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We want to point out three properties of a magnetic superconductor: (i) The absence of true long-range order in the
spiral state leads to the structure functions behaving like (g — q0)" 2 and (4:11)"’_2 for g, =0 and g =0, respectively,
where g is the preferred momentum. The indices n are measured via Bragg-like neutron scattering. (i1) The state is per-
forated by line-like defects. (iii) Above some critical temperature the defect lines proliferate, thereby destroying the spiral
quasi-order.

In a recent note [1] we argued that the condensate of long-range spiral order suggested by mean-field calcula-
tions in magnetic superconductors [2] could not properly exist due to catastrophic fluctuations. The Bragg-like
reflex in neutron scattering would then really be due to these fluctuations. Experimentally, this theorists’ subtle
distinction requires high resolution of the line shape. Hoping that this will soon be available we calculate the sin-
gular behaviour of the structure factor S{(g) close to g, ~qq,q, =0 and ¢, ~ 0, g, =0. In addition we draw atten-
tion to the existence of line-like defects of the dislocation type (just as displayed on everyone’s fingerprints),
whose configurational fluctuations eventually destroy the pseudo-order and carry the system to the normal para-
magnetic superconducting state.

Using the notation of ref. [1] we begin with the free energy of the relevant order parameter M, which is the
magnetization orthogonal to the preferred momentum direction (say 2).

1
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Here 7 contains the main temperature dependence and (1) is valid for 7 =~ 0 and q =~ ¢. Our analysis will start by
assuming 7 = 7 < 0 where the energy is minimized by the spiral solution
M, =M, +iM, =/Bja eld0z . Q)

We want to study soft long-wave fluctuations around this and multiply M, by a pure space dependent phase elo(x),
By writing near qq: (Ig] — q¢)? ~ (1/4q%) (@2 - q%)2 and working out the lowest derivatives, F reduces to the
pure gradient energy (up to a constant)

F=1B (0392 + \2(d}9)?], €)

where \=2 = 4q%. Since y is a gaussian random field, the correlation function (M, (x) M(0)) is easily calculated
as [3]

(M, (6) M0 = (B/a) (exp{3ilp(x) — 9(0)]D = (B/e) exp{— 3{[o(x) — ¢(0)] D)},

where
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Here v~ 0.577, i stands for T/87B\, E1(x) = f;” e~* dt/t is the exponential integral, and 2= qgut/q(z) is a con-
stant due to the transverse momentum cutoff. For |z| > |x |, £ (x) > —v —log x and

G (x)~ c2ne—mm (Trz/qo)\lzl)" . %)
For |x,| > |z], £ > 0 and
G (%) ~ ¢ e=2m(4n2/qd x>y . (6)

This gives for the structure factor

S@ =~ —qo)"~? forg =0,  S@=~(gHn2 forg =0. Q)

Such a behaviour has been detected in Bragg-like reflexes of smectic liquid crystals [4] and we hope that neutron
scattering on the spiral state will soon reveal the same deviations from true long-range order.

Given the simplicity of obtaining correlation functions we expect that also other fluctuation properties of the
system can be understood by using this quasi-ordered state as a basis. For this it is essential to include macroscopic
topological excitations [5]. Since the field ¢ is cyclic (p and ¢ + 2nn are indistinguishable) the system has singular
vortex lines similar to He 11. Recall that there the energy is f= ;—B(a,.<p)2 such that b; = B 9,y is divergenceless,
just as a magnetic field. Therefore one introduces a vector potential via » = @ X a and finds the forces between
vortex lines from the gauge invariant coupling Z,, 2mn § dxl.”)a,- (vielding the Biot-Savart law) [6]. Here the field
equation

93(339) — \2[3;(3%0,0) + 3,(3%0,9)] =0 ®)
tells us that
b =B(350, —\28%0,0, —223203,¢) ©9)

is divergenceless and may be written as @ X 4. In terms of b; the energy reads 2B)1 {b% + [(Aaf)_lbl 16, +
[()\af)‘lbz] b, } such that in the long wave limit [7] and the gauge 8,4, =0

= ﬁ %3 A\=2lay (k)2 + (k7 + K32k D) la (k)12 (10)

The coupling of a defect loop L is obtained as follows: Let n be the vortex strength of L such that for any circuit
around L, ¢ changes by 2nn, i.e. § dk; 9;¢ = 27n. Then ¢ must have a jump by 27n on some surface spanned by L.
Suppose now that this loop is inserted in a given smooth field configuration ¢ thereby changing it to ¢ + 8¢. The
field energy (3) changes by

87=B [3x (2303350 — \2023,08, 80 — N33} 850 8,5¢) = [ d3x b, 3,80 = — [ d3x 3,(by0) = — [ dS; by, (11)

where the surface integral runs over a thin ellipsoid enclosing the surface S. This integral can be evaluated via the
discontinuity Aglg = 27n as

§f=2mn | dS;b; . (12)
-l
S
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Now b = @ X a can be used to transform this into the gauge-invariant local coupling

8f=2mn ﬁdxi a;(x) . (13)
L

The grand-canonical ensemble of interacting lines can now be described in complete analogy with defect theories
of melting [8]: We introduce a disorder field Y(x) whose free correlation function

F Bk 2,2 L]
{ Y ot(x ) = dL e—(e/T—w)L elk(x' —x)~a%k L2D - elk(x'—x) a2k2/2D + (e w -—1, 14
Yx) ¥'(x) Of f (n) n) [ (e/T-w)]=,(14)

gives the probability for a line of any length to run from x to x’. Here D is the space dimension, w ~ log 2D the
entropy per link, @ the thickness of the line, and € the core energy per length a. The grand-canonical ensemble of
free random loops is then given by the partition function [8]

z=[DyDy* exp(— [ dx1@/2D) loy12 + (¢/T - W)IW]) : (15)

The long-range interaction due to the gauge field is incorporated by the usual minimal replacement
8 —>9— (2ni/T)a , (16)

where we have restricted ourselves to only the basic lines with unit winding number.
Certainly, there will be short range steric interactions which we may parametrize by a term %qldzl“. Thus the
total partition function of the system as seen from the spiral state becomes

z=[DADyDY* exp(% Zk) 2145 k)12 + (k2 + k%/)\zkf)IAl(k)IZ])

X exp [ d3x[I(d; — 2mi/BA/T) Y12 + (/T -~ w) W12 + 5 qly1]. (17)

This will be the most economic tool for studying the critical behaviour at the transition temperature which is
given by T, = ¢/w. Above T the disorder field destabilizes leading to () # 0 which signalizes the proliferation
of defect lines and the destruction of the spiral state.

It goes without saying that our partition function (17) can be used for studying the completely analogous
phenomena in smectics where the importance of defect lines has been stressed before [9] and, of course, in pion
condensates [7].
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