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We develop a theory of interacting dislocation lines in analogy with the Ginzburg-
Landau theory of superconductivity. The complex order parameter becomes a disorder
parameter deseribing dislocation lines, the photon field turns into a gauge field of
phonons. Above a certain temperature, the dislocation fields take nonzero expectation
values which limit the phonon propagation to a finite penetration depth. In a cubic
crystal, there are three would-be Nambu-Goldstone modes associated with the phase
oscillations of the fields of the basic dislocation lines for the three space axes. Their
transverse projections are «eaten up» by the gauge field. Their longitudinal part
survives, representing the sound waves in the molten phase (hot sound as the disorder
analogue to zero sound = « ¢ool sound »).

In recent years, local gauge invariance has become a universal building prineciple
of theories of fundamental interactions (!). As gauge fields are coupled to complex
scalar fields y(x) they give rise to a phenomenon called Meissner-Higgs effect: If the
scalar fields form a condensate with d{y(x)> = 9® £ 0, the symmetry w(x)-—
— exp [—dx] w(x) is spontaneously broken and the phase oscillations »%x) =
= exp [— ip(x)]9°® form Nambu-Goldstone bosons (NGBs). The gauge field, however,
absorbs these, becomes massive and loses its long-range propagation. The Ginzburg-
Landau free energy of a type-I1 superconductor provides the best-known example
for this mechanism:

1
(1) flo) = [(V; —ided,) p(x)]* + m¥p(x)]* + glw(x)l‘* +1 (9; 4,(x) — 8; A, (x})%.

At the mean-field level, a phase transition occurs if m?~ (7/T, — 1) becomes negative
(T'< T,) in which case the field ¢(x) of Cooper pairs takes a nonvanishing expectation
value

(2) y(x))> = ¥o(x) = exp[—iy(x)] V— % ,

() C. ITzyrsoN and J.-B. ZUBER: Quantum Iield Theory (New York, N.Y., 1980).
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signalizing the formation of a condensate of Cooper pairs. The phase {x) of the
y%x) field can be absorbed into 4; by a gauge transformation and disappers (¢y =10
gauge »). The photon field receives a mass term

(3) EClY°" A7 = L’ [m?| 47,

which limits the penetration of the magnetic field in the superconductor to a length
scale 1~ l/ejm|. The phenomenon is called Meissner effect, while the absorption of
the NGB was first elucidated field-theoretically by Hices (2).

The Ginzburg-Landau free energy has another property, which, in superconduectors,
is quite unimportant, but which will be essential in our considerations (3). If the fluctua-
tions of the photon field are taken into account, the partition funection becomes

1 _ &%k
= exp [— 7 fd“’w {f‘=°+ Tf 2y 0B (R + e2[wi2)}] :

where y(x) has been made real by a pure gauge transformation and assumed constant.
The fluctuation integral over d*k can be performed and gives, up fo diverging but
trivial renormalizations of mass and interaction strength, — (7T'/6m)e?|w]® such that
the free energy for a constant |y|-field becomes

q T
(5) f=milplr -+ 3yl — — el
JT

Here we observe that the fluctuation correction has the consequence that, instead of
the original second-order transition at m2? = 0, there is now a first-order transition
at a precocious value (%)

1 7
2 (67)?

(6) Moo = etlg > 0.

In order to believe this result, we have to make sure that the assumption 9 = const
is self-consistent. For this we compare m],,, with the interval of large fluctuations of
the y-field estimated by the Landau criterion |m®|< mj = 4T%¢* which specifies the
point where condensation energy m4/2g times the coherence volume (m?) ™% equals the
thermal energy T. If we denote K =+/g/e?, we see mp = 8(6x)>K°*m2,.. Now,
type-I1 superconductors have K > 1/4/2 such that fluctuations are expected to inva-
lidate the argument. In fact, the transition is always observed to be of second order.
If, however, a superconductor is deeply of type I, K < 1/v2 and m},, lies outside
the Landau interval, fluctuations are small and the assumption of y = const is, indeed,
self-consistent, making the transition of first order (*).

It is the purpose of this note to point out that the process of melting in solids can
be understood by a completely analogous field theory: Cooper pairs need only be
replaced by dislocations, photons by phonons. The condensation of dislocations, ¢.e.

(?) P. W. Higes: Phys. Rev., 145, 1156 (1966); T. W. B, KI1BBLE: Phys. Rev., 155, 1544 (1967).
() B. H. HavPerIN, T. C. LUBENSKY and S, K, Ma: Phys. Rev. Lett., 32, 292 (1974).

{*) The transition point between first and second order is K ~ 1.1/vZ as shown by H. KLEINERT:
Lett. Nuovo Cimento (in press).
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their proliferations, gives the phonons a finite penetration depth, The sound waves
in the molten state are carried by a «left-over » NGB which the gauge field is incapable
of absorbing.

The value of K is so small to m2,,, is large and the transition is of first order. In
more physical terms, the elastic forces play an important role in making the defects
proliferate at much lower temperature than they would on entropy grounds alone,
thereby causing a strongly precocious melting.

There is no problem in constructing a gauge theory of the elasticity energy itself.
It depends on the symmetric stress tensor o4 in the well-known way (%):

_i s 7Y 2
(7) fpn—4‘u(gn‘ 1+vaii)

with u, » being modulus of rigidity and Poisson number, respectively. In the absence
of local body forces, g;; is divergenceless and can be written as a double curl of a
symmetric tensor 4,, which we shall shortly call the phonon field:

(8) Ci; = €ir1€imn Vi Vm A1 «
By construction, o,; and f; are invariant under local gauge transformations
(9) Aln(x) - Aln(x) - Vl An(x) - VnAl(x) s

where A,(x) is an arbitrary vector field.

Consider now dislocation lines. For simplicity we shall assume that a single line
can move through the crystal in a complete random way with all configurations
having equal probability.

For a single open random chain of length s’ —s in a simple cubic lattice, the
probability te run from x to x' is (%)

.
88

(10) Plx' —x,8 —s) = 6{s' — s)fﬂ)m exp [- %-I fdt:\':z(t)] =

0

— 05’ — 5)V Za(s — )T oxp [_ M (a _f‘,‘)f] _

2 g —s
dsk . k|
= 0(s' — s)f @)’ exp [@k(x’ —) — 270 (8’ — s)} ,

where the mass M is given by the lattice constant I as M = 3/l. In a grand-canonical
ensemble of chains, the lengths s’ — s are arbitrary. A wsingle chain can appear in
6's'~s)l = exp [w(s' — s)] possible configurations, such that x and a’ can be connected
in exp[— w(s' — s)] P(x’ — x, 8’ — s) ways., The thermal creation of these chains is
governed by a Boltzmann factor exp[— (e.../T){8'—s)]. Thus we obtain for the prob-

() L. D. LaNxpavu and E. M. LiFsEITZ: Theory of Elasticily (New York, N. Y., 1959); E., ERONER:
Kontinuumstheorie der Verselzungen wund Eigenspannungen, Ergeb. Angew. Math., 5, 1958 and
Proceedings Summer School on The Physics of Defecis, Les Houches, France (1980),
(®°) H. YAMARAWA: Modern Theory of Polymer Solutions (New York, N.Y., 1971).
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ability of finding a chain of any length through x and «'

@

e(s’ —§)
(11) P(x'— x) =fd(s’___s) exp ]:._ T] Pla— %, 8 — 8) —
—w dsi oy o
= f(Qn)a k* + (¢/T)2M exp [ik(x’ —x)]

with ¢ = m? — wT. For many chains, the joint probability is given by the symmetrical
product

1
(12) Vi ;)P(xl— X)) P(x2 — xp20) 5 ooy Py — xp0m) 5
164

This can also be obtained from the generating functional of a fluctuating field theory

1
(13) Zy[n+, 1] =Iﬂ)99 Do* exp [— fd% (gﬂ—[ |Ve|? + % lp2 4 @ - @t ?7)]

by partial differentiation with respect to the sources #+ and . For n = * = 0, Z repre-
sents the partition function of a grand canonical ensemble of closed dislocation lines.
Integrating out of the ¢-fields gives

{14) Z,[0, 0] = exp [— trlog (— 2—;—1 V2 + f)] =Y —Z¥.

But Z, can be rewritten as

@w

1
(15) Z; = —trlog (— Y Vi %) = % fdefd%P(x, x) =

0

1
=7 fdefd%fd(s’ — §) exp [— % (s — s)] Plx,x,8 —s8) =
0 —

=fd(s’ — s)/lexp [— ql;; (8’ — s)] [fd% (.y—l—.s)ﬂ exp [w(s'— )] P(x, x, 8 — s)]

8

and the expression in brackets is recognized as the total number of possible closed-
chain configurations in the crystal, which proves our statement.

This formalism can be used for dislocation lines if we introduce a field ¢,(x) for
every Burgers vector b. Actually, just as nuclei can be composed of protons and
neutrons with two-body forces, we shall assume, by analogy, that all higher dislocation
lines can be generated from the three fundamental ones in which a single atomic layer
is missing in one lattice direction. Thus we introduce the steric interaction

(16) P = [2503%' gl 90(3) o (') pu(#) Por(a— ),
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where the range of ¥ is a few lattice spacings. For the purpose of studying the phase
transition of melting, we shall be content with the quasi-local approximation

1 5 ,
Voo ~ YSIE Jop O(x — x') .

To this grand canonical ensemble of dislocation lines with steric interactions, we
now couple the stress field. We shall do this in a gauge-invariant fashion via the
minimal substitution (analogous to V, — V, —1ied; in electromagnetism) (*):

| .
(17) VI—>VE—'7:E‘T bzlaz-,-kV,-Am,

where b; is the fixed Burgers vector for each dislocation line. In this way, a gauge
transformation (9) can be compensated by a local phase change

(18) ¥, 5) > exp [— ia(x)] ¥(x, 8)
with
(19) oc(x)=-%b'(v><A).

In this way we arrive at an energy density

1 2
(20} flx) = Z [ ' (Vz— @'j; b; SijijAkz) Pp | + 2M(m? — WT){‘Pblz] +

b

5 3 aulmellonl + - (of— ok
9 o bb' 7B b 4!‘ ij 14+ v it

in close analogy with (1).

Let us first convince ourselves that with this gauge theory we are able to reproduce
correctly the elastic forces between dislocations., For this we have to caleulate the
propagator of the A,, field by writing

(21) fdawfph(x) = ZAzn(k)Dm,z'n'(k)Az’n’(k)
)
and invert the matrix

P v

(22) Dln,l’n'(k) = k* [(611' - 'I;"l kl')((sn'n' - kn kn') - 1+

(5l'n - iclkn)((sl'n' - i&l' I::n')]

in the subspace of physical components of 4,,(k) which are orthogonal to the three
gauge degrees of freedom (9). In order to do so, we decompose A4,,(k) into spin-s
helicity-A components

Apll) =T () AV () .
8=0,2
A=—2, ..., 8
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Morcover, instead of &2, 2% we shall prefer to use certain combinations of these

longitudinal components:

1
v

el = 1 (v/26@0 — g0, e =

73 (00 4 1/22:0) |

2

If we then define the projectionsinto the channels (s, A), L, L by Py, ;1,0 (k) = ernlle) ey (o) *
such that P®2» | Pe-2 | P L P-4 PL4 PL =] = we find that the free
energy (21) takes the form

1 1—
(23) fd%fph = T krAk) [P(2=2) - P2 ! PL] Ak),
B SM

14w

thereby exhibiting the three-dimensional physical subspace of 4,,(k)’s. Within it, we
may immediately invert the matrix in brackets and find the propagator

2uT 1
(24) <'Alﬂ,(k)Ai,’n'(h)> = % ':P(Z,Z) + P(Z’_z) + 1 + :PL] =
- In,l'n'

2uT N s
= [(615’ - kl}él')(éfnn' - knkn') +

E (o= )b — )|

l—vw

Consider now two dislecation lines running, say, along the paths x(s), x'(s). For a
single line, the second quantized coupling

1 .
(25) ‘é" bifd%fds Yi(x, s) Vo y(x, 8) 8.V, Ay ()
becomes
dx,
(26) bz‘fd3wfd3 s 0B (% — %(8)) €412 V; A () -
s

Thus, using the propagator (24), the inferaction energy between two lines is obtained
as

1
(27) E= E bi bz’-'ffdwz dw;’Eikiei'k’l'<VkAlnvk’Al'n> =

1 —v9

= fff [(b-dx)(bf.dx')/R (b xb') (dx xdx")/R -+ (b xda) (b’ xdx'),V,V, R] .
7T

This is precisely the formula derived by Brin (¢) many years ago on the basis of the clas-
sical elasticity theory.

Suppose now the temperature is moved up so high that m® — w1 becomes negative.
Then ¥ acquires a nonvanishing expectation value {p> =»° as a signal for a prolif-
eration of dislocations. In cubie crystals in which the basic Burgers vectors point
along x, vy, %, there is a dislocation field v,, v,, ¥; associated with each of these. Ior

(®) J. BLIN: Acta Met., 3, 199 (1955).
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symmetry reasons, we expect the u interactions to stabilize, above the melting point,
three equal-size nonzero expectation values y}(x) = exp[—iy,(x)]¥° (¢ =1, 2, 3). Then
the 42, term in (20) has to be summed over the three b directions giving |4°|262k? times

(142 — ko oy AF, 4,0, ] = AT [P@® - Pe-d | PE o J(P@L | Pe-1)] 4,

Thus we find, just as in the superconductor, that the gauge ficld ceases to propagate
(P@D 4 P10 projects onto an irrelevant gauge degree of freedom).

Where is the sound wave known to exist in liquids? It is carried by the longitudinal
projection of the phase oscillations of the ficlds }(x), just as zero sound is in super-
fluid 3He. In order to see this, we observe that in the abscnce of phonons there would
three NGBs associated with the phases p,, v,, v;. The Higgs effect, however, removes
all those from the excitation spectrum which can be absorbed in a gauge transformation.
If we express the derivative piece in (20) in terms of v,(x), we find

1 2
[y0]2 Z (Vz vi(@) + E, lblaijkvi-Akl(w))

and realize that, under the gauge transformations y; — v, + |b|(1/T)(V x A},. Therefore,
the transverse projection y! = (8, — k, ;) , can be absorbed into the gauge field. The
longitudinal part 3! =k k,y;, however, survives as a long-range physical excitation
which may be associated with the sound wave in the molten state of matter.

Because of its analogy to zero sound in 3He (= « cool sound »), we propose to call
the longitudinal NGB hot sound. Cool sound is carried by the phase of an order para-
meter, hot sound by that of a disorder parameter.

From the discussion of ref. (*) we know that, actually, there will remain directional
order even if all basic dislocation lines proliferate. The result of the present melting
process will be a liquid crystal rather than aliquid. In order to arrive at a proper liquid
state, defects destroying orientational order must be ineluded (disclinations). This
will be done in a future work along the lines prescnted herc.

In two dimensions, there exists some understanding of these successive steps in
the melting process (?). We are convineed that our field theory, when properly extended
to include disclinations, will clarify the physics in the three-dimensional situation (8).

¥ % X
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() B.L HALPERIN and D. R. NELsON: Phys. Rev. Leit., 41, 121 (1978); D. R. NELsoN and J. TONER:
Phys., Rev. B, 24, 363 (1981) and references thercin.

(*) For further development see H. KiriNnertT: Phys. Leil. 4, 96, 259 (1982); Phys. Leti. B, 113,
395 (1982): J. Phys. (Paris) (in press) and Leff. Nuovo Cimenio, 34, 225 (1982), also in the contex:
of the smectic nematic transition, magnetic superconductors, and pion condensates.



