
of sums of products of simple free Green’s functions (the two-point functions)

I
Go' B (g, 3) = @o(a;) polaz) = Gyl 2,) (24)
where ¢, is the inverse of the matrix in the free action (12)

. O ?:8,: + ET -1
= 25
G, ? (i@t e 0 ) (21, %) (25)
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and this is, of course, the reason for chosing the notation (12). The hook symbol is called
a contraction. Wick’s rule reads

— I
Go(”)(xla cees X)) = Z <T (‘Po(ﬂ’&) Polxa) - -+ - @olTyy) ‘Po(fcﬁ))> (26)

all contradictions

where the sum over all contractions is done successively: First gq(2;) is contracted with
@Po(2) OT @o(x3) Or @o{y) ..., then the next uncontracted ¢, is contracted with all its free
successors, and so on. There are (n — 1)!! terms, each of which is a product of single
contractions (24). '

The use of the generating functional Z| K] has the advantage that this rule can be veri-
fied via differential manipilations. We shall see that the correct expression for Z[ K] is

ZY K] = exp {-%— tr log (iGy™t -+ K)}/exp {-—é— tr log (iG’ol)} . (27)

This has indeed the desired property of generating all free Green’s functions via (22).
(The superscript zero on Z records the absence of interactions). For the first few terms,
the statement can be verified by simply expanding the logarithm in (27) in powers of K

- 1 aid
ZO K| = exp {E- tr }; (iGOK)”/n} (28)
=1
and seeing that in the series
o0 2
ZK] =1 — % tr V (G K n + — (f%— P (iGOK)”/n) + ..., (29)
n:,l n=—=1 :

the coefficients of (K*/n!) (i/2)* do give G®, GW, G® . as the sum of all contractions
of G®_ The general proof of (27) is most simply given in the path integral representation
of the partition functions. Suppose for a moment ¢ were a Bose field. Then Z°[ K] could
he obtained as

ZOK] = [ GgeliiduiG K] [ GrpeiriG's — [det (iG, 1 + K /det (1G] 12
— o~ (/)trlog(ic, 4 K) [~ (/2 Tog(ito™) (30)

where the result on the right-hand side is a straight-for-ward generalization of the Fresnel

integral [ da/Y2ni etéi»2e2 — 1[}a to vectors & and matrices @. Since we are dealing with
Fermi fields, however, this formula is no longer true. But the modification can be achie-
ved by hand: the expansion of the trace log in the exponent (30) may be represented
graphically as shown in Fig. 1: It is the sum of one-loop diagrams which successively

K
. e
-%ter.GK‘=é—tr%(.GOK)/n=O+é

+ <:>+<15:+{;5:+
{ o i3 +€\T
=67 ’af -€ 0)

Fig. 1. The expansion of the generating funetional W*[ K] in powers ol the external two-particle source K. Liues represent
the free fermion Green’s function ¢, and double lines the source K
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emit 1, 2, 3, ... double lines representing K. Since fermion loops carry a minis sign with
respect to boson loops, we many simply reverse the sign in the exponents of (30) and ob-
tain the fermion version (27). Sometimes, anticommuting Grassmann variables are for-
mally introduced to achieve this result but we shall not need this mathematical appara-
tus here.

For the reader not familiar with the functional integral representation we can derive the
result in an alternative fashion which is somewhat less direct but has the advantage of
preparing the grounds for later arguments. This is based on using the free operator equa-
tion of motion in the presence of the source K

(G + K) g = 0 (31)
together with the canonical anticommutation rule, which in our doubled notation reads
{p(@1) @, —e, = Cdag. (32)
Applying (30) to the free Green’s function we find the standard result
(1Go! 4+ K) G®(xy, xp) = (4G~ - K) <T(‘P(331) ‘P(%))) = t{Cp(x1), @(%2)}e,~1,
= 10(ty — ) 4,5 = 04,2, (33)

Representing @ in the presence of K as

2K = 2

(2) — 0 -19 ______— = 70 0
G (xl’ x2) {Z ['K]} 2 6?:K(xl, .'Ez) ?; ZK(JDi,.’Cz)/Z
we have the differential equation
2
(iGD_l -+ K) T Zy® = 20 (34)

which holds also for Bose particles. This equation is immediately solved by

ZO[K] — e(l/2)trlog(iGu‘lJrK)/e(l/z)t.rIog(iGo”‘) (35)

where the multiplicative factor has been chosen to comply with the definition (18) ac-
cording to which Z[0] = 1. Notice that the correct minus sign with respect to the Bose
result arises from the fact that K is antisymmetric for fermions such that

K(s ° = - = —sg & x):_a (21, 22) (36
and
8 ] ‘ -
P CNAY tr log (1Gy + K) = —SE (g, @) trlog (iGy + K) — —(iGy + K) 1.

The exponent of Z°[ K] will be of so much importance later that it deserves an own sym-
bol:

WoK}= —ilog Z[K] = — -;- tr log (iG, ! + K)/(Gy ). (37

Such a quantity is also introduced in the general interaction case

W[K] = —ilog Z[K]. (38)
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There are simple connections between derivatives of W[ K] and Z[K]. If subscripts denote
functional differentiations, i.e. 8/0K (x,, x,) Z = Zg,, we can derive

Zy = iWyZ, Zgx = Wy — W Z
ZKKK = (@.WKKK — 3WKKWK — ?:WKS) Z (393:, b, C)

such that

2
@D = = 7|7 = 2Wy

2

2
60 —(7) ZunlZ — —aiW +- W) 2 (40a, b, <)

D

2 3
G® = (—) ZxpwlZ = —8(Wgig + 3iWxp Wy — W) Z.

All indices have been left out and the direct products of several matrices have shortly

been written as a power, i.g.
WKmWKMWK“ — WKa. (41)

Different even permutations of the same expression have been collected in a single term
with a multiplicity factor. If the signs are to be correct, the indices have to be grouped
in an order which is an even even permutation of those on the other side of the equation.
The relations can be inverted to give

W, = G® (42a)
2
2 3
(f) iWing = G© — 3G@OQRD 1 2@, (42¢)
1

The latter equations (42) can be verified by direct differentiation of (35). We leave it up
to the reader to keep track of the indices and give only the examples of the right-hand
side of (42b) where the indices are G (xwyx32,) — G (x,205) G (29x,) while in (40b)
they are WK(.rl.rz)K(xax,) + 7;I/V,K(:tlxﬁ)I"/?K(:r:a.m)-

1t is simple to write down a formal expression for the generating functional also in the
presence of interactions. The Green’s functions are determined in the interaction picture
of quantum field theory by the well-known formula

G(ﬂ)(a;l . eee . xl) p— <q’6'5&/“‘t[%} ¢0(x1) P qﬁo(xn)>/<Teiu°ijm[%]>_ (4:3)

Expanding in powers of 41"t and performing again all Wick contractions yields the per-
turbation series for G™. Formula (43) can be translated to the generating functional as

Z{K] — <Teie?/in'[<p0]+<an(po>/<Teidlﬂt[(pD]> ' (44)

Since the essential property of Z in (22) is unaffected by the constant denominator we
shall find it convenient to drop this trivial factor from the definition and use for the
interacting case the functional

Z[K] . <Teitg{““[¢u]+(if2)¢oK‘Pn> . (45)
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This expression can be evaluated further. Since 41"t depends on four fields ¢, and since
these may simply be generated via two 8/0K differentiations, we can obviously write

Z[K] . ei(V/4!)4(6/5K)(6/§K)<Te(i/2)froh(po\, — ei(V/sI)(alaK)(a/éK)Z()[K]_ (46)

Inserting the free expression (35) and expanding in powers of V generates the pertur-
bation series.

There is a ditferential equation for Z[ K] analogous to (34) also in the interacting case.
Applying i@y~ -+ K to /0K Z and using (34) we find

2 2 I . . 4
(#Go " + K) = Zg| K]l = iZ + o [K, eXVBDORINGHIY 7 — iZ — = Viigg (47)

31!

which could also have been derived directly in the same way as (34) using the operator
equation of motion

: 1
(o + K) @ — 55 Vopgpp — 0. (48)

Equation (48) can also be translated to a ditferential equation for the exponent W[K]
= —¢log Z[K]. Using (39) we find
1 ;
(1@t + K) Wy + EY VilWygi + iWg? — % = 0. (49)

It is convenient to separate out the known ¥V = 0 part (37) of W{K] and define
WK = W K]+ Wint[K] (50)
with the interacting part satisfyving

(iGO + K)12 W}glats + -—‘ T 1234@(WK33K45 —|_ 2: I/V}xyja VV}E}E) + 1234G34G 52 = O (51)

Here we have abbreviated

GF = i(elGo™t + K)™! (52)
and used
ST0 _ ok v % VK — — (GEKQE _ (KGEY. 5
3k, oK, (WKl = 3 i, O 5 (aK )12 Gl = - (G805 — GG (53)

The latter result may alternatively be derived from formula (27) if W[K]is expanded
around K == 0 rather than K = 0, i.e. one inserts K — K + 6K and writes

1} ol ,
tWo — —g tr 3 (iGEOK)*/n (54)
n-=0
with the quadratic term
| R
1 G0 K 3G 0K (55)

giving directly (53).
Equation (51) can be solved iteratively. To lowest order we can neglect the second term
and find

1 .
W(l)[K] == ‘g Vw:uaga:ﬁ (56)
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as can verified by differentiation (using (53))

0 . 1 i ,
a]\fg’s W(l)[K] == % Z V1234G;1G§2G§3, (57)

Multiplying this with i(@L,)"1 gives
' 1
T VGG (58)

in agreement with (51). We may now reinsert (56) into (51) and obtain W®

WOLK] = o Vi Gl G O O Viwars (59)
and further
WO[K] = glg (VGEGE) (60)
. b
WO[K) = i (VEEGE) (61)

8.12

etc. These terms can be represented graphically by the sum of all connected vacuum
graphs shown in Fig. 2. They are one-particle irreducible due to the fermion nature of the

1728 3456
3
4a w Vv

62208 2488232

'[C@) L - o@@ogoom}

Sa 5b
_______.G'(!i[( o Jat'€)+K -
X aya L€ o

Fig. 2. The one-particle irreducible vacuum graphs for the interacting generating functional ||, The numbers on
top of each ferm give the numbers of different contractions
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Fig.2

fields which means that they do not fallapart by cutting one line. Of course, they amount
to precisely all Wick contractions which would emerge by expanding (45) in a power
series on 4"t and going to the logarithm. The latter operation collects the subset of
connected graphs. Notice that the multiplicities of all vacuum graphs to order V" is
(4n - - 1Y!! while that of the connected graphs satisfies the recursion relation

n— 1

N, +3n— )N, +-7.5. 2( 5

) L’VZ 9 + .

-+ (4n — B! (n —1

)1\71c = (4n — DH!! (62)
n— 1
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which follows directly from the exponential relation (see Fig. 3). Thus we have N;¢ = 3,

N, =96 = 24 4 72, N;¢ = 9504, etc. Of course, the total coefficients before the term
(V(GK)Z)" are

a1y ‘
W= Yalg (63)
such that a; = —1/8, a, = /12, a3 = 11/2 - 3 . 16, ete. This expansion of the generating

functional provides the basis for the discussion to follow.

-4 OO 4+(00'00 - - 050)

1 Ob -3 (© * O&))

-eW[K]. exp

Fig. 3. The standard exponential connection between vacuum graphs and their connected subset

ITI. Effective Action for Two-Point Functions

Up to now we have merely rederived the usual perturbation series for W[K]. This does
not yet permit any discussion of non-perturbative effects which are so important for the
understanding of collective phenomena. We shall now demonstrate, however, that only a
few rather simple manipulations are capable of turning the feeble perturbative object
W into a new and very powerful functional I" which will be called the effective action for
two-point functions. It will permit the extraction of non-perturbative results even at
the level of low order approximations.

Suppose for a moment, the full generating functional W[K] were known. Then the exact
two-point function G = G® in the presence of the source K would be calculable from

1 i
Gxys) = o K@) = (Tg(zy) p(xg)) = QK] (64)

in the presence of the source K (not to be confused with the free Green’s function G¥ at
K = 0). We now use @ to define a Legendre transformed functional

e = WK] — % tr (GKT). (65)

The explicit G dependence arises by inverting (64) to obtain K = K[(G] and substituting
this for K on the right-hand side of (65). By construction, this object has an important
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property: Its derivative with respect to the Green’s function ¢ satisfies

olTG] 1 "
) 2 K(wyy) . (66)
Since the source K is just an auxiliary mathematical device which has to be set equal
to zero at the end we conclude that the functional /7 is extremal for physical two-point
functions /. Thus it has the same property with respect to this fully quantum theoretic
quantity as any mechanical action does with respect to classical orbits. This is why it is
called the effective action.
In a grand canonical ensemble the extremality conditions is changed to

oriG@] 1 1 (0 —ﬂ)

g K=o, (67)

oG 2 2

where u is the external chemical potential (see (23)). Thus I is not truely extremal. We
can, however, introduce the slightly modified quantity

I'se[@] == I'G) + % tr (GK«-» T) (68)
which does satisfy
ol [G]
= 69
oG 0 o)

and deserves again being called effective action. Since the modification is so simple we
shall keep working with 7”7 itself. Notice that /¢ is related to I” in the same way as the
grand-canonical energy I — uN is to the Hamiltonian H. Thus I8¢ should really be
called the grand-canonical effective action which explains the superscript.

Let us now calculate /(7] from the first known pieces (56)— (61) of W[K]. From the free
part W[A] we find

G = 2W,° = GK = i[iGy ! + K1 (70)
and inverting this
K = i@ 1 — iG4t (71)
such that
To[G] = “;_ trlog iG-t + % tr (G, 1GT) + % tr1. (72)

The last term is an irrelevant constant and may be dropped. Consider now the first order
correction WY[K]| + WM[K]. Then

G — 2Wy, — GE _;_ GK(VEE)GK

(73)
K —i@ ' — i@, + _;_ va
such that we find
IO[G] == -;— Vae. (74)

This result may be pictured as a vacuum diagram which looks the same way as that of

WMIK] except that a line stands for the fully interacting Green’s function &' rather
than the free GX,
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If we go on to the third order, however, the situation changes. Now
) 2
G = 2Wy = GX — % QR(VGF) GX — = V2GES

and this may be solved for K as

" .

K =Gl — Gyt | — VG — VB,

2 6

Inserting this into I'[G] = W[K] — 1/2 tr (GKT) we find

7
7@ — — 7204,
48

(75)

(76)

(77)

We immediately see that the coefficient is smaller than that of W®[K]. This indicates
that in a diagrammatic representation not all graphs of W[K] can also be present in
I'[G}. In order to find out which ones are absent we have to be more careful with the order
of index contractions. In the present case these can be followed graphically but when

proceeding to higher orders, work rapidly proliferates.

Let us therefore search for a more economic and direct determination of I[Gf]. This is
possible if we use the equation of motion (49) as a starting point and transform it into

an equation for I" and G. First of all, 2Wj is simply /. Second we have

K — _2F(;
and finally

2WKK=GK:KG>1:'” FE;(}

2
by definition of I" such that (49) becomes

1 ,
(iGyt — 2T, G — o V(lgd + G — i =0.
We now decompose
@) = IoG] + e
and use (72) to calculate

i

I =
¢ 2

G1 'i“ %_ iG(rl + I’Gint,

) .
_ 1 sint
Fcu—'z—G G 4 IR

Therefore (80) may be rewritten as an equation for the interacting part only:

o 1 o
It — — = GV{L+ 2[1 — 2GCT] .

Multiplying this with & and contracting indices gives

IGintG = ”T1'2‘ GGV{1 -+ 2[1 — GG ).

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)
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The left-hand side is equal to I"'*t[G] if in a power series expansion of /%[ (], every term
3" is multiplied by a factor n 1. It will be usetful to rewrite (83) as

rintG = % VaG - {:2- v (86)
where
t = —A4lY 1 — QGG = 4T — SBGOATE + 16T GGIY? + -+ (87)
satisfies the integral equation
f = —470 L 25 INGGE (88)

and has a simple physical meaning: 1t is the scattering matrix of the theory. This quan-
tity is conventionally defined as the amputated connected four-point function

G, = —itGGGEG. (89)
We do know what the full four-point functions is from (40b):
G = — e Wy + G- (90)

But this is a disconnected object. The two particles may run through the system in-
dependently in three combinations without interacting with each other, i.e.
G = (D -+ 3G2 (91)

where we have used our short notation for the three permutations of GG'. But then we
have

QN = i Wy — 202 (92)
Expressing this in terms of I” we see
G = —2iG; — 242 = 2Kt — 2G% = —ilg} — 2G2. (93)
Inserting our decomposition into free and interacting part (83), this becomes
G, — MG — 20GGI . (94)
Thus with (87),
G4 = —itGGG4E, (95)

such that { is indeed the scattering matrix.

Notice that ¢ is antisymmetric in all its four indices. At first sight, it may seem surprising
that a string-like summation of matrices G2I'}}f appearing in equ. (94) can lead to an anti-
symmetric result, but it isa direct consequence of Zg  being completely antisymmetric,
which follows from the definition.?)

The coupled integral equations (86), (87) are shown in Fig. 3. They may be solved recur-
sively (similar to what we did for Wint), To lowest order, we neglect £ on the right-hand
side ot (86) and obtain

I'[@] = 4~81~ Vea (96)

just as in (74). From this we find, using (87), the lowest approximation for the ¢t matrix

t=17T (97

3) See also the remarks in Sect. 1X and the illustration there on Fig. 11,
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which is commonly known as Born approximation. Reinserting this into (86) yields
the second order result

IOGQ = é Vea (98)

in agreement with (77). In Fig. 4 we have displayed the iteration graphically. Only
the first of the vacuum diagrams in W®[K] is contained in I'2?[@] (apart from the
different meaning of a line). In the same figure we go on to the next orders. When
calculating ¢ we observe that the two derivatives of I" with respect to @ amount to
cutting two lines and removing them. In this way, vacuum graphs are opened up and
become vertex graphs. Inserting these into the boxes in Fig. 4 results in only a single
final diagram of third order

ro6) = o (Ve (99)

er 1 @ @

m =-4 r'mf

+2i g G

X =V
-5 OO

(1_ 1
lae=-7 <

t(’)- X

e

2t (O l
92O o <O %

6k @ —~ o P
rg-5 (00| +4 >0 )
s
2%
4 s s
oo (D @) o D)

Fig. 4. The integral equation for the interacting part of the effective action and the four-particle vertex function, the
f matrix and its iterative solution. The symbo! [s means symmetrization in all four legs

|S
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which corresponds again to the first of the diagrams in W®[K|. The derivative IS}
has now two different pieces depending on whether one removes two lines of the same
or of neighbouring bubbles. The expansion up to I"® can again be iterated through
the integral equation to obtain I"® as shown in Fig. 4.:

5

IO[Q] = —q
1] ‘816

(V G2y (100)

with two different ways of contracting the indices as is obvious from the graphical
derivation.

For higher orders, the number of different admissible diagrams increases rapidly but
one property remains invariant: When forming /s i.e. when cutting two lines, the
diagrams always remain in one piece and do not fall apart. Such diagrams are called
two-particle irreducible (TPI). As a matter of fact, /1G] collects precisely the TPI
subset of all vacuum graphs which can be drawn with V and G.

The full coefficient of the » - th order term can easily be evaluated by multiplying
(87) with the denominator in the equation, inserting the expansion

P@] = i 3 ay(—i VO (101)

n=1

and finding the recursion relation

1 1 :
Ap = =— | — = @1 (20 - 2) 2n — 3) + 2 3 2ma, 2m’ (2" — 1) ayy
2n 6 mt+m’=n
a, = 1/8
which is solved by
1 1 5

a2 T a3 ::E, (’»4:8'16,-..

s (102)

Let us now see the physical consequences of the effective action. The extremality
condition (67) reads

1
1’y = —— K¢.p 103
o= -3 (103)
in the presence of a non-vanishing chemical potential. Inserting our expansion for
4
NG = 3} I''™[GF] gives the equation
n=0

G Gyt Ko — % VG -+ (i Vs -71- Vas g _Z_ VAGT — 0. (104)

>
This may be written as

;O el — 7 -t
G — i[igoﬂ + Keooo Z[GH U~ g [(?Ft e— (%) ¢t + ( M)) - ¥ [G]]
(105)

with an auxiliary functional

X (6] = — 20 Q)/oF % Vi - % Ve — 71- VG5 + i % VG & . (106)

We now realize that what we have derived analytically is nothing else but Dyson’s
equation: As we showed, [Mt[F| collects all two-particle irreducible (TPIl) vacuum

2 Zeitschrift ,,Fortschritte der Physik*, Bd. 30, Heft 7

L
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graphs. According to (106), the functional 3 arises by differentiation with respect to
G which amounts to cutting and removing a single line from these TPI graphs. But
these are just the diagrams required for the calculation of the self-energy in Dyson’s
equation: That they are of the self-energy type is obvious since they can be linked up
with two legs at the previous end point of the line which was removed. Moreover they
posses the second property of being “‘proper” which is an adjective reserved to those
self-energy diagrams which are also OPI. But this is automatically true: A diagram
which is TPI remains OPI after removing one leg.

T --280"6V][86 -2

o
o
8
&

X=V
=G

Fig. 5. The proper self-energy graphs as derivatives of the TPI vacuum graphs of the effective action

Notice the important feature of equation (105): It is completely non-perturbative. Even
if It is determined only up to a finite order in V, the equation (103) for @, resums
an infinity of self energy diagrams in which each line is again the fully interacting
Green’s function @ itself.

From this discussion it is obvious why one particle-reducible diagrams disappeared
when going from W[K] to I'TG]. These arise automatically when expanding the right-
hand side of (105) in powers of 3} thereby chaining up an infinity of irreducible pieces
and the chain can be disconnected by cutting a single line.

The effective action /(] is appropriate for a study of ground states and large-amplitude
collective excitations and this will be shown in the next section.

After that, we shall discuss an even more powerful effective action which contains not
only two-particle Green’s functions but also four-particle vertex functions as explicit
variables to be determined by extremization.

IV. Solution of Dyson’s Equation

To lowest non-trivial approximation for I, Dyson’s equation reads

_.|{0O 10 + T —pu 1 -1
G_z[(ia,—e—i—‘u o )——-Q—VG] . (107)

This is recognized as the standard time-dependent Hartree-Fock-Bogoljubov seli-
consistency equation: It is an equation for the Green’s function of particles moving
in an external potential

1
2 = 5 V1234642054 (108)
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which is again prepared by the Green’s function itself. The important result of the
last section was that using the expansion for [, the equation can be improved to
increasing accuracy thereby including more and more quantum effects without ever
double-counting any diagrams.

Let us summarize the method of solving the general equation (105) [9]. In order to
cope with the most common situation we shall assume the potential to be instantaneous
and time independent. Then the self-energy involves only the equal-time part of the
Green’s function

G, V)e—p e = <T9°a(t) Pt Wt =1 4 (109)

such that the self consistency has to be achieved for only this part. It contains all
jnformation on what is usually referred to as the density matrix

0a8(8) = (@, (t) aslt)) (110)

of the system. Using o.5 the different matrix elements of the Green’s function may be
written as '

Gt oot 1a = ((aa(t) agt)) s () gty ) _ (Aaﬂ(t) Op — 0galt)

(@t () ag(t)y (@' {t) ag"(t) aplt) AT (Dap

where the diagonal elements are the pair correlation functions

Aup(t) = La(B) ap(t)y, A s = (. (t) ag™(t)) = A(t),,”. (112)

From now on in this section, the symbol ¢ will denote only this equal-time matrix.

A comment may be in order concerning the equal-time limit { = ¢" - ¢. The reason for
this choice rather than the opposite derives from our convention of contracting indices
in (96): If we take the interaction —1/4V peupupopops, the lowest loop correction to
this expression is

) (111)

1
- E Vabcd%%Gm

where @,p, appear in the same order as in (96) if we take the limit ¢ = ¢' +- «.

If ¢ is periodic in some time interval, say T, the inverse operator appearing on the
right-hand side of equ. (105) can be calculated as follows: One multiplies the operator
in the denominator by the matrix C which brings the ¢ &, part to diagonal form and
determines the eigenfunctions of the differential equation

C 0 T at + eT —
10y —e+pu 0O

There exists a complete set of these with time independent eigenvalues x! which have

the same period as G as a function of time. This is a consequence of translational in-

variance under the substitution t - ¢ + 7. From this follows Bloch’s theorem, accord-
ing to which a homogeneous equation

(8, — M)y =0 (114)

”) ~ Z[GJ] 20 = — G 20). (113)

with a periodic operator M can always be solved in the form

2(8) = e™f(t) (115)

where the frequency like quantity in the exponent is called Bloch-Floquet index and
f(t) has the same period as M.

9%
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Notice that if 4!(t) is a.solution with eigenvalue »! one immediately knows an infinity
of solutions

Xa'(t) = e Poutyh(t) (116)

with eigenvalue w, — %' which differ from ' only by a frequency in the ‘“‘reciprocal
lattice’ of the periodic functions, w, = 2an/T'. In our case we are dealing with fermions.
It is a well-known fact of statistical mechanics that fermion fields in periodic systems
have to be antiperiodic. The additional minus sign drops out in all observables since
these are even products of fermion operators. But there are consequences as far as the
spectrum is concerned. The previously constructed eigenfunctions y,' solve the anti-
periodic problem if the frequencies are taken to be odd multiples of «/7':

2n 1
o :T(n+—2—). (117)

These fermionic reciprocal lattice vectors are real time versions of what are known as
Matsubara frequencies in statistical mechanics.

Using the complete set of wave functions, we may now explicity construct the Green’s
function on the right hand side of (105) as

. r - .
i[() (?b, e (%)0: + ¢ 4“) — C’Z[G]] = Z; ;—i—xieuz‘wn(z—y)lr(t)xl(tr)*. (118)
n, n

That this is the correct way of forming the inverse operator (113) can be seen directly
by applying (113) and using the completeness relation

tZ Xa' () 3" ()% = O(t — 1) Op. (119)

With this result, Dyson’s equation becomes

Gop(t, ') = ) L ettt 2 () 7 ()% Cyp . (120)

a,l Wy — %l

Before proceeding it is useful to realize that the differential equation (105) has the
following symmetry property: With () also x,!*(f) C is a solution with opposite
eigenvalue. This is a consequence of the identity (9) for the doubled field ¢. The proof
follows by inspection for the free term and from antisymmetry of the potential V in
the case of interactions. Thus all Bloch-Floquet indices come in pairs and we may
write

- C‘x‘(t)*x’(t’)}- (121)

W, — % w, + !

G = 3 e tontt=0) {——— 40 A C -
n
2 <

Let us now perform the frequency sum by converting it into a contour integral

¢ — —o Zf & f’f““‘”{ ) A C ; Cx’(t)*x*(t')} (122)

2n T ) T + 1 z - z -+
¢

where the factor (e#*7 + 1)71 has poles precisely at the frequencies z, = w, and the
contour ' encloses these poles but leaves out the eigenvalues x'. In Fig. 6 we have
achieved this by moving x' slightly into the complex plane. The prescription as to
what direction has to be taken comes from standard arguments of statistical mechanics:



Quasiclassical Approach to Collective Nuclear Phenomena 371

For free particles, all states with positive energy above the chemical potential are
moved below the real axis, those with negative energies above. As in the interaction V
is turned on the magnitudes of the energies change but the signs remain the same and
so do the imaginary parts.

We now may open up the contour of integration. For |t — t'| << 7, the upper and lower
branch of the contour ' can be deformed into the infinite semicircles shown in Fig. 6
where their contribution vanishes. When passing the poles at 4-x', however, we pick
up the residues

Qt, t') = i[ily* + Koo 4 Z]2 (1, 1)
F— go{(cixLT 4 ])—1 e_i"z(t_t’)xl(t) Z!(tr)* C _|_ (e—-iulT + 1)_1 ei”z(t_t')OZl(t)* Xt(t,)}-
) (123)

_h'[
X x @rT+) /T c

f

Fig. 6. The contour of integration for summing the discrete frequencies in the case of periodic_ or‘bits._ \_«Vhen ()pc.niug
up ¢ to ¢, one picks up the residues at the eigenvalues x¢ and the integral over the infinite semicircles vanishes

The weight functions
?’L(x") . (einlr + 1)”1

(124)
1 — ‘n(%l) ==t (e*ixLT + 1)1
are recognized as the Fermi occupation numbers for an imaginary temperature
,lwemp — ”‘—E/T_ (125)

This is a reflection of the standard connection between periodic and thermal problems
which usually arises the other way around: Thermal Green’s functions are analytically
continued time dependent Green’s functions periodic along the imaginary time direc-
tion with period period 7' = —i/T¢p.
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In the static limit, 7' — oo, the ¢¢ in the energies enforces n(x') — 1 such that

iGy™ + Kev — ZIGN = X £(0) () O (126)

#t <0

where the sum runs over all states below the Fermi surface which are all occupied
states. The off diagonal part of (121), in the two by two scheme, becomes

Oap = Z.’O Xetdhy (127)
ab <<
while the diagonal piece gives
Aup = *Zozquf{i- (128)
x! <

If this is non-zero, the system contains a condensate of bound states between two
particles which are referred to as Cooper pairs.

Equations (113), (127), (128) are the well-known time-dependent Hartree-Fock-Bogol-
jubov equations: For some initial trial distributions g, 4, the wave functions y are
found by solving (113). Then improved distributions g, 4, are recovered from (127) and
(128) and the process is iterated.

For systems with large amplitude collective motion, equation (126) remains valid ap-
proximately if the motion is very slow as compared to the initial orbital time. This
is called the adiabatic limit. The quality of this approximation can be estimated as
follows: We expand, for large 7'.

n(xt) — 1 — gilxi+ia)l 4.
(129)
1 — ,n(%l) — e'i(uf+‘is)T _|_ .

such that the first correction to (123) becomes

— 3 BT (1) e O — Crl(y* ')
#t <0

This has to be much smaller than (123) in order that the adiabatic limit is acceptable.
Since for large 7T, ¢ +#T jg an oscillating function in »!, the sum has appreciable con-
tributions only from a neighborhood of the Fermi surface. The clean cut particle occu-
pation in the static solution is smeared out around the chemical potential with a width
of the order of 1/7'. This situation is very similar to the thermal effects except that the
additional piece is oscillatory.
If the motion is not sufficiently slow, the distributions (124) influence strongly the
periodic motion and this is probably of prime importance for the understanding of giant
dipole resonances.

V. Semiclassical Quantization and Tunneling

We now come to an important feature of the effective action: It permits a direct semi-
classical quantization of the periodic orbits obtained from the TDHF equations. For
this we remember the basic result which is obtained in path integral discussions of this
problem: The trace of the time evolution operator

tr U(T) = tr (e tHTIk)

contains the information on the complete energy spectrum, bound as well as continuous,
since its Fourier transform reads

QE) = f % el tr (U(T))
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has the spectral decomposition

)

W8 =2 g

In semiclassical treatments the same object is obtained in the following form [4, 5]

W(EY = . . OW(E) ewE
AB) = —g— LI = = T wen (130)

where W(E) is the Legendre transform of the action of the orbits of fundamental
period 7T,

A(TY = A [classical solutions of period T,
which is related to A(7") by
W(E=AT) — A{TYT

with the energy variable £ being defined as
E = —A4(T).

From this we see that the derivative ¢ W (I)/2/ in (130) coincides with the period of the
orbit of energy £

oW (E)
By

=1T.

The factors n in the expansion of (130) have their origin in multiple repetitions of the
same classical orbit of energy &.
The semiclassical quantization condition is obtained from (130) by locating the poles
£, in the energy plane [4, 5]

W(E,) = 2ank (131)

close to which G() has indeed the form

: 7
G(E) ~ T
But the effective action of a periodic orbit differs from 4(7T) only by terms of order 4.

Therefore, we obtain the condition that the Legendre transform ITG!| for periodic
orbits has to satisfy this condition. Explicitly, if

IY(T) = F[G] ‘Orhitofperiodi"
then
W(E) = I(T) — I'"(T) T
with
E = —I"(T)

has to satisfy approximately the condition (131). The corrections are of order 4 but
these were supposed to be small, otherwise we could not have used the loop expansion
of I'l@] for the calculation of the orbit in the first place. [9]

Actually, there are subtleties when it comes to realistic calculations since it has to be
decided whether the orbits have or do not have turning points in which case there is
a sign change in front of exp (¢W(£)/k) in the denominator in (130) and the condition
(131) must be solved with half-integer values of =.
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Certainly, this method supplies only the principal quantum number for the periodic
orbit. The resolution of the remaining degeneracies requires the study of fluctuations
orthogonal to the periodic solution and their quantization. We shall come back to this
problem later.

Related to the issue of quantization is the direct access given by the effective action
to tunneling amplitudes [9]. It is well-known from semiclassical approximations to
path integrals that solutions of the classical equations of motion along the imaginary
time axis are capable of connecting different degenerate minima of the potential [6].
The exponential of the classical action of this path determines the level splitting caused
by the tunneling effect. Similarly, if one of the niinima lies lower than the other, and
the system is caught in the higher one, there is a solution for imaginary time which
is the analogue of the critical bubble in the boiling of an overheated liquid [6]: It
starts out at the higher minimum, ruans uphill of the potential barrier (due to the imagi-
nary time) approaching the othor minimum, but with its energy being insuffiecient to
arrive there it returns to where it came from. The classical action of this solution differs
from that of the static solution by an imaginary amount, say

tA [bubble solution] — 4 [static solution] = —F,,.
Then the decay rate of the metastable state is to semiclassical approximation

rate — F,-, L[ det z(}'*l (static soluti(?n) 1/2 o Fulh (132)
2nih 2 | |det 1@ (bubble solution);

The exponential e F+/* ig the probability of a critical bubble appearing. The rate factor
in front is called the frequency of attempt and has its origin in the quadratic fluctuation
determinant

det 1G1 (static solution) \/2
det ¢G~! (bubble solution)

when comparing the bubble solution with the static one in the metastable state. The
determinant consists of the product of eigenvalues »!. Since the bubble solution breaks
translational invariance in time, its quadratic fluctuations must have a zero frequency
mode which correspond to the translations of the “bubble’ as a whole along the time
axis. Its contribution to the determinant needs a careful treatment and one finds that
its square vanishes inversely proportional to the total time 7' under consideration [61],
namely

1 _ 1 l/ FaA
J“zero frequency” 2ih

This is the reason why we have removed this mode from the product of all the others
in det ¢@~1 (bubble solution), denoted this process by a prime, and written down the
zero frequency contribution separately. Division by 7" gives the rate.

There is another subtlety in equ. (132) which is the factor 1/2 as well as the absolute
bars around det %G~ (bubble solution). They have the following explanation: The sct of
eigenvalues has one negative member which is the one responsible for the decay of
the metastable state. It signalizes the fact that the bubble is a saddle point in the
functional space with one direction along which the system can slide down into a more
stable configuration. The opposite direction does not lead to a decay but to a dis-

1) More intuitively, define w == 27/T and L{w) = Z(T)/T as an effective Lagrangian of the vrbit.
Then £ = (¢L/éw) »» — L is the Legendre transform in analogy with H = “p-¢”" — L and the
guantization condition (131) is 0L/0w = “p” = nf just as for cyclic coordinates.
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appearing of the bubble in favor of a return to the initial metastable state. The factor
1/2 accounts for the selection among these two of the direction of decay. The point
is now that the effective action supplies correctly up to %2 the rate formula

11
rate = 5 7 eXP (¢{{" [bubble solution] — I' [static solution]}) (133)
if we only keep in mind that the trace log term in I" has to be treated with care as
far as the zero and the negative frequency modes are concerned.

VI. Effective Action for Two- and Four-Particle Correlations

After these preparations, we are now ready to embarque on a further important im-
provement of the non-perturbative result of the last section. We have seen that the
Legendre transform of the generating functional W with respect to the two-particle
source K immediately furnishes a resummation of infinitely many diagrams which lead
to the self-consistent density and pair correlations of the Hartree-Fock-Bogoljubov
equations and specify successive corrections. It is now crucial to realize that by in-
cluding more and more terms in the self-energy X[(], the improvements remain within
the same class of resummed diagrams. There is an important set of phenomena which
can never be explained even by taking a large number of corrections I'™[(] into account,
as long as this is finite: It is associated with the condensation, in the ground state,
of clusters of more than two particles. Since the formation of Cooper pairs was in-
corporated by the Legendre transformation with respect to the two-particle source A
it is suggestive to try and continue the procedure to sources of four and more particles
and expect thercby the non-perturbative description of larger subclusters. In nuclear
physics, alpha particles play a rather special role due to their great stability in a tight
bound state. Therefore one expects a strong enhancement of four nucleon correlation
functions

GO xy -+ 1y) = <T(‘P(ﬁ71) ‘-P(*h)))
also inside larger nuclei.
We are thus led to search for an effective action in which this Green’s function appears
as a functional variable such that it can be considered explicitly in the extremization
process [10].
Actually, the four-point function (132) itself is not the best variable to measure such
correlations. First of all, it is disconnected such that it is advisable to study only the
proper four-particle information which is contained in its connected part

G, W = W — (GG -+ 2 permutations).

Here @ is the full (connected) two-point function ., as before. Moreover, ¢ has singu-
larities in the energy variables of each external leg of the diagram exactly where G = G®
does. Therefore a smoother function to consider is the amputated connected Green’s
function or four-point vertex function

i o= GUITIGIGIE ) (134)

where the singularities have been removed by contracting each leg with G-, But this
quantity coincides exactly with the scattering matrix ¢ (see (95)) which was introduced
hefore as an intermediate object when solving the integral equation (84) for I"™[G].

Actually, due to our doubled field notation, « contains several informations: One of
them concerns the true four-particle correlation {7yyyyp). Only this is relevant for alpha-
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like particle clusters. Another part deals with the interacting two-particle two-hole
correlation (Tytypyty). Only this part is really what is commonly referred to as a ¢
matrix. A third part is the density-pair correlation (Z'y"yyy). In our doubled field nota-
tion, both appear at the same level and it will not be necessary to distinguish be-
tween them except later. Thus we shall use alternatively the symbol « or ¢ for both
of them.

The variable x can be incorporated into the scheme of Legendre transformations as
follows: Let us add to the action a source for four-particle Green’s functions

1 -
o/source — __ Z_T L(pngg(p (135)

and consider the corresponding partition function
Z[K, L] = WIE.Ii (136)

Here L is a matrix depending on four doubled indices just as the potential. Derivatives
with respect to L obviously generate the Green’s function G®

—_ G'(4) = Z 1K, L} i i Z{K, L}. (137)
Using the vertex function « this amounts to
1
W. K, L] = —Zl-; (—1aGERGE + 3G6) = Z ocG'4 -y G? (138)

where in the second row we have gone to our previous short-hand notation. There is
no new problem in caleulating W[K, L]. All we have to do is replace in all formulas
V by V - L. The same thing holds for the first Legendre transformed effective action
at fixed L.

NG, L1 = WK, L] — tr (WgKT). (139)

Since L appears added to V everywhere it may simply be absorbed into it such that
we may use only the single symbol ¥ and deal directly with W[K, V] and

G, vi= WK, V] — -;- tr (GKT). (140)

With this convention the next Legendre transformation becomes simply

nag, x1=rna, vy — Iyld, V] (141)
where (139) implies that I'y is the same as Wy :

G, v} = (W'K — = G) Ky + WylK, V] = WK, V]= —ocG4 — = GZ. (142)
Therefore the Legendre transformation (141) may be written explicitly as as
G, ) =1aq, vy — — (xG“‘T + % Va:. (143)
It is obvious that only the interacting part is affected such that we may write

I6, x] = T'O[G] + NG, «] = M% trlog G- -+ —;- tr (iG, 1G) + I'[6, x| (144)
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with
. . ) 1
'@, o] = Mw@] — % R (145)

The new functional I, «] has again the typical property of an effective action. If
differentiated with respect to G' and « it yields

1 1 1.
FG[G, oc] == _EK“—(;-ZOCG3‘[7+ I -VG (146)
NG, ] = —% e (147)

where the second equation involves only the interacting part of I':
i@, «] = 4:;;' Qs (148)

while the first may be written in the form

iut A :i —l%i , —1 _ﬁ__‘l__ 3 _l
Iy G, & 5 G 3 Gyt + K) 8 @V + 1 VG (149)

The physical situation is given by equating K with the chemical potential K — K¢-P-
and setting the variable V equal to the physical potential V.

Notice that similar to the previous case in the presence of a chemical potential, ITG, «]

is not truely extremal. But this can again be adjusted by a simple redefinition analogous
to (69). Obviously

1 ) 1
Ise|q, x| = NG, x] + 5 tr (GKc.p.’F) + % aGAY — 3 Ve (150)

is extremal for physical G, a configurations. Again, because of simplicity, we shall
keep working with (143) having (150) in mind when it comes to really knowing the
action itself.

Let us now calculate the lowest contributions to I''"[@, x]. Forming the derivative
with respect to 17 we determine

e, V] = é— G* + Q% Vet + % V268 — 4 716 V3G (151)
which is equal to
el
by definition. From this we find
&G, V] =V — i;—inGz — %iV"Gﬁ 4 e (152)

which agrees with the previous solution for the t matrix (remember x = ) as shown in

Fig. 6 where the proper index contractions arevisible. The relation can be inverted
with the result [ /0]
3

VG, o] = & + % 006 — a3 (153)
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The last term has two possible index contractions and we have to resort to the graphical
method to find out the different contributions. We write the last term in (153) as

with @ 4- b = 1 where @ and b distinguish the different contractions and reinsert (152)
into (153) to find out where cancellation takes place. This is shown in Fig. 7. The
resultisa = 1, b = 0.

We can now determine I''"t[7, x]. For this it is not necessary to use the defining equa-
tion (145). The reason is that we already know V[@, «] from inverting (152). But then
we may simply insert (153) into (148) and integrate in x to find

) 1
I'Wint[G’ CX] ___i “204 _+_ __“3G6 v+_“

¢ s ... 154
18 13 g6 X (154)

Q
)
=

x
N|=
/
D

X = a — G

_% (m:+2perm.)— ()(Q +5 perm.)
.,% a (>®<+2 perm.)- g ()(i +5 perm.)

+3 (>CD<+2perm.)+ 3 (><< +5 perm.)

Fig. 7. The equation «[G, V] and its graphical inversion to find V@&, «]. The last term in V{#, «] may have two diiferent
contractions which are distingnished by ¢ and 4. Inserting «[&, V] into V[@, «] we cbtain an identity vV = x
for a == 1,b=0

o=
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Graphically, we simply have to connect, in the expansion for V[@, «] in Fig. 8, the
four free ends and divide each term by the order of the graph. We see that, contrary
to ', V], the last term has only one way of contracting the indices corresponding
to the first graph for I'® in Fig. 4.

If we want to know the effective action to all orders we have to resort again to an
integral equation. For this we consider the derivative

. ‘ : i
Ig[@, ] = TG, V] + (-% G+ — G) 14

(155)

+ [rviut[a, V] + ( o G + — 2)} Ve

[+9

XA 303 YOO
O

1 -
L -3 s O
— = G=i[iG] KX ]

X =V

XX =q

Fig. 8. The extremality condition following from the new effective action I'[@, #]. The second is an equation of the gap
type which leads to non-trivial solutions for the self-energy, the first is an analogous self-consistency condition
for the vertex function such that there may be spontaneous generation of coupling

and observe that the last term in brackets vanishes due to (142). Therefore

Ie[@, &] = Ig™@, V] + (N% x@ - ..i.. G) V. (156)

Now we insert (86) and have the simple formula
TAin[@E, a] = __17’_2 V3 (16'7)

|

If we differentiate I';'"| &, x] once more we obtain

) ] 3 _ | 7
G, o] = TEG, V] + = a6« —) V 4 — (g
4 41 v

3 Vela- (158)

The right hand side can be expwssed in terms of « and G: Inverting (88) we find
TG, V] as a functional of ~ == ¢

. 1 ; -1
Iwmtl(‘f ] J e __éog, (l — % GGD{.) . (159)

Further we use (147) to derive

1
[nut (

aXx

£ 4G (160)

N T
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and
Viela = — 41 sG-4Ii3t — 4G711,inty (161)
such that

7
4
4!Goc(;

Vol = LAY (000 — 4G11, 10ty (162)
v
With these relations we solve (157) for V as

. 1 ) 1 : . .
V = 4(1 — 2i@x)1 {F(‘;‘(‘}[Goc] -+ ik (I — -;- G2o¢) — iyt 40"1]}'“)2}.
(163)
This is used in (157) to obtain the recursion relation
i

T @, 616 = —

a1 — 2iG2x) 1

. 1 ' S .
X {P;;gt[a, ]+ ( 1— —;- Gza) — riveipine 40*111‘“1&)2}.
(164)

We may bring this to a somewhat more managable form by observing that (157) and
(147) together imply
2 MG, x] 6 = "G, x] G (165)

which actually amounts to the trivial statement that I''"[(}, x] is a pure function of
xG?. But then we have

TG, o] G2 = 40y - 20, intx (166)
- it — 4Q vt = (Mot [ i (167)
and (164) becomes
intf¢y — 7i 1ALt _i 2 o ___i_ 2 o
Fun{G, o] x = 24ocG(1 3%) -+
2 . 0 -1 , X
-+ 5 P 1 — T xG?) M ine2 (168)

This integral equation may be used to verify the first three terms (154) and to go
beyond, up to any further approximation.
The general I'"[(, x] has the form

G, x] =1 3} (e a, (169)
n=1
and we may multiply (168} by I':** to derive the recursion relation for the coefficients a,

5 (:@) (1 + 2) dpealn — m 4 2) (1 — m + 1) @y_re
m—0o

n—1 T
— i (n 1) (m + 2) apa(nn — m + 1) (n — m) ay_p,

3 m=-0 m
2 n--1 n — 1
-5 ( ) (m + ) (B — m + 2) @y_jpeo
3 m—o T
1 i) n
— _%_ (m) 2"m—3(n —m + 2) (n —m + 1) ay_ppsz- (17())
D m—=0

Inserting a, = 1/48 we find again a3 = 1/48, a, = 1/(8 - 16), etc.
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Notice that the algebra can be somewhat simplified by using the property of I''"[G]
and I'™[@, x] being functions, say Flz], FLT[£], of the reduced arguments x = VG2,
§ = «G? only. Then the Legendre transform becomes shortly

PUE] = Flx] — Fla] @ (171)
with
) 1
_ —_— - —. 1 2
Fo=g5r6—3 (172)
Now, since
Gl iG] = 22 F, (173)
GUTING] = 42°F ,, + 20F, (174)
we may rewrite (159) as
;o1
422F,, + 22F, — —71»5(1 *%5) . (175)

Inserting (172) brings this to the form

¢\t 2 U

— 1 = Bl TS| = 1
€] [5( 5 E) + 3 s ] [1 3 EJ (176)
in which we recognize directly (168) upon using the equation of motion (147):
¢
LTfF) — % ..
Fbm () = — o alé].

Let us end this section by writing down the grand canonical effective action

ree@, «] — ~%- trlog G-1 -+ % tr [(iGy~1 4 Ke0) @]
1 i 1 ;
. 2 - A2y (14 306 4078 1
g VO 4 g5 (BxV — &%) G+ o %60 o aiG® (177

which has the property that its equations of motion follow from true extremization
rather than equations (146), (147). The expansion of the interacting part of I'#-¢[G, «]

is shown in Fig. 9.
gC. nt 1 i X 1 ~
el OO0 (Q-2 O
v 1o % 04

i +
+4l8@+§'1—6 @ t
Fig.9

Fig. 9. The graphical expansion for the interacting part of the grand-canonical effective action I'e--[@, &] from which
physical propagators and vertex function follow by extremization
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VII. Condensation of Alpha-like Clusters

What have we gained from this effective action I 0, x]? Consider the extremality con-
ditions (146), (147). If we use the expansion for /" only up to I'®

) 1

ra, x] = —% tr log G1 + — tr 4Gy Q) — — o¢2Gz -+ f~1— &8 |- ST x3G8 4 .

(178)
the equations of motion for & and « become
T =___?:_ -1 _Z_ ~1_i23___ o 3 V
Il «] 5 G+ 2G0 12(x G 5 K + ( ocG' 4+ — G) (179)
= 1y

LG, «] = o o 24 Vae. (180)

In analogy with (105), (106), the first equation, (179), can be cast in the form

G = i[i1Gyt 4+ Ker. — 271 (181)
where the self energy is
2lG, «] = —;— V@ — —g— VGPx — 2T Q, «]. (182)

Fortunately, this expression simplifies considerably by making use of (165) together
with the other equation of motion (180) which gives

— 2 (MG, o] = —4I.G x = % VG (183)
such that
. .
Z[6 =5 VG - -Z)- TG (184)

and the exact self-consistent time dependent Hartree-Fock-Bogoljubov equation reads

-1

G =i [iGo“l 4 Kpee % VG + VG*‘«] (185)

which has to be solved together with [70]

V = 240, | (186)
3., 3 ..

It can be checked that if we invert (186) to find a power series for x (which is of course
(152)) and insert this into (185) this equation coincides with (105), (106).

The new and important feature of equations (186), (187) lies in the possibility of having
solutions for (186) which are not related to ¥ in a perturbative way. The potential ¥ has
matrix elements only in the two-particle two-hole part. But x may be non-zero also in
the four-particle and four-hole componentes. In fact, this necessarily happens if there
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is pair formaton. For that case there is a second order radiative correction [v/2 wrpyTy]?
which is of the type ¢t 4 p' %4 Such effectsare all accounted for by equ. (186) which may
be considered as an equation of the gap type for the vertex function « and there are se-
veral analogies:

Just as the correlation function {(ypy) 5= 0 can be interpreted as a signal for the conden-
sation of Cooper pairs, non-zero four-particle matrix elements in « indicate the presence
of alpha-like clusters in the condensate.

Just as equ. (185) can give rise to a spontaneous generation of mass from radiative
corrections, equ. {186) can do so for coupling.

Certainly, non-perturbative effects are also present in the two-particle two-hole channels
but their consequences are less dramatic.

This mechanism can best be illustrated via an exactly soluble model [17]. Consider N
degenerate relativistic fermion fields in D = 2 - ¢ dimensions with a Lagrangian

L(@) = Pul@) § 2u(0) + g% Tale) OFT(@) 97 (@) Opae) (188)

where C is the matrix of charge conjugation which satisfies

Cyr(C~l = —pel, (189)
In two dimensions we make take
01 0 —1
0 — 1 — 152 — ol — -1 —. __OT,
P — o (1 0), y io (1 0)’ C = — (O7) oT.  (190)

In D = 2 + & dimensions we employ anticommutation rules
fres vh = 297 tr (yryr) = 2P13ge. (191)

The label x = 1, ..., N denotes the degeneracy of each energy level. In the limit N — oo,
the model becomes exactly soluble. It may be considered as an idealization of a nucleus
with a highly degenerate outer and a stable inner shell. A little preparation is in order to
bring (188) into a form in which we can directly apply our results. We introduce the
doubled field

Pa
Yo — Pu’a — (O@aT) (192)

where the first index «’ distinguishes the two, upper and lower, entries. When there are
different index pairs (x;’, xy), {~', x3) we shall sometimes write (1, &), (2, a,). With this
notation, the free action can be written in the doubled form

1 .
A = "'“2- (paT?’(}(;;tIi)q)b (193)

¢ 0 0 &
WA L SR y
K Toub - (O O)a’,"j' (’l: v O ) ()aﬁ- (194)

Its inverse is the free propagator of the ¢ field

| | d’p . i {0 p\/CT O \
. — — —iple—y) )
@alt) Pu(x) = Gola, ?/)ab- f @y e [( 0) ( o O—l)Jarﬂf deg-  (195)

with

3 Zeitschrift ,,Fortschritte der Physik®, Nd. 30, Heit 7
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It is useful to introduce the matrices

¢ o : 00
[ — 7l - (£ o U d 1
€ (0 0), A (0 C’)’ € =% + 6 (196)
which are antisymmetric
€' = € (197)
and whose square satisfies
10
U2 —
(o )
00
a2 198
w = (1) (198)
10
e
(o)
Then we may write
o 0 e\ ‘
Goar = [(g (,2:@_ 0 )J“,ﬂ’ . (199)
and the Green’s function in momentum space reads
v (O @ a
= — A L. 200

Consider now the interaction. Using the doubled fields (192) it may be written in the
form
go/ N

Fint ...
£ B

(€15%%s + €1Eh) bue,dae, + 2 permutations) ¢u,@e.pa,ga,-  (201)
Taking advantage of the antisymmetry we may write this in analogy with (13) as

. 1
it = >7me VA1234S“10‘20¢:;’-“l(palaz(lnﬂ‘: (202)

where we have split the interaction into a number
V = —36g, (203)

and collected all its matrix properties in the symmetric and antisymmetric tensors

1 , .
‘qﬁlﬁzﬁgag = 37\7 (dxlazﬁa;a.; + Oala;bagom + ()ala;;()azai)
1 (204)
Ayaza = G {((5}?2%/:654 + (5(132(534) + (14) (23) — (13) (24)}.
The symmetric tensor satisfies the following obvious identities
1
Aqaﬁ},y — STV (N + 2) ()ab (205)
1 .
Saaﬁ;ﬁ' - (N + 2) (206)

3
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N 8
Saﬁyasa'ﬁ’yé'symmetrized == Saﬁa‘ﬁ’ ON (207)
N+ 2
SagysSarayw = —g77— Oaa’- (208)
The external source K may now be introduced as follows
1 . 1 , CiL prc? Y
= wTKe — — (wT. 50T _ . 209
5 ¢ Ky =5 W7 )(Oﬂ o )(C’W) (209)
Thus the four different blocks of K are related to each other by
C 1Ky = ClyoKipe (210)
,Kr)] _— "—KT2-

If we now form the generating functional W(K) it is obvious that this genera] property
will be shared also by the full Green’s function

Gop = —2W,, (211)

i.e., the Green’s function will have the form

B P =\ CcA  oCT
G—(T(Ow)Xy)ipO >#(—CQT o (212)
where o(x, ) denotes the Green’s function (T'y(x) ¥(y)) and A{(x, ) the anomalous part
{Typ(x) p(y)). In order to see that the N — oo limit leads to a soluble problem it is useful
to realize that due to the factored nature of free propagator and interaction, each Feyn-
man diagram 1nvo]v1ng G, and V decomposes into a product in which one factor involves
the 4 % 4 doubled spinor space ¢(x) while the other concerns only the trivial ¥ dimen-

sional space of degeneracy labels. For this reason, as W(K) is expanded in powers of K,
the exact Green’s function Gy, = —2i Wy _, appears with factor 4., 1.e.

Gy —> Glarprdop. (213)

But then we can conclude that the diagrams which make up the effective action 1G]
factorize just in the same way as those in W[K]: For the free effective action (72) this is
trivial and N appears as an overall factor such that per field component, there is the
finite limit:

1 1 . 1 .
5od I'®[g] = -y tr log :G1 — 5 tr (iGy 1G) + const. (214)

where & and iG,"! are the 4 X 4 parts of the propagators. Consider now the interacting
part per field component 1/N I''tt[(7]. The lowest order correction factorizes as

(I R |
v 5 V06~ — 5 VAGGS.u/ N (215)

and we see from {206) that the second factor involving the degeneracy labels has a finite
limit for N —

1

The important point to realize now is that all higher terms on 1/N I"*[G/] are supressed
by at least a factor 1/N with respect to this. Looking, for example, at the next correction

3%
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(98), 1/N /48 VG2, we see that it is accompanied by a tensor contraction

1
S pysSuppal N — 3N (217)

It is easy to convince ourselves that all other two particle irreducible diagrams are sup-
pressed at least such a factor. Notice that in contradistinction to this, the expansion for
W[K] contains infinitely many more terms to leading order in N: All two-particle re-
ducible diagrams (see Fig. 2) which consist of trees of bubbles appear at the same level.
The Legendre transformation assembles all these in one expression —1/8V@? since the
lines involve the full propagator & which includes all insertions of bubbles into bubble.
Thus we remain with the limiting action per field component

1

JR— . = — —tr -1 G, 1 _I = -4 -y . 2

The equilibrium configuration of @ follows from the extremum
-1
G =1 [iG’O“l(;r, y) + '%) olx — y) AYG(x, x)} . (219)

Only the first of the three terms in the antisymmetric matrix 4 contributes, because of
the antisymmetry of (g (2, ) and we have indicated this by writing a superscript, A1.
Equ. (219) may be put into the form of a gap equation for the seli-energy

2w, y) = —d(x — ¥) % AG g (x, x). (220)
This equation allows for two kinds of constant solutions for X' == 2°, Since 2 must have
the same symmetry as all 2 X 2 matrices in this doubled notation, we may write accord-
ing to (209), (210), (212)
cA  oTCT
20— b . ]
(ﬁog cav ) (22D

But looking at (220) we see that the antisymmetric matrix A permits only the A® entries
to be present. Therefore we must solve

cAv 0 p 1 A N[O 0
_ 1
(O CAO) — 3901‘1 (25!)]) pz + Az (p /ln_g_) (0 0_1) (222)

where we have set M = V|A°|2._
The integral can be performed with the result

dPp 1 piz P .
—— - — D¢ € 2
@y 5 T I 2 5 b. M (223)
where
b, = 2 ! I D/2 (224)
*TT D (2m)piz T )

i3 a number which diverges as the dimension D = 2 + ¢ approaches 2

1
by~ ——. (225)

aTe
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The off diagonal entries in (222) vanish upon integration and we have

A% 0 D A% 0
(O AO) = 9’0 E bEME (0 AO)- (226)

This has either the trivial solution A° = 0 (normal phase) or A° 4= 0 which may be
chosen to be real (condensed phase). In the latter case, M = ]/lA°|2 satisfies

1 = gob. g M. (227)

We may calculate the effective action in the neighborhood of these two solations. In-
serting into (218) the Green’s function

d’p —A47 p)_l ¢1 0
, — ip{z—1) 22
wen= [ (T )6 ) e
in which A is an arbitrary constant we find the effective potential
1 1 _ 3 alp —A* P 1
— = —— I[N 1 . = — | = = |4I?.
~ Vi(A) i TN}/ (volume - time) 3 )P o ( » A) -} e |4|
(229)

The matrix in the logarithm has the eigenvalues ﬁ:]/pz + 4|2, each one appearing twice,
in D dimensions 2P/2 times, such that

1 T 1 dPp 1 {412
7 T = g g 2 f Gy 08 @° -+ 141) mg( b iAIZ“)- (230)

For ¢ — 0, b, diverges and the expression may be made finite by introducing a renorma-
lized coupling g(u), which depends on some arbitrary mass scale u, as

1 1
gor®  g(u) + (231)

Then the potential reads
1 e lar 141\

and becomes in the limit ¢ — 0

1 1 12 1
7 Ve = g (55 4 L i tog 14i/u). (233)

The extremum of V gives again /1 = A° =0 or 4 = A° = M == 0 of (227).
But now we can see that the extremum at A% = 0 is unstable for

go <0 or g > —b,1=g* (234)
while A% &= 0 is unstable for

go >0 or g< —b !=g*. (235)

Thus we may continue the discussion for g, > 0 in the normal and for g, << 0 in the
condensed phase. The condensed phase has A° = (ypy) 4= 0. Such a non-vanishing ex-
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pectation of a composite two-particle operator is interpreted as a signal for the presence
of a condensate of pairsg of particles in the ground state. The model provides a simple
illustration for the fact.that the value of A° == 0 arises in a completely nonperturbative
fashion. Inverting (227) we see

|4% = M = (gob,D/f2) 1 (236)

which cannot be expanded in a power series around g, = 0. In terms of the renormalized
coupling, the gap equation becomes

1 D (M)
— = =) -1 237
g [2(.“) ] (237)

which has the finite limit for ¢ — 0

1 1 M 1
—_ — —(log — — = 238
g = ( R 2) (239)
and the solution
M = pe-Wztaio, (239)

It must be said that this soluble model is actually an example for the power of the collec-
tive quantum field approach and the discussion in terms of effective actions is somewhat
more clumbsy than the direct path integral approach. Let us see, for comparison, how
simple the same result would have been obtained in that approach. The partition func-

tion would read
ZIK] = f DepelilDsf +oTER) (240)

with the'fluctuati.ng action
1 0 p— — L
A = fdm (—2— eTiGy lp + 297‘;7 wC’y)T'q)[‘C’q)). (241)

The quadratic piece can be eliminated via a fluctuating pair field with an auxiliary tri-
vial partition function
Zux = [ DADGN e~ i 12001457001 — const. (242)

which can be multiplied into (240) without changing the functional behaviour of Z[K'|.
Therefore, we can write

; N
ZIK] = f@rp@@@d@ﬁ* exp {%fdx(pT@'GZ}(tp — gf(lx 1A\2}. (243)
0
where _
. ' A+ 0 —0AY  Cp
—1 . -1 o _
iekin) — i)~ ¢ () )K= (To, _gh)ex e

is the Green’s function of the fermions in the presence of the sources A and K. The
fermions can be integrated out, leading to the new representation of Z[K'}:

ZIK] = [ GAZA*eiA14.5) (245)

in which all quantum fluctuations are accounted for by the collective field 4 with the
action

A4, K] = N [___z_ tr log 1G'7% — —l—quc lAPJ . (246)
2 ' 240
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We now see why great simplification occurs in the limit N — oc: The exponential os-
cillates infinitely rapidly for the slightest fluctuations. As a consequence, these are
frozen, only the extremum of A[/1] can contribute, and we have the limiting result

-+ exp {?:Jﬂ[él, K]ldzdox} (247)

ZIK]

N—oc

where A, is the functional of K which satisfies i.e.

Aexlar) = L tr (Gs,ox(a, @) (248)

In the absence of an external source K = 0 this is precisely the gap equation (222). The
expression (247) also determines the generating functional W[K]

WIK] = A[de[K], K] (249)
fromi which we can evaluate the full Green’s functions
G = ~2'£WK —_ Gdcx,K (250)
which can be inverted to determine
. . Al O
K=:G 1 G, 1+ & (0 : Aex). : (251)

We may therefore calculate the Legendre transform directly from (249):

1 1 1
_ 1 a1 Lo L , mo)_i 1
= g trlog G — o At — 5 tr(G%” (0 a)) — g e @)

which reduces to (2.18) by inserting (248), (250).
We shall now use this model to illustrate the presence of four-particle clusters in the
condensate. For this, we take equ. (249) and calculate the vertex function. Writing K in
the 2 2 form specified in (209) and taking it to be diagonal in space, time, and de-
generacy labels

Kup = 8z — y) Ku (@) 0up (253)

we may differentiate W[K] with respect to 4, 2 and obtain, by definition, the pair ex-

pectations
(Tp.T(x) Cyy(x)) = 2W,; (254)

(TF.(x) OFT (@) = 2W ;. (255)

Differentiating once more gives the four-point functions (compare (40b))
(Tp,7(@) Opu() v () Opply)) = —4i Wy + iW,2), (256)
(Typ," () Opa(@) ) OF(y)) = —4i( Wi + iW.W5). (257)

In order to evaluate the derivatives on the right hand sides, we use (249), thereby
watching out that there are two sources for the dependence of oé[Aex[K ], K ] on A, one
from the explicit source and one from the fact that 4 depends on K via (248): Thus

G = 2 A + A + A)| g don - (258)
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In particular for the source 4:
Wi = [Asdi + AjAs + AD] 4= fex- (259)
Therefore, we have
Wi = (Asldiy + Az45
+ Ay + Az iy + Ajahidy + Az74A,
+ Ay + Az s + Al s (260)
with the first terms vanishing due to the extremality property of A.,:

ANAA K], K| 20 = 0. (261)

This can be used to simplify (260) further since it implies
(Aasdg + Aug) ten = 0 (262)

where, for brevity, we have considered /1 — (4, A) as a two componente vector. In this
notation we may write (260) as

Wiz = Aaahi Ay + 24,44 + Au (263)
and evaluate it, using (262), as
Wu = —042‘.1044_410441 + A (264)

The last term isa disconnected contribution just as the terms W;2, W,; Wy in (256), (257).
Therefore, we obtain the result that the connected parts of the four-point functions are

(Tl Cp(x) 9T (y) Cp(y)) = — AssAziA s (265)
(Tl Cplx) Fy) CPT(y)) = —AadiiAaz. (266)

Now we observe the derivatives
A; = *% tr ("G) (267)

04;_/_1 =i -;— tr (%“G%;"G)
(268)

1
0425 = 1 E— tr (%EG%“G)

to be simply the Green’s functions corresponding to the external legs such that we re-
main with vertex functions of the 94, §, v?%* type

~i(“"" "‘w“’ﬁz) e (A gg) L. (269)

Kyt Kt

Let us calculate this matrix at 4 == A% Looking back at (246) we see that

1 »
1 e | avk (O e L T B k—g)
wea= (o)) il (T S (0, e
(270)
>< : ! (271)

k2 — |4 (b —q)* — |A012'
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This can be written as

1 1
1

with the following integrals

_ dPk g
A =1 trf(2rz)D Kk — g) (2 — M2 (k — q)F — M?
" )

Y 20 . :
== - 21-3f ByP [(k(k — q) + M2) — M2 I % g (274)

and
dPl z )

(2a)? (k2 — M?) (k — q)2 — M2’ (275)

B = iM22D/2

Both can be Wick rotated to Euclidean space and evaluated with Feynman’s methods.
The second integral gives directly

D &

where we have abbreviated z = ¢;% M2 and used the subscript £ to denote Euclidean
scalar products ¢z2 = @2 — g, > 0. The symbol J; stands for

1
Jo(z) = [z a(l — 2) + 1]P22, (277)
of

The first integration of 4 needs a little more work. Taking the spinor trace, it becomes

in Euclidean space
D o 2
gznlzf d kD . kik —q)g + M (278)
(27 (kg + M?) ((k — q)5* + M?)

which leads to

D ] 75 (D/2)-1
A:~§(D1)b5Mfdx[M2w(1—w)+1] — B
D D
= —3 (D— 1)b.M: [(D — 1) Jy(z) — (E — 1) Jz(z)] . (279)
In analogy with (277), we have introduced
1
Ji@) = [ [z- a1 — x) + 1)@, (280)
0
Using the gap equation (227), we may also write
1 D £ .
— 4+ A=—bM|1— (14 ¢&)J,(z) + = J2(2)]. (281)
o 2 2
We now invert the matrix
Aza Aya
(0455 vﬂu—) (282)
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and find for the vertex functions
1

%
0
Kyige == (1 P . (283)
)
9o
B
gt = — . : (284)
R
o

Inserting (276), (281) this becomes more explicitly
£
T —(1+ &) Jyz) + E‘Jz(z)

Myrpe = (285)
¥*7 _gbsMe(l — (L4 &) J1(2)) (1 — (1 + &) J1(2) + eJ,(2))
. 5 J2(2)
Xyt = . (286)
Do (1= 0+ Li@) (1 (14 ) Ji(2) + #Ja(2)

2

The denominators display a pole at z = 0 since there J,(0) = J,(0). This is, of course, a
consequence of the Nambu-Goldstone theorem, since the ground state expectation
4 = A°® breaks the symmetry of the Lagrangian (188) under constant gauge transfor-
mations

p — ey, (287)

The formulas become particularly simple in the limit ¢ — 0, D = 2 where we can expand

Ji(@) =1+ = JG@) + O) (288)
where J(z) is the integral
1
J(zy = [dklog(z - x(1 — ) + 1). (289)
6
It can be expressed in terms of an angle §
_ artn /=2 2
0 Arthl/z+4 | (290)
as
J(z) = —2 + 26 cth 6. (291)
It turns out that J, is simply related to the same expression
1 272 2 2
Jo(@)po . = — th = z 2). 292
(ps = g Ar ]/z+4 — 6 +2) (202)
Therefore we find
z -+ 2 1
f Fork S — 29
Tote 2 z JkE) -2 (293)
1 1
Kt = —4n (294)

N CEE N
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Again, there is the Nambu-Goldstone pole in the denominators. It should be noted that
in two dimensions this is an artifact of the N — co limit which suppresses fluctuations
of the 4 field. These would wipe out the condensate [12] (just as there is no second order
pion condensate in three dimensions due to fluctuations [13}).

Equs. (283), (284) can be inverted and written in the form

01 B A -1
— — 295
where « is the matrix
x = (“W‘ “'P”?z). (296)
“ﬁ!lpﬂ (Xq;d

KEqu. (295) is this model’s version of the gap-type of equation (187). We observe that the

four-particle elements on the diagonal of g, (i.e. of V) vanish. They would do so

10
to any finite order in perturbation theory. But here, the spontaneous symmetry break-
down does generate four-particle clusters. It is easy to see why this result escapes
perturbative calculations. Inserting for small g

2
— % l1+(2x/9)) (297)

we find the limiting behavior of the vertices at fixed gz?, u?

) —2xlq [ 2 o—2nf
X,4 ~ — 08 +---, EE e O ,6 g 298
QE2/P'" Kty g (9‘ ) ( )

which cannot be expanded in a powers series around g = O.

Notice that the four-particle clusters in this model are a direct consequence of the for-
mation of Cooper pairs.

It should be mentioned that a number of years ago, the idea was very popular that all
strong interactions were self-generated and that no input interaction ¥V was needed at all
to find non-trivial soutions for the scattering matrix of strong interactions (bootstrap)
[Z4]. In nuclear physics, however, the non-perturbative origin of « particle formation is
probably more of the pair induced type described by the model at hand.

VIII. Extension of Landau’s Theory of Fermi Liquids

In order to illustrate the power of the higher effective action we would like to show
that it leads, in a natural way, to an important generalization [73] of Landaw’s theory
of Fermi liquids [76]. Suppose we have obtained a ground state solution &, » to equs.
(185) (187). Let x! be the single particle energies in the self consistent potential (see
(113)). We may then study the dynamics of small oscillations around this solution by
replacing
G — G + 6G
(299)

x ~>ax -+ dx



394 H. KLEINERT

and expanding I'lG + 6@, x + dx] to second order in 6, dx. Using the functional
V[G, x] (see equ. {153)), this expansion can be written in the following compact form

. . .
826, «] — % BEGT X GG — = VT + %(anéGéGV — %aG%G VGaG)
— fg SxGAV b - 1“—2 (BxG3GV — GGV, 0). (300)

This result is exact. For application one may use some truncated form of V[#, x] and
obtain an approximate equation. The index contractions are best recorded graphically
as illustrated in Fig. 10.

If we extremize 621" with respect to 6@, dx we obtain coupled equations of motion for
the oscillations of particle densitypair correlations, and vertex functions.

We now realize that these may be considered as the natural extension of Landau’s
theory of Fermi liquids: Landau considers a translationally invariant ground state in

8’r'le.a]-5866™6"8a

) !’f\\{ﬁ\‘ i ﬁ @
- l+ — -
?\\ /\\ / 8 2 \:::/ -

-~
_— -_ ~ -
~—

H -Vbée-mtifq\gi -é%i )« e
AL - .
%sVaaa- |!+33\}.-O(
S
_3 % _3
S

—G H=a

Fig. 10. The expansion of the higher effective action I'e-¢-[@, x] around the ground state solution up to quadratic order
in density, pair. and vertex oscillations. The first two terms correspond to Landau’s theory of Fermi liquids.
The others render corrections in the form of collision integrals and determine the dynamical properties of vertices
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which the levels %' may be labelled by the single particle momenta p. At very low
temperature, the levels are filled up to some Fermi momentum pp. At that momentum
the group velocity of the particles

v = x(p)/ip {301)
is defined as Fermi-velocity
Vp = |0l jpj=p,- (302)

Landau then assumes the following expansion of the energy of the normal Fermi liquid
according to density oscillations

1
O = }] x(p) onp(x) | 0} p.%" Vp,p0np(®)dnp(2) . (303)

4

Where dn,(x) is the change in the density of particles of momentum p at the place a.
By rewriting this expression as

8l = X #(p) onplar) (304)
p
the quantities
Z(p) = =(p) + Z Vippr0np () (305)
»

may be considered as local energies of the particles in the oscillating density field and
can be used to derive the classical equation of motion for the total density of particles
in phase space

oy

% ﬂp(éﬂ, t) + {n’p: ﬁp} =0 (306)

where
{p, #p} = Vang - Vpitp — Vptip - Vaitp (307)

is the Poisson bracket. Inserting here the decomposition of n,(®, f) into space time
independent Fermi distributions

np? = (eXPVET __ 1)1 (308)
of the ground state and small oscillations
np(E, 1) = np® + dnplx, 1) (309)

and keeping only linear terms in dong{x, ), Landau finds the transport equation

a a 4]
= dnp(@, 1) + 0 - Vadnplw, 1) = Z;‘ 3 Voaw - Vb, 0). (310)

Let us now demonstrate that the same equation is obtained from (300) if we keep
only the first two terms

: 1
S2IE, ~] ~ % OGG 1 X 610G — — VGG, (311)

The first termi can be evaluated by inserting the solution for ¢ for a translationally
invariant system. If we consider a normal liquid such that pair correlations are absent,
we may write the self-consistent solution (118) for a translationally invariant system
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as (p° = ¢) -
G, -+ 312
2(P) B P (312)

where 12 is the (Typ*) matrix element of G. We may then form the loop integral (at
zero temperature)

) g g
el Hal )
P L 1 ! (313)

2

where ¢, is the total and p the relative momentum of the particle-hole pair in the loop.
This may be rewritten as

_ [q"“%(p n g) ﬁﬂ(p_ %)]

de i . ¢

27 g q g Vi
: : e ALAN. = S L £
e -+ x(p+ ) £ z(p+ )

The integrals may be performed with the correct ¢ prescription (levels above the Fermi
energy £ ~ u are slightly below the axis and vice versa) and yield the Fermi distribu-

tions
n(p—f—%)—-n(p—g-). (315)

In the long wavelength limit ¢ — 0, this reduces to

X (314)

on Ox on
Y =_—v-q~ —0- — ). 316
ie pl T i U4 - qd(e — p) (316)
Therefore we find
iGxG = —2 T " (317)

Go—V-q éx’
Taking the inverse of this we may write (311) as

. 1 o on\"? 1

whose extremum corresponds to an equation of motion

on 1
(Go — © - q) aazv-qa—":? V56 (319)

which is precisely the energy-momentum form of (310) with 6Gp(ge, q) being the
Fourier transform of on,(®x, )

0Gp(qo, @) = [ dae’ @t ain (2, t). (320)
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By extending the same consideration to include also the pair correlation parts of G
we may derive the extension of Landau’s theory to superfluid systems. The important
feature of the new expansion (300) is that not only does it provide for more contributions
to 8@, which are commonly referred to as collision integrals and whose inclusion
is standard in this theory; there are also dynamical oscillations of the vertex strengths,
i.e. of the Landau parameters themselves, which are coupled with the original density
and pair modes.

The study of this coupled set of equations promises to render important new insights
into the fundamental excitafions of Fermi liguids.

IX. Treatment of Singular Potentials

There are many physical systems where the potential cannot be considered as weak
but still, the interaction does not really have dramatic effects for sufficiently low
densities. An example is the hard core repulsion between atoms in liquid *He where
the potential is practically infinite for distances smaller than 0.25 nm. In this case
the equation (187) is uscless as it stands since with V also x becomes infinite as long
as the expansion is truncated after a finite number of terms. The standard way to cir-
cumvent this problem is by unitarizing the interaction via rescattering corrections,
which may take place for pairs of particles between further many-body interactions,
i.e. one sums up an infinite number of bubble diagrams. The roughest and simplest
approach might start with the first order expression (74) for /"]

'@l —— Va2 (321)

inserting this into (88) we obtain the approximate « matrix

1
alS — Yo (322)

B
1+ —G*
+5 GV

(BS stands for bubble sum) which may be used in the Hartree-Fock-Bogoljubov equa-
tion (185). Actually, the self-energy can here be simplified a little by writing

1 i
— 3
5 /0t

1
Vs = —— VG — % aBS.Q, (323)

Of course, the summation (322) corresponds to solving the Schrddinger equation for
the hard core potential.

1t must be mentioned that formula (322) violates a general important property of a
namely that of being symmetric in all four external lines. Since the iteration of V
proceeds in a string like fashion, one may wonder how the defining formula (87) manages
to ensure this symmetry even though it also amounts to a string like iteration of s a
with I'i".  being read as a matrix with left indices (12) and right indices (34) whose
topology does not look symmetric. The important difference, however, is that I™"
contains infinitely many higher order terms in ¥ which combine with iterated lower
order terms in such a way that the x matrix is indeed symmetric. This is illustrated
to lower orders in Fig. 11.

A more symmietric but analytically harder to handle approach would consist in summing
an infinite set of graphs in '@, x]. It is easy to convince oneself that the sunflower
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rig-3 00 ds O +ds O
-l [6]- X-%(C@ Cy\)
(8+3X)-#(0KX R %K)

int

i i i 3
t-dlge- S alge) - Fealga) -

.-413’{;-72_—[>O<“<><Q §><>]

_%m+0(v4) + ..

- X_ _12_ (C? +2permut.) -% (g + 2permut.)
- ;_ <X+5permut. )+ = symmetric

Fig. 11. Tllustration of the symmetry of the scattering amplitude up to third order in V. The symmetry is achieved
only due to higher orders contained in I'll! combining with iterated lower orders

A

like diagrams, whose leading examples are the last two graphs shown in Fig. 9, may
be summed up in the form
2

5z (% aaz)" / ” (324)

which can be written as

7 7 1 ¢
N, —_— 2 — 2 o .2())_'11 .
3 trlog(l 2Goc)—|— 4ocG +16a (325)
Now the equ. of motion reads
3. ¢ N7

which is symmetric in all four legs since the infinite string of bubbles occurs in all
three channels. The factor three accounts for the three permutations of the external



Quasictagsicat Approach to Collective Nuclear Phenomena 399

legs. 1f one channel is selected as especially relevant, (326) again reduces to (322)

Vo n -k

; \ -1 5 —1
xG (1 — —;—-Gzoc) No= A (1 — —;—Gza) . (327)

[\gl .

Another example is the plasma in which the bubble sum (322) provides for a screening
of the Coulomb potential of large distances and removes the infrared problem at zero
momentun.,

X. Outlook

We hope to have demonstrated that for the discussions of large amplitude phenomena
the higher effective actions are far better suited than the collective quantum fields
which have recently become fashionable in nuclear phyvsics. These actions possess all
the attractive features of that popular approach, while lacking its disabilities, the most
serious being the failure to cope naturally with exchange forces. Moreover, they permit a
straight-forward description of multiparticle correlations at the same level as pairing.
Therefore they can extend our understanding of nuclear oscillations by a hierarchy
of higher cluster phenomena. The generalization of Landau’s theory of Fermi liquids
was just an example of the many possibilities of applications ahead [77].

The author wishes to thank Dr. Annemarie Kleinert for inspiring remarks and to Prof. W, Theis
for useful comments.
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