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We show that defect melting is closely related to SO(3) lattice gauge theory. The phase transition of this system corre-
sponds to a Lindemann melting parameter L ~ 50y where v ~ 2 is a parameter characterizing the unharmonic content in
the elastic forces. This is in rough agreement with experiment. The equivalence may help in visualizing the crucial role of

defects in quark confinement.

On the basis of a recently developed field theory of
line-like defects interacting via linear elasticity [1] it
has become possible to give asimple description of the
melting transition. The theory has the same form as the
Ginzburg—Landau theory of superconductivity, i.e. it
consists of a scalar field coupled to a gauge field (scalar
QED). Meiting proceeds via the usual Meissner—Higgs
effect, only that the scalar field represents disorder
rather than order such that ¢ becomes unstable above
some critical temperature, T > T, rather than below.

The explicit representation of fluctuating defect
lines in terms of a disorder field is a powerful tool in
isolating the essential non-linear characteristics of the
system and treating them separately. The residual inter-
action between defects can then be linearized without
changing the phenomena. Certainly, in the actual crys-
tal, the defect lines are caused by the non-linearities of
the forces and appear in the thermal partition function
due to their high configurational entropy while being
almost extremal in the energy.

In fact, this understanding has led to the suggestion
[2] that other non-inear theories such as QCD could
be understood in more simple terms by finding their
relevant line-like defects, and parametrizing their fluc-
tuations in terms of a Higgs-like disorder field. More-
over, the Higgs fields employed presently in the descrip-
tion of the spontaneous symmetry breakdown between
weak and electromagnetic interactions could be disor-
der fields of just this type and therefore of a pure gauge
field nature.
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In order to further support this suggestion we would
like to show that the melting problem is related to the
standard SO(3) lattice gauge theory, thus showing our
first Higgs-like theory of defects with linear elastic in-
teractions [1] to carry information on this non-abelian
gauge theory. Asa useful physical side result we use the
transition temperature of this theory to calculate a melt-
ing temperature with Lindemann parameter L ~ 100
in agreement with the experimental values for many
materials.

A crystal lattice consists of mass points in a periodic,
say simple cubic, array of potential wells of spacing /.
There is an elastic next-neighbor coupling such that
small and smooth distortions u;(x) lead to an elastic
energy

f=500@u)? + (0 +1)(3;u,)?

or, in terms of stresses

0'1']' = u(a,u] + ajul—) + )\61] akuk s

far= (14w {of — [v/(1 +9)] 07}, 6]

where v = A2 (u + X) is the Poisson ratio of the elastic
constants y, A. In order that the material properly fits
to its neighborhood, in spite of the distortion, the in-

compatibility [3]

N57(X) = €31 €1mp Ok 0,y B2t (X) @)

has to vanish. Due to the non-linearity of elastic forces
not described in (1), however, defects will form. They
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can be incorporated phenomenologically at the linear
level by allowing for discontinuities in u; which show
up in a non-vanishing n;;(x). Most important are defect
lines for which [4]

N3 () = (€ 0@y + 05 + ()12,
with
0y = by 8,(L) = b, [dr £8P0 —2(r)).

Q;8;(L),

where b, €2 are the Burgers and Frank vectors, respec-
tively. In our field theory of defects, their grand-canon-
ical ensemble was studied by using the fact that a,.a,.].
=0;0;; = 0 such that we could introduce a stress poten-
tial h,n via the double curl 0;f =ul? €ixl ]m,,akamh,n
which is invariant under local gauge transformations
by = By, + 058, (x) + 9, §(x). The field &, is coupled
minimally to a scalar field describing fluctuating defect
lines. The correct conserved current turns out to be the
Belinfante momentum tensor Bé)ij of the defect field
just as though Ay, were linearized gravitational fields
[2].

As a matter of fact, (1) may be seen as the linear
approximation to a certain non-linear theory in which
70,]/;11 is replaced by the Einstein tensor G of a
riemannian space such that one arrives at a coordmate-
independent elastic energy

Fo= [ 43 Ve(u*4n{G,/G] — bi(1 +1)] G/ 2} ,(

3)
with the metric g¥ = §¥ + yh¥/ describing the stresses.
The parameter vy characterizes the non-linearities in
the elastic forces. The defects can be shown to move
in this space just as spinning particles in a gravitational
field [2].

In three dimensions, the Einstein tensor is related
to the curvature by G;; i 461 1€im Rklm” such that
G/2=1R2, 2and G/ = (R, k)2, In the follow-
1ng we shall neglect v since it is usually small (£0.4).
The phase transition of melting should not suffer much
from this. Thus we are led to studying

Fo = a3% VE(1/1611) Ry RER . (4)

For this theory, however, there exists a simple lattice
version. In order to see this let us introduce dreibein
vectors e%;(x), and their reciprocals e®(x), such that
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the metric is g;;(x) = €4;¢%(x). This decomposition
leaves room for arbltrary local rotations e%;(x)
> 0(x)?, eb. ;(x). Under these, the connection

;% (x) = ed/ d;eb;=edeby l",-j 5)
transforms like an SO(3) gauge field
;2 (x) > 01,01+ 09,01 . (6)
The curvature tensor is defined as
R,-jkl = eal(aia,. — a].a,.) e, N
and becomes
Rijkl = ealpijab ebk , €3

where

F;® =0;T;% — 3;T% + [, I;] %

is the covariant curl of the gauge field. Thus we find
RijklRijkz =Fi]_abFijab . ©)

But with this expression, (3) may just as well be con-
sidered as the weak and smooth field limit of an SO(3)
lattice theory [5]

Pt =46 20 u0% - 1), (10)
where x denotes the sites and a, b the ordered links.
The rotation OU;; is defined for each square plaquette

as the product of four arbitrary rotations O; i (x)
=exp [T} (x)]

0% =0, O +)Of e +) 0] ). (1)

Expanding the exponential we find
latt 5Tl fd3 E(F aby2 |

such that we can 1dent1fy
(RI3[T)V2 =y 2(8/3)1/2 . (12)

The partition function of (10) has a marked change of
phase at 8, ~3.92 [5] *1. This leads to the melting
temperature T, o, satisfying (ul3/T )2 ~2.37.
Experimentally, the most accessible number is the

*1 The author is grateful to R. Horsley and E. Kroner for use-
ful discussions on lattice gauge theories and defects, respec-
tively, as well as to B. Lautrup for running the SO(3) theory
through his improved mean-field calculation and determining
Be ~ 3.92.
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Lindemann parameter L =22.8(ul3/T,4)1/2 which
ranges around L ~ 120 [6]. The parameter of non-
linearity y may be estimated by Griineisen’s constant
v which is defined in a different way but characterizes
the same physical property of crystal forces. For most
materials y ~ 2 as a reflection of the rather hard repul-
sion cores between atoms. With this value, the Linde-
mann number agrees reasonably well with experiment.
Let us interpret the result physically. Thermal exci-
tations can move a lattice constituent from one well
to an interstitial place. If this happens for an entire
section of a lattice plane in %, y, or the Z direction,
then the circumference appears as a dislocation line of
Burgers vector Ix, Iy, or IZ. Disclination lines can be
built as superpositions of dislocation lines [4,7]. In
the SO(3) gauge theory, this is simulated in a rather
indirect way. Stress is built up if entire SO(3) rotations,
around each of the three spatial axes, becomes ther-
mally excited. This stress can be associated with a crys-
tal defect density ny; via the relation

€1k €jmn Ok Om O — V(1 + 9)1(8,;0% — 3;9)) 0y
= 2/-“71']' .

At a certain temperature, the stress energy is relaxed
by a transition to disorder which is equivalent to an
avalanche-like proliferation of crystal defects.

As was discussed previously [1], the order of the
transition depends sensitively on the size of the steric
repulsion between defect lines. When extrapolating
the linear elasticity theory into the non-linear regime,
which certainly is a non-unique procedure, this corre-
sponds to a certain choice of steric repulsion which
may not be the same as that chosen by the crystal.
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In fact, this does seem to be the case here since in the
SO(3) lattice theory the phase changes continuously,
while melting always happens in first order. It is weak
steric repulsion [1] which makes a transition first or-
der and it was shown [1] that this draws the transition
to lower temperature corresponding to an increase in
Lindemann’s parameter L, just as required by the data.

A final remark is necessary as to the neglect of the
v term in (3). In the SO(3) gauge theory this amounts
to coupling spin and orbital indices, a situation which
has not been treated there since SO(3) was always
considered to be an internal “color” group not capable
of hybridizing with the SO(3) of space. Here, this oc-
curs in the form 2, ; 5 15,8;,6,,(Opy; — 1)@ and for
estimating the effect of » upon melting, it would be
interesting to see this term included in SO(3) lattice
calculations.
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