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We present a gauge theory for an ensemble of dislocation lines with elastic interactions as a model or melting. There is 
close similarity with the Ginzburg-Landau theory of superconductivity, except that in our theory order parameter and 
magnetic potential describe translational disorder and stress, respectively, and that the temperature axis is reversed. Above 
a critical temperature, the disorder proliferates, thereby rendering a finite penetration depth to stress as a signal for the 
molten state. 

Since Shockley's  original suggestion [1] it is widely believed [ 2 - 5 ]  that one of  the main causes for the break- 
down of  crystalline order during the process of  melting is the sudden proliferation of  line-like defects of  the trans- 
lational type, called dislocations. Such a process would liberate the translational movement of  the lattice constitu- 
ents along the basis vectors of  the crystal. Once this happens, the formation of  orientational defects called disclina- 
tions, can take place at a much lower cost in energy than in the crystal. Their proliferation establishes complete 
isotropy and the final state is indeed a proper liquid [4]. 

It is the purpose of  this note to present a field theory by which the study of  translational melting becomes 
technically quite simple due to its similarity with the Ginzburg-Landau  theory of  superconductivity.  We shall 
proceed by considering dislocation lines as random chains and develop a complex scalar field theory describing 
grand-canonical ensembles of  these. After this, elasticity is formulated in terms of  a gauge potential which may be 
coupled to the scalar fields in a locally gauge invariant way. This procedure is shown to give the correct elastic 
energy. The resulting gauge theory has simple properties permitting a straightforward discussion of  the melting 
process in analogy with the phase transition in superconductors.  

A random chain whose links have a length I and are labelled by the length parameter s has a gaussian link-to-link 
probabil i ty distribution [6] 

P(x '  - x ,  s' - s) = [2rr(s' - s) l/3] -3/2 exp [ - 3 ( x '  x)2/2  l(s '  - s)] , (1) 

which agrees with the correlation function of  a free non-relativistic particle of  mass M = 3/I as a function of  time 
t if this time is continued to imaginary values t = - i s .  For a grand-canonical ensemble of  such random chains we 
may therefore use a second quantized field ~b(x, t) with a lagrangian 

£(x, t) = ff+(x, t) [iO t + (1/2M) V 2 ] if(x, t ) ,  (21 

whose propagator 

= / ' _ d ~ k _  e x p [ i k ( x ' - x )  ( k 2 / 2 M ) ( s  ' s)] (3) (fr t t~(x', t ' )  ~+(x ,  t ) ) l t ,_ t=_i (s ,_s )  "(277) 3 

coincides directly with (1). The field has a divergenceless current 

1 +-~ 
i ( x )  = fdt ~+(x, t) ~ v ~(x,  t ) ,  (4) 
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which is the randomly fluctuating second quantized version of  a single localized line singularity along a path x(s): 
](x) = § ds x'(s) 6(3)(x -x(s)). For the process of  melting, the information on the length parameter s will be super- 
fluous. 

Instead of (1) we may study the probability that a random chain with arbitrary length passes through x and x ' .  
The distribution of length is ruled by a chemical potential N and the probability becomes 

P(x' - x )  = J d ( s ' -  s) P(x' - x ,  s ' -  s) exp [ - ( k / T )  ( s ' -  s)] . 
0 

The chemical potential has two terms and may be written as X = ~kcore - wT, with ~kcore accounting for the core 
energy and w being the entropy per link (e -w! = 6 counts the number of  link connections to the next neighbor). 
Inserting for P(x ' - x ,  s ' -  s) the form (3) this gives 

e ( x ' - x )  ( d 3 k ( k 2 + m 2 ) - I  e ik(x'-x), m2=(X/T)2M 
= 2M a(21r)  3 

which is nothing but the correlation function of a Kle in-Gordon field of  mass m whose energy density reads 

fo(x) = T[V~o+(x)V~o(x) + rn2tp+(x)tp(x)] . (5) 

The divergenceless current ] = (T/2i) tp + V tp is the analogue of (4) with the length parameter s averaged out. The 
temperature factor T exhibits the purely stochastic and entropic nature of  the ~0(x) field. Indeed, were it not for 
the core energy ~kcore the ~p fluctuations in the partition function 

Z= fD~oD~o+exp(r-l f d3xfO(X)) 

would be temperature independent. 
The fields ~0(x) are now identified with the dislocation lines of  any length passing through x.  Apart from their 

spatial distribution, they are characterized by a Burgers vector b which has the same additivity properties as a 
charge: two dislocation loops may annihilate each other if they have opposite Burgers vectors and a line may 
branch off  into several others as long as the sum of  Burgers vectors remains invariant. Lines with higher Burgers 
vectors may be generated as bound states of  lower ones in just the same way as nuclei are built from protons and 
neutrons. Thus we may confine our attention to an energy density fo(x) of  the form (5) which contains the fields 
of  only the fundamental Burgers vectors b(a), as long as we add an interaction capable of  generating composite 
dislocation lines. As far as melting is concerned, we shall use the simple approximation 

lint ~ ~ ,  g~,l~0=(x)l h0~,(x)l 2 • (6) 
t~Ot 

The conservation of Burgers vectors is manifest by f=fo  +lint being invariant under overall phase changes 

~oc~(x ) ~ exp(-ib(a) A)~oa(x) . (7) 

It appears to be one of the fundamental principles of  physical theories that whenever there is a conserved quan- 
tum number whose conservation is enforced by phase transformations (7), there is also a gauge field which makes 
the energy density invariant under the local generalization of  (7): ~oa(x) ~ exp [- ib(a)A(x)]  ~0~(x). This principle 
has guided the construction of  all modern theories of  weak, electromagnetic, and strong interactions and it is 
gratifying to discover its validity also in the present case. Here it is the long-range interactions among dislocation 
lines due to linear elasticity which lead to local gauge invariance. 

Consider the elastic energy fel (x) = (4 t0 -1{o  2 - [v/(1 + v)] o 2} where/~, v are the well-known elastic constants 
[7]. The stress tensor oil is symmetric and divergenceless. Therefore it can be expressed in terms of  another sym- 
metric tensor hil(x ) as oii(x ) =eik l Vk eimnVm hln(X)" This representation is invariant under the local gauge trans- 
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formations hln(X) "+ hln(X ) + Vl.~n(X ) + gn~l(X ). For the sake of  maximal analogy with magnetism we find it con- 
venient to introduce the field A}(x) =.eimnVm.hln(X ) as a stress potential with the property VI.Ai(x ) = O, A~ = O. 
The gauge transformations become A}(x) -+ A}(x) + VlAi(x ) with. Ai(x) = eimnVm~n(X) being arbitrary functions 
satisfying the transversality condition ViAi(x ) = 0. In terms of  A}(x), the elastic energy reads 

fel(X) = 4~1 ~_~k k2A~(-k) p(2,-2)+p(2,2)+ l-V_p(1,O))l + u /il i'l'Ai"(k)' (8) 

where p(s,h)(k) are the projection matrices into spin s helicity h combinations of  the matrix A~(k). The adwmtage 
of the stress potential A} is that the elastic energy of  a dislocation loop can be calculated from a local coupling in 
complete analogy with the magnetic energy of  a current loop: If u] is the displacement vector due to a dislocation 
loop, its energy in a stress field o] l is given by 

E= fd3x ""  ' fd3x II I fdS, 4' = v i ( o i / u i )  = bi oi/ v i ui 

where we have used the fact that u] has a discontinuity Au] = b i over some surface spanning the dislocation loop. 
But writing Oil as the cuff ofA~, this becomes a contour integral over the loop: 

E=e, fds/ /e,V, 4=bi fds x,(s)' A,(x(,)); =e, fd3x/,(x)AS(x) . 

This local coupling is obviously gauge invariant (due to VlJl(x ) = 0) and differs from magnetic s,,ystems, where 
E = Ifd3x Jl(X)Al(X) by having three vector potentials A~, A 2, A~, each having its own "current b l ,  b 2, b 3 . 

It may be easily verified that the coupling (9) reproduces the correct elastic energy between two dislocation 

lines with the correlation function, due to (8), 

(A}(x')AI:(x)} = 2lIT jl" (-2~)363k eik(x,x) k_2(p(2,_.2)+p(2,2)+ 1 + p p(1,0) ) 1  -- v /il, i'i'' (10) 

in agreement with Blin's conventionally derived formula [8]. We can now introduce the same local coupling into 
the field theory by the standard minimal replacement and find 

2 ~ gc~'  2 "~ f(x)= T ~ { l[Vl-( i /T)  biA}]~%12 +maltpo,12}+ , I%1 I%,1~ +f~l (11) 

as the correct theory for a grand-canonical ensemble of  interacting dislocation lines of  arbitrary lengths. The theo- 
ry displays manifest local gauge invariance under transformations 

~o~(x) -+ exp[-ib(°OA(x)]~o~(x), A~(x) -+ A~(x) + VlAi(x) , VA(x) = 0 .  

Due to the similarity with the Ginzburg-Landau theory it is rather straightlbrward to extract some basic phys- 
ical properties: For high enough temperature, T > Ta, c = ~a,core/W~, the chemical potentials ~.~ change sign and 
the fluctuations of  the ~0a fields around ¢c~ = 0 diverge. The quartic potential, however, prevents a catastrophy 
and stabilizes at certain non-zero values ~0c~ = [s%[ e-i ' ra.  This signalizes the proliferation of dislocation lines. At 
the same time, the fluctuations of  the gauge field receive an additional quadratic term T -1 £c~b}COb}a)l~%12AiA~ 
which in the case of  a simple cubic crystal can be averaged to (4/.t) -1 m2A~A~ with m 2 = 41~[b(COl~l~%[Z/T. 
This is a mass term which limits the penetration of  the stress potential to a finite depth rnAl, a characteristic of  
the liquid phase. In the present description, this is completely analogous to the way in which order prevents the 
invasion of a magnetic field into a superconductor (only that there, order proliferates at low, here, disorder at 
high temperature). 

The question arises as to the propagation of sound waves in this description of  the liquid phase. This can be 
answered by noting that in the absence of  a gauge potential, the disordered phase would be characterized by long- 
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range oscillations of the phase 7s(x) of t0e(x ) (Nambu-Goldstone bosons). As the gauge field is turned on, part 
of these phase degrees of freedom become unphysical since they can be removed by a gauge transformation. In 
fact, we see above that phase oscillation %,(x) with b(s) pointing transversal to the momentum direction can be 
absorbed. The longitudinal parts of 3,s(x), however, survive as a physical degree of freedom, and may be identified 
with the sound excitation in the molten phase ("hot sound" as the disorder analogue of "zero sound"). 

Of sourse this simple mean-field discussion requires fluctuation corrections. Since the gauge field appears qua- 
dratically in f its fluctuations can directly be integrated in the partition function. For constant h0sl, f receives an 
additional "black body" energy of the form 

fbb = "2 a(2ff)  3Tfd3k-[21°g(k2+m2)+l°g(k2+l+~]~b-  mA)j2~'] 

/ / =~-~2 2 +2  iL-~)  mA - 3  " 

2 which amounts to a shift in T s c. The first term is trivial and the second merely renormalizes m s, 
The third cubic term, however, has the consequence that the transition occurs at a precocious value ofm 2 = 

m2,prec = 2(37r2T2(g)) -1 (,ttb(S)2) 3 before the m~l~0s] 2 term loses its stability. At that value, t0 s jumps discontinu- 
ously from zero to tp~ 4= 0 and this jump is accompanied by a latent heat. Thus the transition is of first order. This 
effect of fluctuations has been recognized in the Ginzburg-Landau theory for a long time [9] but was never con- 
firmed experimentally. This is due to the fact that the assumption of constant ~Ps is acceptable only in a type I 
superconductor 2 where ms, prec is large. In the type II case, ~Ps fluctuates too much to permit an integration over 
the A~ fluctuations. For dislocations, the parameter distinguishing type I and type II is the ratio of elastic and 
steric repulsion energy, K = ((g)/lab2) 1/2. For ~ <> l/X/2 the solid is of type (IiI). The range Im 21 > m 2 L, where 

m~,L2 6 ms2,prec. K, _2 ~ rn s2, fluctuations are small is given by the Landau criterium, here ~K Thus, for small m~,prec ~ L 
and the evaluation (12) is reliable making the transition first order. 

The largeness of rn2,prec is observed experimentally in the form of a high transition heat AQ ~ (ItT/(g))m4,prec . 
Within the present theory, this is taken as evidence for the smallness of the steric repulsion between the dislocation 
lines. Notice that were it not for the largeness of m2,prec, melting would occur at a much higher temperature, close 
to the purely entropic values Ts, c = Xs,core/ws" 

Of course, the same type of field theory can also be used for the vortex lines in superfluid 4He only that there 
the Burgers "vectors" are scalars and there is just one gauge potential A l with an elastic energy.tel = ½ Ps( V × A) 2, 
just as in magnetism. The question why the transition in 4He remains of second order, in spite of the gauge field 
fluctuations, finds its answer in the fact that here the steric repulsion is large enough to make the theory of 
type II. 

It may be worth contrasting the present theory with existing applications of the Landau expansion to melting 
[10]. There, the system is described in terms of an orientational tensor order parameter, say ~Oi]kl , which takes a 
non-zero value in the solid phase (i.e. for T < Tc). If the phase transition were of second order, Landau's phenom- 
enological expansion could be truncated after the quartic term and would give a rather complete explanation of 
physical observables in the immediate neighborhood of T c. However, experimentally it is of first order and the 
expansion always contains a cubic term, on symmetry grounds. This, unfortunately, destroys the applicability of 
Landau's approach: first, the expansion can no longer be truncated and second, the transition loses its universality 
character and is no longer independent of the physical processes even right at the transition temperature. 

The defect model advanced by ref. [4] (inspired by ref. [3]) does, in fact, introduce physical processes, which 
might lead to a satisfactory description of the first order transition. Their treatment in 3 dimensions (in the second 
of refs. [4]) has, however, two drawbacks: 

(i) It is based on Blin's formula (the analogue of Biot-Savart's law) between dislocation lines which is of the 
"action-at-a-distance" form and therefore clumsy to handle. The simplicity and beauty of Maxwell's theory is 
rooted in it being a local field theory which has become the prototype for all fundamental theories of matter. Our 
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theory is the analogue of Maxwell's. 
(ii) Blin's formula has a meaning only for isolated dislocation lines in a crystal at zero temperature. Our energy 

(11) gives a partition function 

Z= f D~oD~o+DAexp( l f d3xf(x)) 
which deals with a grand canonical ensemble of dislocation lines in thermal equilibrium with lattice vibrations at 
any temperature. This partit.ion function has a chance of applying also to the liquid phase which is densely filled 
with strongly fluctuating dislocations in which there is positional chaos and no way of employing Blin's formula. 
In our theory this situation is simply accounted for by (~p) 4: 0. 

After this manuscript was submitted, further developments have taken place. Disclinations were included into 
the gauge field theory [11], connections between quark confinement and melting were pointed out [l 2], an ex- 
plicit construction of fluctuating defect lines was given on a lattice [13] and a geometric description of stresses 

and defects was proposed [14]. A summary of all these results is in preparation [15] +~ . 
In the course of this work it has become apparent that our way of dealing with the non-linearities of crystal 

forces may have implications upon the physical interpretation of the symmetry breaking Higg's particles in the 

unified gauge theory of weak and electromagnetic interactions which many high-energy laboratories are now 
searching for. Rather than being new fundamental objects they may be defects in the non-linear W-meson fields 
which mediate the interactions [16]. 

The author thanks W. Helfrich and W. Miiller for stimulating discussions. 

, I  A preliminary account of our theory was presented at the International Conference of the European Physical Society in Lisbon, 
July 1981. 
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