Hagen Kleinert

Vol. | SUPERFLOW AND VORTEX LINES
Disorder Fields, Phase Transitions

Vol. Il STRESSES AND DEFECTS
Differential Geometry, Crystal Melting




PART III

GAUGE FIELDS IN SOLIDS

Denique quae nobis durata ac spissa videntur
haec magis hamatis inter sese esse necesset et
quasi ramosis alte compacta teneri.

(Things which seem to us hard

Must needs be made of particles more hooked,
One to another, and be held in union,

Welded throughout by branch-like elements.)

Lucretius, De Rerum Natura, Rome, 57 B.C.
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The description of superfluid “He in terms of a disorder field theory
developed in Part 1I can serve as a prototype for the treatment of many
other physical systems. For this to be true, these systems have to possess
the following fundamental properties.
1. There exists an ordered ground state.
2. The important fundamental exitations are of two types, namely,
a) soft long-wavelength exitations which only sfightly disturb the
order, and
b) line-like disturbances which drastically disturb the order in their
immediate neighbourhood.
3. There exists a phase transition where the line-like disturbances
condense and completely destroy the order everywhere in the system,
In superfluid *He the long-wavelength exitations were the fluctuations of
the phase angle, the line-like disturbances were the vortex lines, and the
order which was destroved in the phase transition was the superfluid order.
We shall now discuss the second important physical system of this type:
the crystalline solid. In thermal equilibrium at low temperature, this
consists of a regular array of atoms which form the ordered ground state. If
the crystal is perturbed weakly, the atoms perform long-wavelength
oscillations. These are observable in the form of sound waves. If the crystal
is perturbed strongly, for example via local external forces, one obtains
what is called a plastically deformed state. To a good approximation such
a state can be described by means of line-like defects. The most important
ones are of two types calied dislocations and disclinations. These are the
crystalline analogues of the vortex lines in superfluid ‘He. We shall
develop a disorder field theory for these fundamental exitations in close
analogy with the vortex lines in superfluid *He. The phase transition in
which defect lines condense and destroy the crystalline order will be
identified with the melting process. The melting process is a first order
transition and thus of a nature different from the superfluid transition.
Still, we shall see that a number of quasi-universal features of this process
can be understood by means of this disorder field theory.



CHAPTER ONE

THE IDEAL CRYSTAL

1.1. DISPLACEMENT AND STRAIN

Consider an ideal simple crystal which consists of a periodic array of
identical atoms situated on lattice points

X, = 114, + noa; + nia;, (1.1)

where a; are the fundamental lattice vectors and n; are integers. The
simplest example is that of a simple cubic (s.c.) lattice with atoms at

Xy, = a(n’l’ Ry, n3)s (12)

where a is the lattice spacing. Such a crystal is not very physical since,
with the usual dominance of central forces, it is unstable against shear
deformations. This is why there are only very few s.c. crystals in nature
(e.g.. solid polonium). For much of the development to come this aspect
will, however, not be relevant. More stable configurations of identical
atoms are the face-centered cubic (f.c.c.) crystal with

a,=a(}, 1, 0), a, = a(0, 1, 1), a;=a(4, 0, 1)

and the body-centered cubic (b.c.c.) crystal with
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746 11l. GAUGE FIELDS IN SOLIDS

a; =a(l, 0, 0), a> = af ), a; =a(0, 0, 1).

tof—

1
+ 2

T

If forces are applied, the crystal undergoes some distortion and the
atomic positions change from x, to, say,

Xp = Xp + Uy (1.3)
There are a number of important phenomena which are smooth over
many atomic distances. For these, it is sufficient to study the crystal in the
continuum limit in which the lattice spacing a tends to zero. This has the
advantage that the positional changes can be described by a displacement
field u(x) which is defined on every space point,

x' =X + u(x). (1.4)
After the distortion, the distance vector between two infinitesimally

spaced neighboring material points at x and y is changed fromdx =x —y
to

dx; = dx; + o, u; dx;, (1.5)
and its length from d¢ = Vdx* to
d€' = (d€* + 2u;dx;dx;)'"* (1.6)
The symmetric matrix
u;(x) =41(0;u; + 9,u; + 0, uc 0, ue) (1.7)
is called the strain tensor. To linear approximation, this tensor is just

Ll['j(X) ~%(8,u}+ ()‘jul) (18)

1.2. ELASTIC ENERGY

In elastic media with short-range forces between pointlike constituents,
the elastic energy density can only depend on the differences d¢’ — d¢ and
thus only on the strain. To lowest approximation we may write
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e(x) = dejue uy (%) gy (X). (1.9)

There is no linear term since, in equilibrum, all «;(x) vanish by definition.
With this energy. the thermal partition function of elastic fuctuations

reads
|
E:J‘fﬂf,{x]exp(—?fd.u.r[x‘]). (1,100

The elastic tensor ¢, is symmetric under the exchanges ¢ < j, & <
{, if == ki, Thus it has 21 independent coefficients which may be
displayed in the form of a symmetric 6 * 6 matrix

Crenr Cniz2 Crraa Crrza Coxm Tz
Cxxax C2a33 Crr3y Cxzyp C222
C3aaa Ciaza Caazg Caagz
'[-JH.I == = Tl s

Cryzy Cray €232

Capar Capnz

Crz2

where a =1, ..., 6 denotes the ¢, j pairs 11, 22, 33, 23 31, 12, Let us also
introduce corresponding strain components as follows,

M, = (Hy, U2, WUsg, 23y, 2H3;. 203). (1.11)

Then the energy (1.9) may be viewed as a guadratic form in a six-
dimensional vector space

€= Lt - (1.9")

The elastic constants ¢,, are not completely arbitrary. In order to
guarantee stabiliry under elastic fluctuations the energy has to be positive
definite, ¢ =), for all non-zero strams. This implies that all subdeter-
minants of the quadratic form are strictly positive, 1.e..

Cip == Ol

o ] & C =0, (1.12)

Caf o+ »+ Croy

i} {Ill f.'l‘:
o =1, A

€21 o

Usually, only a few of the coefficients ¢, are really independent, due
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to crystal symmetries. A single plane of reflection symmetry, for instance,
removes 8§ coefficients. If the xy plane is a plane of reflection symmetry,

the matrix ¢ has the form

Ci1 €12 €13
Cry €23

€33

Cile
Cog

o o o
o o 2

C36

Can =

(1.13)
Caq C45 O
C55 O

Coa

An additional symmetry about one orthogonal reflection plane leaves us

with only
Cr1 €12 €3

€33

Cap =

0
(1.14)
Cyq 0 0
C55 0
Con

Exploiting such symmetry elements as well as the invariance under
discrete rotations, the 32 crystallographic point groups give rise to 9
different classes of ¢ matrices. These are listed in Appendix 1A. The

number of independent elements ¢, is shown in Table 1.1 and Fig. 1.1.
We shall consider mostly crystals of cubic symmetry which have the
smallest number of independent elastic constants, i.e., 3: ¢, €12, Caa,

C11 C12 €2
Ci1 Ciz
C11

Cab =

0
(1.15)
cqg O 0
Caq 0

Caa

For these crystals, the energy density reads
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TABLE 1.1. The seven crystal systems with their 32 crystallographic point groups and
numbers of quadratic and cubic elastic constants.

Hermann-Mauguin Schoenflies
. . ot 2 ; 3 ;
System symbols notation u; couplings u; couplings
2 _
a 23, ;3 T.T, 8
Cubic B 4.9 3
b 43"’!, 432, _§; Td~ 01 Oh 6
m m
— 4 . .
a 4,4, — Ca, S4, Cyy, 7 16
m
Tetragonal - 429
b 4mm, 42.»'77Q 422, - C4U* D'_)d, D4. D_m. 6 12
mmm
= 6 . .
a 6, 6, - C(-,, C3h- C(.,;, 12
m
Hexagonal - 622 5
b 6mm.6m2. 622, ———  C,,. Dy, Dq, 10
mmm
a 3,3 Ci Se 7 20
Trigonal 5
b 3”1.3;’ 32 C_]bn D3,{., D3 6 ]4
: 222
Orthorhombic 2mm, 222, ——— Coyp. Dy Dy, 9 20
mmm
. 2
Monoclinic 2, m. - Cs. Gy Coy 13 32
Triclinic .1 C,. S, 21 56

e(x) = %Cn(“%l + Uz + uz) + Cro(Uy sy + Uy 33 + UaaUs3)

+ 2C44(u§3 + u%l + M%Z)

2
~c i+ U ET +2 (Du) (L16)

Cy
i#] 2 2

I

The stability condition (1.12) implies ¢;; >0, c?, >c%, (¢ — ¢12)°
X (c1y + 2¢12) > 0, ¢44 > 0 and hence

C11>0, C44>0, Ci1 = Cr2, C11‘+‘2C12>0. (117)

A further reduction occurs for isotropic systems. In general, one axis of
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FIG. 1.1. The graphical representation of the symmetry elements in the given crystal
systems with their 32 crystallographic point groups of Table 1.1. The notation is abbreviated.
Boxes indicate centrosymmetric systems. The numbers on the lower right corners give the
number of independent e¢lastic constants in each case.

1. Cubic

23 432 43m mam
Y Y Y Y Y
o] X2 X2 %2 fa ]
XX, l]

2 Tetragonal -

OC@@@@

6
3. Hexagonal

8 8 Cad 822 , Bmm m

) ’; * o9 B

a) 4 Tngonal b)

/:]\ /_\ z X y
\_) Q ‘QS/" x’ "
222 mm2 M 5. Orthorhombic
] X2 Xz

6. Monoclinic 7. Triclinic _
1

21

rotational symmetry reduces the 21 components to 5 independent ones. If
this axis coincides with the z axis, the matrix ¢,, becomes

C11 €12 C13
Ci1 €13 0
C33
Cap = . (1.18)
Cag O 0
0 Caq 0
e —cr2)
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Symmetries about two orthogonal axes lead to complete isotropy, n
which case we find the cubic shape but with the third constant, ¢4y, being
ﬂ:lall:d 10 {1“1 f|: h}"

Caa = (€1y — €12)/2. (1.19)

Then the energy can be expressed in terms of the two rotational
invariants, u; and u;, as

e(x) = p.uﬁ + %uf’,, (1.20)
where
[T T A= Cyzs {_I..E]H.}

Here w 1s called the shear modulus and A the Lamé constant. For these,
the stability conditions (1.17) read

u =0, 2p + 3A =0 (1.22)
In some materials, the deviation,

€ — 02

¢ =0, (1.21b)

2(‘4_1

from the isotropic value 1 can be considerable. A list of experimental
data is given in Table 1.2, As an example, silver at 300 K has ¢, = 1.240,
¢12 = 0937, and ¢4 = 0.511 in units of 10" dynes/cm” so that £= (.33
Nevertheless we shall continue the discussion first for isotropic media, for
simplicity, then generalize the theory to cubic systems, and give some
remarks concerning the general case only from time to time.

In isotropic media it 15 convenient to stay with the notation (1.9) in
which u; and ¢, are tensors and have simple properties under rotations.
In terms of the elastic constants @, A, we can write

Ciikt = 1 { B Efr’ + By ﬁ,rk]' + Aﬁu Se - (1.23)

As far as the total energy,
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_ f Fre(x). (1.24)

is concerned, we can perform partial intergrations and bring the energy
density (1.20) to the equivalent form

e(x) = B (3,14 + 500 + ), (1.25)

The difference between (1.20) and (1.25) is a pure divergence, i.e.,
surface term in the energy E. It will be useful to separate the strain into
rotational invariants consisting of the traceless part of u;

i
Ml(;) = M,:j — %5,1 U (126)

of spin 2 and the trace itself,

Uy =18 (1.27)

Ui
of spin 0. The projection matrices into these channels are
Pive =4(8udie + 8¢ 8x) — 4858k, Pie=18y8c.  (1.28)
They are orthonormal in the sense that

(2)2 = p2) p(2y _ p(2) 0)2 () plo) (0)
(P )ijk(’ = Pr'jnm Pmnkf’ - Pijkh (P( ) )ij ke — Pr;mn an“ Pr]l\(“»

2p(0 — pl2) () 0y p(2 = plo) (2)
(P( )P( ))ijkf = P:’jnumzA(’ (P( )P( )).'; Punm an!\f = 0 (129)

so that we can write in abbreviated form: P?®? = p® pi2 - pl)
pRAPY = pOIptD = () where multiplication amounts to contraction of
adjacent index pairs. When added together, these projections span the
space of symmetric tensors, resulting in the unit matrix in this space,

(P(z) + Pﬂn)ijk( tjk( 7(6rk §14 + 51'6’ 8jk)- (130)
Therefore, the decomposition of u; can be written as

U;

o= Vot = (PP + POy = ulP + ul”. (1.31)
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By using these matrices, the elastic tensor may be decomposed into spin-2
and spin-0 parts,

Cijk{’ = C(Z)Pl(ﬁ{)g + C(O)Pg'([}c){, (132)
with

' =2p, P =3(A +2p) =3« (1.33)

The spin-0 combination « is called the modulus of compression for
reasons to be seen shortly. On inserting the decomposition (1.32) into the
energy (1.9) and using the projection property (1.29) we can write

e(x) = L u(cPP@ 4 POy = 1p@ 202 L 1O 2 1y 2 4 3 02
(1.34)

Here, we can verify once more the stability conditions (1.22) according to
which u and « have to be positive.

1.3. STRESS

If a certain configuration u; is changed by a small increment du;, the
energy density changes by

oe = Cijkf Upe Su,-j . (1 35)

The quantity
oe
g = S_u,, = Cijke Uke (1.36)

is called stress. For isotropic media, we may insert (1.33) and obtain
oy = c(z)u,g-z) + C(O)u,-(jo) = 2pu}jz) + 3Ku,§0) = 2puy; + Al Upy. (1.37)
In the terms of strain, the energy change has the simple form
de = oy 0uy. (1.38)

The orthonormality properties of the projective matrices (1.29) make it
easy to invert the stress strain relation (1.37) with the result
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- -1 -1 -1 -1 (0
Uy = (€ Ve oe = (@ PR 4 O PO)coie = @ o + @ 'g®

The ratio A/3« is usually expressed in terms of the Poisson ratio,

A
y= m, (1.40)
as®
vV
3k 1+ v (1.41)
so that
1 v
U = 5;(0',-,— - m(ﬁ,-jakk). (1.42)

With this relation, the energy may be written in terms of stresses as
follows:

1 -1 —-1
e = u(c?P® 4 cOpO)y, = %o‘(c(z) P? 4 cO7'P0)) g

1 2 1 2 1 1 2 1
SR ¢ ) U (i) L B (S b2
4;LU 6KU 4 (U‘ 36” Ukk) 18« Thk

1 v
=I;(U§—1Tv0%k)- (1.43)

The manipulations leading to this expression can be used to find
another formulation of the thermal partition function of elastic fluctua-
tions which involves both the strain and the stress tensor. Starting with
(1.10) we write in the isotropic case

“Notice that in D dimensions A/p = 2v/(1 — (D — I)v) and Dk =2u + DA = 2u(l + vy
(1= (D = 1)v)) > 0. Therefore, v has to satisfy the stability condition —1 < v < 1/(D—1).In
practice, v is usually larger than zero. An exception for D =2 is the triangle lattice of
magnetic flux lines in a type-IT superconductor (see Part I1, Fig. 3.5). For D = 3, see Kittinger
et al., Phys. Rev. Letr. 47 (1981) 712. More relations between the different elastic constants
are given in Table 1.3,
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— f@u-(x) e*(l/T}fdlx(IIZ)u(cmP(Z’+C(O)P(“})u
i

and introduce integrations over auxiliary variables oy,

f@u (x)fja"(x)

xexp( de?' {% (%P{2)+ (E,)P“")aﬂa,, })
oun] 252

X exp (_—fd3 { (gg 11})0“) + za,,(au +9; u,)}). (1.44)

In this formula we recognize the Hamiltonian form of the path integral of
linear elasticity [recall Eq. (1.88), Part I) for the general field theoretic
Hamiltonian path integral]. The field variables are now u;(x) and the
stress fields o;; play the role of the canonical field momenta, so that (1.45)
just fits into the general canonical form,

G (T (i 2
— jg u(r)f 275 )e—I(ITllTr(‘TIC+1T/_,-

The role of the “‘time” variable 7 is now played by the space coordinates
X;.

In the Hamiltonian form, the path integral over u;(x) can be performed
after rewriting [d*x 0, (8,u; + 9;u;)/2 as —[d*x9;0;u;. This leads to the
divergenceless condition for the stress, d;0,, =0, in the absence of
external forces, and the path integral (1.44) becomes

1 1{ , v,
= f@a,—,-(x) 8{a; o;;]exp ("?fd3x1;(“5_i—+—v“7‘)}‘ (1.45)

Let us now generalize these considerations to the anisotropic case. The
stress-strain relation (1.36) reads, using the pair indices a, b,

Tq = Cop Up.
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Its inversion is, in general, quite difficult. For cubic crystals, however,
one finds from (1.15),

HE
2ué)™ 0 111
ool = 2ug) ! A
ab M_l 6[.L§K
—1
0 we 0| 0
M ab ab
(1.46)

where £ is defined in (1.21b) and

K=zuf+ A

Thus the energy can be expressed in terms of stresses as

1
EIEG',,C(,,L, Tp
=L(O'27+O'2 +O’2)+L(O'2 +0’2 +O’2)“——’—"‘L (U’ +o +0'7,:;)2
2 12 23 31 it 1 22 33 126K 11T 0227 033) .
(1.47)
Introducing the parameter
2 Cyy
v = 3éx/A = 3¢ §§E'—+1 \ (1.48)
12

this can be rewritten, in close analogy with (1.43), as

1 , Ly, 1y ¥
) o

i#j I

and the Hamiltonian version of the elastic partition function now reads
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Do 2
= fonif e[ o5 -} (5
i#j i i
+ ifd3x O'ij(ﬂ,-uj + 8j-u,-)/2} - (150)

In isotropic systems, £ = 1, y = (1 + v)/v and Z reduces to (1.46). Notice
that in terms of u, A, «, the positivity conditions (1.17) are

p>0, £>0, 2uE+A>0, k>0. (1.51)

The parameter y can, in principle, be negative. In practice, however,
v=1 (just as v = 0 in most isotropic materials).

1.4. EXTERNAL BODY FORCES

The linear elastic behavior of a solid under the influence of an external
force density f;(x) can be studied by adding to the energy a source term
for the external work acting on each volume element,

esource(x) = —u]-(X)j}(X). (152)

The equilibrium distortion can now be obtained by minimizing the total
energy

Fio = j d’x (e(X) + egource(X)) (1.53)

with respect to variations in du;(x). This gives

fd3x(af(6uj)aij — 8u;f;) =0

A partial integration leads to
—fd3x Su](a,a'” +f}) + de.x 8,(514]0,])

The last term becomes, by Gauss’ theorem, a surface integral
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f de 6“,‘ O',‘j.
S

If the force 1s applied to a finite region of the solid, du; vanishes at infinity
and we can discard the surface integral. Taking &u;(x) to vanish every-
where except for a sharp é-function singularity at an arbitrary but
fixed place x we find the Euler-Lagrange equation for linear elasticity,

~9;0;(x) = £ (x). (1.54)

This formula gives a physical meaning to the strain components. Inte-
grating over a small volume element, say of the form of a cube with faces
along the X, ¥, z directions, we obtain

_deX 6,-0',]- = _de, O','j = jd3Xﬁ. (155)

Thus gy, 0,3, 0;3 are three components of the force per unit area acting
on the surface element dS;. With this physical meaning, the stress-strain
relation (1.36) becomes the physical law discovered in a simplified form
by Robert Hooke in 1678 in his work De Potentia Restitutiva (*‘ut tensio
sic vis”’).

The two elastic constants p and A can be measured in a simple
experiment. Suspending a weight F on a cylindrical wire of radius R and
area A = 7R’ leads to a stress oy, = F/A with all other components
vanishing. From (1.42), this results in the strains

1 1

17 =
. 2ul+v

aii, Uz = U3z = — VU, (1.56)

The diagonal strains u; (no sum over /) are observable as relative
changes in the longitudinal and transversal length scales

Ui =A€/€, Uzp = Uaj = AR/R. (157)
From (1.56) we sece that the Poisson ratio v is the ratio between the two.
Usually, elongations lead to transverse contractions and v > 0 (see foot-

note a). The constant [not to be confused with (1.24)]

E=2u(l+v) (1.58)
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in the relation between o,; and u,, is called Young's modulus and is
extracted from the experimental ratio

F [A¢
EZ/—F- (1.59)

The shear modulus is experimentally accessible by taking a cube of size a
and pushing the upper face with the force F per area A = a” into one
transverse direction (say +X), the lower face with the same force into
the opposite direction (say —X). As a consequence, the right angle in the
xz plane distorts to #/2 + 6. This may be identified with d;u; or 2uj,
(since d,u3 =0), to linear approximation. The stress is then o3, = F/a*.
From (1.39) we see that

2”31 = 10'31 (160)
M

so that we can measure u directly from

= -5/9. (1.61)

An alternative simple experiment subjects an elastic body to hydro-
static pressure p. Then the stress on every surface element points along
the normal, i.e.,

O11 = 0= 033= —p (1.62)
or
P= 10k (1.63)
From (1.37) we see that®

p=—3Cpr+ 30w = -k = —K iy (1.64)

PIn anisotropic cubic media the role of x is played by k=A+ (2/Nép =c-+
(2/3) écaa, since oy = ¢y ttyy + Cattan + Uzz) = (e — ¢2)uyy + 21, and hence o, = =3p
= ((213)§cas + cra)uye
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But 9, uy is readily identified with the relative volume change of the body
since [recall (1.5)]

d’x' — d’x _dxydxsdx; 1=d ta_x,f_ )
d>x  dx, dx, dxs 0X;
Thus we see that k is directly measurable from
AV
= — , 1.66
p="KY (1.66)

which explains the name modulus of compression for «. In Table 1.3 we

summarize the connection of x with the different elastic constants.

TABLE 1.3. Relations between isotropic clastic constants (& = VE?+20E + 9A7).

n
terms of A I E v K
) w(3A + 2u) A 3M+2u
M A+ 22 + ) 3
A E £+ (FE—3X) A - (E+A) e+ (BA+E)
v g 44 6
AL =20) AL+ 0)(1 =2 A(l + v)
A v 3 3
A v I v
He—A) O9x(Kk — A) A
Al K = Sk AL
2 3k —A 3k— A
; p(lu — E) £E-12 pk
H E—3u 2u 33u - E)
RATEY
RV e s+ 2%?1(]-4_25))
3k —2u Uk Ik — 21
fe K 3 3k + p 203k + )
) vE E E
Eovo s L —2v) 2L+ v 3(1 - 2v)
o 33k — F) 3Fk 3k— F
«. E Ok — F Y — [ O
) — Ju




762 II1. GAUGE FIELDS IN SOLIDS

1.5. ELASTIC GREEN FUNCTION

The Euler-Lagrange equation (1.54) can be used to calculate the distor-
tion under an arbitrary external force field f;(x). Inserting the stress-strain
relation (1.36), the displacements are seen to obey the second order
differential equation

—Cijke 0, 9¢ Uy (x) = fi(x). (1.67)

For isotropic media we insert (1.23) and have the rotationally invariant
equation,

[_#325:';' — (A + u)o, aj]“j(x) = fi(x). (1.68)

This equation is easy to solve. First, we exploit translational invariance
via the Fourier transformation

)= [ S e uta) (1.69)
with
u;(q) = dexe""""u,-(x) (1.70)

and a similar relation between f;(x) and f;(q). Then (1.68) becomes a
3 X 3 matrix equation,

[quarj + (A + w)qiq;]u;(q) = fi(q). (1.71)

The matrix can be inverted easily by introducing spin projection matrices,
one with transversal and one with longitudinal character,

PT(q)ij = 6!/ - CA];@;A (172)
P@)y; = ;4. (1.73)
where

d = q/|q (1.74)
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is the direction in which the ¢ vector points. These matrices are
orthonormal, just as P® P9 were in (1.29), only that matrix multi-
plication now involves just one index. If we now write (1.71) in the form

Q@ (uP" + (A + 2u) PY ) u(q) = fi(q) (1.75)

we can immediately invert this as

u;(q) = G,;(q)fi(q) (1.76)

with

1{1 1 1 A+
G =—| - PT PL) =—| g°5; — .G
(Q);; qz(uP +A+2u ),-,— Mq{q i A+2Nq q,]

1|, 1
= 8 — .q: | 1.77
o [q i 2(1_v)q,q,] (1.77)

Going back to x space, (1.76) becomes

W = [ dy Gy x = X)) (1.78)
where
3
Gy(x —x') = fé—,‘g_ge"“‘“"") G;i(q) (1.79)

is called the Green function of the source equation (1.68), since it satisfies
the differential equation

—Cijke 9;0¢ Gpp (X — X') = 8, 8(x — x'). (1.80)

The Fourier integral can easily be performed. First of all, we recall that

dq 1 f J’
ge(x - x") d d 0 igReos @
emiq” Gy ], 40| deosoe

1
— R _
271’ 0 g qu 4R (1.81)
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is the standard Coulomb Green’s function [see Eq. (3.30), Part I} where
R denotes again the distance between x and x’,

R=|R|=|x — x/|. (1.82)
In addition, we need

3 .
a°q 419 ,iq-x-x)

1.83
2m)* ¢ (189
This can formally be written as
[dq 1 .
"_(:),'(),; (277)}?€ at ) (184)
and the integral i1s just
dq 1 : 1 [Tdq .
LS ‘q'(xf")z —_— R_, 185
Qg 2R )y ¢ (185)

which unfortunately cannot be performed due to the divergence at the
origin. In fact, this divergence is not really there since a physical crystal
always has a finite size so that the momentum integration does not go all
the way down to g = 0. The Green function should not, however, depend
on the crystal size. Indeed, it does not. In order to see this we separate
out the divergent part by performing a subtraction,

—2sian=J‘ q—?(sian—qR)Jrf q—‘ZR. (1.86)
0 0

0 q

o0

o . dq . .
The first, finite, integral is related to ;qsm gR = 7/2 appearing in the
0

Coulomb Green function (1.81) by two differentiations with respect to R.
It vanishes at R =0 together with its first derivative (which is all
contained in the second part). Thus we can integrate (—#/2) twice in R
and find for the entire expression (1.86)

’Ld .
[ (singR — gR) = —Z R, (1.87)
0w q 4
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which implies that

£q 1 R, 1 (“dg

i (x-x) — ____

+_
(277)3q4e 8w 2m )y ¢°

(1.88)

Inserting this into (1.84) we see that the divergent part does indeed cancel
out and we obtain

a4’ idj , 1
f—-‘lff’ie*q-(x—x) = —9,0,R. (1.89)

Therefore, the elastic Green function is

, 1 A+ p

where we may insert V°R = 2/R, 9,3;R = §;/R — R,R,/R’, if we want to
be more explicit.

The full anisotropic equation (1.67) can, in principle, be solved in the
following way. Denote the 3 X 3 matrix multiplying u,(x) by

DIA(_IV) = "“‘(.'l'jkp a’a(z (191)
In momentum space, the coefficients have the form

Dy = c1qi + ceeq3 + Cs5q5 + 2C1641 G2 + 20564295 + 2€15G3q),
D> = i6G1 + C2oq5 + Casqi + (12 + Co6) G142 + (Ca5 + Ca6) 4245
+ (c1a + ¢s6) 391,
D3 =cisqi + Cz}Gq% + 35G35 + (Cra + €s6) 412 + (Ca6 T Cas) 4295
+ (€13 + ¢s5) G341,
Dy, = cooqt + 2245 + Caaqi + 202091 42 + 202442G3 + 2469341
D13 = Csoqi + Coag5 + €34G3 + (Ca5 + €a6)q1G2 + (€23 + Caa) G243
+ (36 + as) g3 41,
D33 = cs5q7 + caaq3 + c33q3 + 20454142 + 26349243 + 26354341 (1.92)

The inverse of D;(q) is given by
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1
D;'(q) = M (q)——- (1.93)
| © |D(q)]

where M;;(q) are the cofactors of the 3 x 3 matrix associated with the
elements D, i.e.,

M!f (q) = E,"pq Eimn me(q) an(q)' (l 94)

The determinant is a polynomial of sixth order in ¢. In the isotropic case
D(q) = p(A + 2p)q",

Mi(q) = (A +2p)q [q7°8; — (A + w)/(A + 2u))g,q,].  (1.95)

Consider now the vector

1
0(Q) = —— fq).
V7 D)

From it, the displacements are found to be

|
u(q) = My (q)vi(q) = M;(q) ——fi(q).
’D(Q)I (1.96)

so that M;(q)/|D(q)| is the desired Green function in momentum space.
For a general discussion see Every's paper quoted in the Notes and
References. Due to the complexity of the expression (1.96) it is, in
general, very difficult to go back to x space. One would have to calculate

d>q o]
Gx—x")= e 1.97
(x = x) f(ZW)3e 1D(q)] (o7
and find u;(x) from
u;(x) = M,:,(§V)fd3x’G(x = x")fi(x"). (1.97b)

Only for cubic and hexagonal symmetry is the solution relatively sim-
ple. In the 1sotropic case,
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, ] d'q piac—x1
GO ) e
1 L s o) (1.98)
= = X — ’ .
wo (A + 2ur) 967 X
In the cubic case. the equations iIn momentum space,
Dy i (q) = fi(q). (1.99)
take the form
Dt (q) = (2 + A)gi(q-u) + (.Mq2 + £q;7)u;(q)
= f.(q). (nosum over i), (1.100)
where we have introduced another anisotropy parameter
E=C0 — 2(44 (1101)
which 1s related to the previous ¢ via
e=2u(€~1). (1.102)
From (1.100) we see that
]
ui(q) = — e (f (m+A)q,(q-u)). (1.103)
Hq
On the other hand, dividing (1.100) by ¢; and summing over i gives
(@ u)= s
L VO S S
1
X Z e’ Y — 5(fi = (M+A)q,-(Q'U))]-
|: i C[a i q,uq*+ (],
From this we find
B 1 £ fiq
(q-u)= 2 2’
( . , 1 )uﬂl, pq + eq;
3+ —uq ),
+ A [ Mgt gy
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Reinserting this into (1.103) yields

ui(q) = {a;ﬁ;j - 8615%6&@/[3 +el(p + A) — pg? § ak]}fj(‘-])
where

a; = 1/(uq’® + eg?). (1.104)

The right-hand side displays the desired inverse matrix G;(q) = D™ '(q);-
In the isotropic limit it reduces to (1.77). If the anistropy is small, one
may use the approximate expression [compare (1.98)]

2 y~1
G@—XU:E%%ﬁ—h—xT. (1.105)
w

Actually, the external force problem will not be of direct interest in our
further discussion and was presented here mainly in order to give some
insight into the structure of the differential equations associated with the
stress problem. From now on, we shall only be concerned with the
so-called internal stress problem in which there are no external body
forces, i.e., fi(x) =0. As a consequence, the stress tensor is always
divergenceless,

1.6, TWO-DIMENSIONAL ELASTICITY

[t will sometimes be useful to study the simplified situation of a two-
dimensional crystal. In nature, such crystals do not really exist. It is
nevertheless possible to prepare certain limiting systems which, to a
certain approximation, behave like two-dimensional systems. Examples
are monolayers of helium, xenon, argon, krypton, or methane on smooth
graphite surfaces. We shall give more details about such systems later in
Chapters 7 and 14.

In two dimensions, there are only three strain components uyy, s, U5
and six elastic constants ¢, with @, b running through, say, 1, 2, 4. For
square lattices, there are again three independent ¢,;,'s (¢, €12, ¢44) and
the elastic energy density has the form [compare (1.16)]
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e(x) = doy (uiy + un) + cppug i + 204472 (1.107)

In the isotropic case this reduces to

e(x) = pu; + %u,%. (1.108)

The stress tensor is given by
011 = City + Clalaa, O = Cpallyy + €z, 02 = decaqtyz,  (1.109)

so that

1 1 1
e(x) = —[20%2 + (ot + 0%) — —(oy + 0'22)2] ) (1.110)
du ¢ Y
where v = £(2€&(cau/cr2) +2) [in D dimensions, y= &2€&(caa/ci2) + D)
= Déx/A]. In the isotropic case [when &= (c;; — c12)/2¢c44 = 1, Caa = p,
Ci2 = A, Ci1 = 2’.L+ /\]
O’,-j=2,LLu,-I-+/\5,-ju€g (1.111)
and
e = (2p + 20 uge = 2K U,
so that the modulus of compression 1s

K=u+A (1.112)

[in D dimensions, x = (2u + DAY D]. The inverse relation of (1.111) is

1 A

and we find the Poisson ratio, as in (1.56), by setting only oy; # 0 and
calculating

1 A A
u11=~2;(1—§;)0'11, u22:—2_KG'“. (1114)
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Hence

ng_ A . A
My 2Kk — A 2‘LL“|'/\

V= -

(1.115)

[in D dimensions v = A/(2u + (D — 1)A}]. With this v, A2k = v/(1 + v)
and the energy has the same stress form (1.43) as in three dimensions.

Since (1.68) is the same in all dimensions, the elastic Green’s function
in momentum space for isotropic materials is always

A+

1 , U
Gi(q) = —[qhﬁr - i } : 1.116)
j pra R R (

Let us study this function in x space. First we form the Fourier transform
of l/q*

d’q Ll
(277)26”‘ ? (1.117)

va(x) =

This integral is even more divergent than the three-dimensional case
(1.88). Since the infinities are due to the small g region of 1/g*, we
introduce a small regulator mass & and express v4(x) in terms of the
two-dimensional Yukawa potential [recall (6.105), (6.119) of Part I]

d’q | 1 1
1q-x _
Cmn S P+ 57 Ko(dlx

vs(X) =

), (1.118)

namely,

, d x| o x| 8 1
T _ M9 = — K,|5|x]).
alx) L"T;( aa—”S(x)) 259061 > = 725503 ]y 2o 1OKD

(1.119)

For small |x|, K((8]x|) can be expanded, using the well-known series

1 1
K()(Z) = —log (2237) 1()(2) + ZZZ + ...

5

1 PN ,
~—loglzze” || 1+ ) +—+ O(z* .
log(zze )( 4) n O(z" logz)
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Hence
K(’)(Z)—-é—log(ge’)%% (1.120)
and
ry(x) = —i%[ 6]1x| 8|2 d ( loglx| + log (—ge 7’) _ %)]
B 4;& 87 (log (g‘”) ;) + %loglﬂ + . (1.121)

The first two terms diverge for §— 0. For some purposes it will be useful
to introduce the subtracted potential

ph(x) = v,(x) — 1y (0)—| L(log(ﬁ )—%) |8| log| x|,

which has no quadratic divergence, and a further subtracted version

Ix*

() = 05(x) = [xP0i(1) = ~log(x). (1.122)

which is completely finite.
From (1.121) it is easy to derive the longitudinal Green function®

0,0, U4 (X)

o qiq;
vh(x) = 1i a2 =
J'(x) 81_[;1'[1} (277_)26 (qZ + 52)~

lim ! —§;;lo Se” Ll 8 log|x| +— i , (1.123)
= ; — — X —_
50 4 & 2 4 & |x1

as well as the transverse one

“Notice that
N 1 S ) dq igx | 1
1;‘ — = il PR =, =
vl(x) + 87v,4(x) = (log( ) + log |x| J 5¢ R v-(x) o Ky(81x|).

as it should. Also ¢l (x) =vf(x).
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(%) = lim (%)2 (q +52)2 (8;V* = 3;0;)va(x)

——Lliog(2e7) +1)5, - i
= ao\logl5e7) +1)8; - i 8;log|x| — H2 (1.124)

Then the Green function is

G, (0 = ~o](x) +

11 3u ) 1 T X;X;
=—-=1s, log||x|2e”) +2 ) — = - .
,u47'r|: ‘u+2u(°g(|"’2“’ ) 2) A+2#(2 T )]

(1.125)

APPENDIX 1A. THE SYMMETRY CLASSES OF THE ELASTIC
MATRIX

The 32 crystal classes associated with the different point groups are given
in Table 1.2. For these, the matrices c,, fall into the following 9 symmetry
classes.

1. Cubic, all five classes:

€11 C12 Cr2
€11 Cp2 0
Cr1
Cop = .3 constants. (1A.1)
Caa
0 Cag
Cqa
- 4
2a. Tetragonal 4, 4, —:
m
Ci1 Ci2 Cp3 0 0 Cle
Ci1 O3 0 0 —c
C33 0 0 0
Cap = , 7 constants. (1A.2)
Ca4
0 Caq
Ceoo
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_ 4 2 2
2b. Tetragonal 42m, 4mm, 422, — — —
mm m

Ci1 Cy2 Ci13
€11 i3 0
C33
Cab = , 6 constants.
Caq
0 Caq
Cob (1A.3)
3. Hexagonal, all seven classes:
Ci1 €12 €13
€11 €13 0
€33
Cop = , 5 constants.
Ca4q
0 Caa (1A.4)
5(011 — C12)
4a. Trigonal, 3, 3:
Ci1 €12 C13 C14 —€25 0
Ci1 Ci3 | —Cia €25 0

C33 0 0 0
— 7 constants.

Cab = )
css 0 €25
0 Ca4 C14

e — o) (1A.5)

4b. Trigonal, 3m¢, 32¢, 3%5:

Ci1 Ci12 C13 cia O 0
i C13 ~cyy 0

Ca3 0 0 0

o

6 constants.

Cab =
Ca4 0 0

0 Ca4 Ci14
1ci —ci2) (1A.6)
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5. Orthorombic, all three classes:

Ci1 €12 €13
€2 C23 0
C33
Cah = . 9 constants.
cag O 0
0 Css O
Coo (1A.7)

6. Monoclinic, all three classes:

Ci1 €12 €13 0 c5s 0
Caz €23 0 c5 O
€33 0 ¢35 0
Cab = , 13 constants.
Caa 0 Ca6
O Css5 0
Co (1A.8)

7. Triclinic, both classes:
All 21 elements of the matrix ¢, are independent. In a crystal lattice in
which all atoms interact with central force only, and every atom is a
center of symmetry, elastic constants satisfy Cauchy’s relations ¢;;x; = ¢ys:

Cry = Cyy, C3| = Css, C12 = Cape

Clq4 = Csp, Crs = Copas Cin = Cys.

They reduce the 21 independent constants to 15.

Just as in the isotropic case, the elastic constants can be measured
by looking at the response to certain mechanical deformations. In the
absence of symmetry, the crystal has to be subjected to a large number of
different stresses in orders to measure all independent matrix elements
c,». The most accurate information on the ¢lastic constants comes from
the measurements of sound velocities in different directions. The
equation of motton of sound waves are obtained by equating f;(x) in
(1.54) with the inertial force —pii;(x, t) where p is the mass density. Then
(1.91) becomes
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—pli;(x, t) = D (%V) uj(x, 1). (1A.9)

With the ansatz u,;(x) = e @*~“?_ the sound velocity v(q) is given by
det(pq’v’8; — D;;(q)) = 0. (1A.10)

For cubic symmetry and sound waves in the (1,0,0) direction this gives
pvi=cyy, pUi = Cas (1A.11)

for the one longitudinal and the two transverse polarizations. In the
(1.1,0) direction,

pri = e + et 2c44), Pvrz, = Ca4, P”r22 =Li(cn —c2) (1A.12)
In the (1,1,1) direction,

pri=1(cyy + 2¢pp + 4ca), PUrz,_z =lcyy~cntea). (1A.13)
If only nearest and next nearest neighbours interact with harmonic

springs of potential (a,/2)x?, (a,/2)x?, respectively, the elastic constants
are

« o)+«
C44:C12:?2’ C“=ITZ’ S.C., (1A14)
o 4o
C44=C]2:’:1l’ 1 _CIZ_C44:72’ f.C.C., (IAIS)
2a 2a
C44=C12=§ al’ C11 _Clzz_;;—z’ b.C.C., (1A16)
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CHAPTER TWO

LINE-LIKE DEFECTS IN CRYSTALS

2.1. GENERAL REMARKS

The question arises whether there can exist nontrivial distortions of a
crystal if we remove all external body forces. At first sight, Eq. (1.54) is
solved uniquely by u;(x) =0 and the discussion is apparently finished.
This conclusion would be correct if we were to allow only for smooth field
configurations. Such a requirement would be too restrictive, however,
and could not account for many of the phenomena observed in actual
crystals.

No crystal produced in the laboratory is perfect. It always contains a
great number of defects. These may be chemical, electrical, or structural
in character, i.e., there may be foreign atoms, excess or missing
electrons, or the crystal symmetry may be destroyed locally.

In the present context we shall be interested only in the structural
defects of the intrinsic type, i.e., with no foreign atoms involved. They
may be classified according to their space dimensionality. The simplest
type of defect is the point defect. It is characterized by the fact that within
a certain finite neighbourhood only one cell shows a drastic deviation
from the perfect crystal symmetry. The most frequent origin of such point
defects is irradiation or an isotropic mechanical deformation under strong
shear stresses. We have noted in the Introduction that there are two types
of intrinsic point defects. Either an atom may be missing from its regular
lattice site (vacancy) or there may be an excess atom (interstitial) (see

77
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FIG. 2.1. Intrinsic point defects in a crystal. An atom may become interstitial, leaving
behind a vacancy. It may perform random motion via interstitial places until it reaches
another vacancy where it recombines. The exterior of the crystal may be seen as a reservoir
of vacancies.
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Fig. 2.1). Vacancies and interstitials are mobile defects. A vacancy can
move if a neighboring atom moves into its place, leaving a vacancy at its
own former position. An interstitial atom can move in two ways. It may
hop directly from one interstitial site to another. This happens in strongly
anisotropic materials such as graphite but also 1in some cubic materials
like Si or Ge. Or it may move in a way more similar to the vacancies by
replacing atoms, i.e., by pushing a regular atom out of its place into an
interstitial position which, in turn, affects the same change on its
neighbor, etc.

The thermal creation of point defects is suppressed by their large
activation energies. For vacancies this is lower than for interstitials, with
the following typical values:

Cu:0.8—-1.0eV,
Ag:0.6 —09eV,
Au: 0.6 —0.8¢V,
Lt :0.55¢V,
Cs : 0.26¢V.

The concentration ¢ = n/N of point defects per regular atoms is governed
by Boltzmann’s law ¢ = ¢ %7, Since 1eV corresponds to 11600K, there
are about 1% vacancies at 1000 K.

For interstitial atoms, the formation energies lie in the range of
3 — 6eV which makes them even rarer. In practical terms this means that
in thermal equilibrium a crystal contains at most some vacancies. If
interstitial atoms are found they are usually remnants of irradiation or
mechanical deformation which have not had time to return to an
equilibrium position.

Point defects have the property that if a number of them move close
together, the total energy becomes smaller than the sum of the individual
energies. The reason for this is easily seen. If two vacancies in a simple
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FIG.2.2. Formation of a dislocation line (of the edge type) from a disc of missing atoms.
The atoms above and below the missing ones have moved together and repaired the defect,

except at the boundary.

edge dislocation

cubic lattice come to lie side by side, there are only 10 broken valencies
compared to 12 when they are separated. If a larger set of vacancies
comes to lie side by side forming an entire disc of missing atoms, the
crystal planes can move together and make the disc disappear (see Fig.
2.2). In this way, the crystal structure is repaired. Only close to the
boundary line is such a repair impossible. The boundary line forms a
line-like defect.

Certamly, line-like defects can arise also in the opposite process of
clustering of interstitial atoms. If they accumulate side by side forming
an interstitial disc, the crystal planes move apart and accommodate the
additional atoms in a regular atomic array, again with the exception of the
boundary line. Line-like defects of this type are called dislocation lines.

It is obvious that a dislocation line need not only consist of a single disc
of missing or excessive atoms. There can be several discs stacked on top
of each other. Their boundary forms a dislocation line of higher strength.
The energy of such a higher dislocation line increases roughly with the
square of the strength. Dislocations are created and set into motion if
stresses exceed certain critical values. This is why they were first seen in
plastic deformation experiments of the nineteenth century in the form of
slip bands. The grounds for their theoretical understanding were laid
much later by Frenkel who postulated the existence of crystalline defects
in order to explain theoretically why materials yield to plastic shear about
a thousand times more easily than one might expect on the basis of a
naive estimate.

This estimate goes as follows. Suppose shear is applied to a crystal
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FIG. 2.3. A naive argument concerning the maximal stress supported by a crystal under
shear stress as indicated by the arrows. The two halves tend to slip against each other.
Assuming a periodic behavior o = o, sin{2mx/a), this reduces to o ~ o 27 (x/a) ~ w(x/
a). Hence a,,,, = n/27. Experimentally, however, o, ~ 107 to 10 % u.
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along the arrows in Fig. 2.3. We may imagine the material to consist of
two continuous halves touching each other along a periodically undulated
surface, to account for the crystal structure. The resistance to shear can
then be parametrized by some periodic function in the displacement x of
the top half against the bottom half since, if x is a multiple of the lattice
spacing a, the pieces fit perfectly and there is no stress. If we choose to
parametrize this periodic behaviour in a sinusoidal way, for simplicity, we
may write roughly

U = Opax SIN 277X/,

where o, 1s the maximal stress which the intertwined surfaces can
support. For x « a,

O = Omax 277X/4.

But x/a corresponds to the strain of this deformation so that by Hooke’s
law the maximal stress is related to the shear modulus by

Tmax = 2.

Experimentally, however, o, is much smaller, i.e.,
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FIG. 2.4. A dislocation line permits the two crystal pieces to move across each other in the
same way as a caterpillar moves through the ground. The bonds can flip direction
successively which is a rather easy process.

(2)

Tmax ~ 1073 = 1074 1.,

Thus something in the argument must be wrong and Frenkel concluded
that the plastic slip must proceed not by the two halves moving against
each other as a whole but stepwise, by means of defects. In 1934,
Orowan, Polanyi and Taylor recognized these defects as dislocation lines.
The presence of a single moving edge dislocation allows for a plastic shear
movement of the one crystal half against the other. The movement
proceeds in the same way as that of a caterpilier. This is pictured in Fig.
2.4. One leg is always in the air breaking translational invariance and this
is exchanged against the one in front of it, etc. In the crystal shown in the
lower part of Fig 2.4, the single leg corresponds to the lattice plane of
excess atoms. Under stress along the arrows, this moves to the right.
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FIG. 2.5. Formation of a disclination from a stack of layers of missing atoms (cf. Fig. 2.2).
Equivalently, one may cut out an entire section of the crystal. In a real crystal, the section
has to conform with the symmetry angles. In the continuum approximation, the angle is
meant to be very small.

After a complete sweep across the crystal, the upper half is shifted against
the lower by precisely one lattice spacing.

If many discs of missing or excess atoms come to lie close together
there exists a further cooperative phenomenon. This is illustrated in Fig.
2.5. On the left-hand side, an infinite number of atomic half planes (discs
of semi-infinite size) has been removed from an ideal crystal. If the half
planes themselves form a regular crystalline array, they can fit smoothly
into the original crystal. Only at the origin is there a breakdown of
crystal symmetry. Everywhere else, the crystal is only slightly distorted.
What has been formed is again a line-like defect called a disclination.
Dislocations and disclinations will play a central role in our further
discussion.

Before coming to this let us complete the dimensional classification of
two-dimensional defects. They are of three types. There are grain
boundaries where two regular lattice parts meet, with the lattice
orientations being different on both sides of the interface (see Fig 2.6).
They may be considered as arrays of dislocation lines in which half planes
of point defects are stacked on top of each other with some spacing,
having completely regular lattice planes between them. The second type
of planar defects are stacking faults. They contain again completely
regular crystal pieces on both sides of the plane, but instead of being
oriented differently they are shifted one with respect to the other (see Fig
2.7). The third unavoidable type is the surface of the crystal.

From now on we shall focus attention upon the line-like defects.

2.2. DISLOCATION LINES AND BURGERS VECTOR

Let us first see how a dislocation line can be characterized mathema
tically. For this we look at Fig. 2.8 in which a closed circuit in the ideal
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FIG.2.6. A grain boundary where two crystal pieces meet with different orientations in

such a way that not every atomic layer matches (here only every other one does).
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FIG.2.7. Two typical stacking faults. The first is called growth-stacking fault or twin

boundary, the second deformation-stacking fault.
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FIG. 2.8. The definition of the Burgers vector b. In the presence of a dislocation line the
image of a circuit which is closed in the ideal crystal fails to close in the defected crystal. The
opposite is also true. The failure to close is measured by a lattice vector, called Burgers
vector. The dislocation line in the figure is of the edge type and the Burgers vector points
orthogonally to the line.
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crystal 1s mapped into the disturbed crystal. The orientation is chosen
arbitranly to be anticlockwise. The prescription for the mapping is that
for each step along a lattice direction, a corresponding step is made 1n the
disturbed crystal. If the original lattice sites are denoted by x,,, the image
points are given by x, + u(x, ), where u(x,) is the displacement amount
field: At each step, the image point moves in a slightly different original
point. After the original point has completed a closed circuit, call it By,
the image point will not have arrived at the point of departure. The image
of the closed contour By is no longer closed. This failure to close
is given precisely by a lattice vector b(x) called a local Burgers vector,
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which points from the beginning to the end of the circuit.® Thus the
dislocation line is characterized by the following equation,

@ Au,—(x,,) = bis (213)

B()

where Au;(x,) are the increments of the displacement vector from step
to step. Equivalently, we can consider a closed circuit in the disturbed
crystal, call it B, and find that its counter image in the ideal crystal does
not close by a vector b called the frue Burgers vector which now points
from the end to the beginning of the circuit.”

If we consider the same process in the continuum limit, we can write

f du;(x,) = b, f du;(x.,) = b;. (2.1b)
B B

0

The closed circuit B 1s called Burgers circuit. The two Burgers vectors
are the same if both circuits are so large that they lie deep in the ideal
crystal. Otherwise they differ by an elastic distortion.

A few remarks are necessary concerning the convention employed in
defining the Burgers vector. The singular line L is in principle without
orientation. We may abitrarily assign a direction to 1it. The Burgers
circuit is then taken to encircle this chosen direction in the right-handed
way. If we choose the opposite direction, Burgers vector changes sign.
However, the products b, dx;, where dx; is the infinitesimal tangent vector
to L, are invariant under this change. Notice that this is similar to the
magnetic case discussed in Part 1I. There one defined the direction of the
current by the flow of positive charge. The Burgers circuit gives $du = 1.
One could, however, also reverse this convention referring to the
negative charge. Then $du would give —1. Again, [-dx; is an invariant.
Only these products can appear in physical observables such as the
Biot-Savart law.

The invariance of b,dx; under reversal of the orientation has a simple
physical meaning. In order to see this, consider once more the above
dislocation line which was created by removing a layer of atoms. We can
see in Fig. 2.8 that in this case b X dx points inwards, namely, towards

“Qur sign convention is the opposite of Bilby er af. and the same as Read’s (see Notes and
References). Notice that in contrast to the tocal Burgers vector. the true Burgers vector i1s
defined on a perfect lattice.
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FIG.2.9. A screw disclination which arises when tearing a crystal. The Burgers vector is
paralle! to the vertical line.

screw dislocation

the vacancies. Consider now the opposite case in which a layer of new
atoms is inserted between the crystal planes, forcing the planes apart to
relax the local stress. If we now calculate $zdu,(x) =b,, we find that
b X dx points outwards, i.e., away from the inserted atoms. This is again
the directton in which there are fewer atoms. Both statements are
independent of the choice of the orientation of the Burgers circuit. Since
the second case has extra atoms inside the circle, where the previous one
had vacancies, the two can be considered as antidefects of one another.
If the boundary lines happen to fall on top of each other, they can
annthilate each other and re-establish a perfect crystal. This can happen
only piece-wise in which case the parts where the lines differ remain as
dislocation lines. In both of the examples. the Burgers vectors are every-
where orthogonal to the dislocation line and one speaks of a pure edge
dislocation (Fig. 2.2).

There is no difficulty in constructing another type of dislocation by
cutting a crystal along a lattice half-plane up to some straight line L, and
translating one of the lips against the other along the direction of L. In
this way one arrives at the so-called screw dislocation shown in Fig. 2.9 in
which the Burgers vector points parallel to the line L.

When drawing crystals out of a melt, it always contains a certain
fraction of dislocations. Even in clean samples, at least one in 10° atoms
is dislocated. Their boundaries run in all directions through space. We
shall see very soon that their Burgers vector is a topological invariant
for any closed dislocation loop. Therefore, the character “‘edge™ versus
“screw” of a dislocation line is not an invariant. It changes according to
the direction of the line with respect to the invariant Burgers vector b,. It
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is obvious from the Figs 2.2 to 2.9 that a dislocation line destroys the
translational invariance of the crystal by multiples of the lattice vectors. If
there are only a few lines this destruction is not very drastic. Locally, i.e.,
in any small subspecimen which does not lie too close to the dislocation
line, the crystal can still be described by a periodic array of atoms whose
order is disturbed only slightly by a smooth displacement field w;(x).

2.3. DISCLINATIONS AND THE FRANK VECTOR

Since the crystal is not only invariant under discrete translations but also
under certain discrete rotations we expect the existence of another type of
defect which is capable of destroying the global rotational order, while
maintaining it locally. These are the disclination lines of which one
example was given in Fig. 2.5. It arose as a superposition of stacks of
layers of missing atoms. In the present context, it is useful to construct it
by means of the following Gedanken experiment. Take a regular crystal
in the form of cheese and remove a section subtending an angle ( (see
Fig. 2.10). The free surfaces can be forced together. For large () this
requires consitderable energy. Still, if the atomic layers on the free sur-
faces match together perfectly, the crystal can re-establish locally its
periodic structure. This happens for all symmetries of the crystal. In a
simple cubic crystal, € can be 90°, 180°, 270°. The 90° case is displayed in
Fig. 2.11.

In Fig. 2.11 we can imagine also the opposite procedure going from the
right in Fig. 2.10 to the left. We may cut the crystal, force the lips open
by  and insert new undistorted crystalline matter to match the atoms in

FIG. 2.10. The Voiterra cutting and welding process leading to a wedge disclination.

L L
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FIG. 2.11.  The lattice structure at a wedge disclination in a simple cubic lattice. The Frank
angle () is equal to the symmetry angles 90° or —90°. The crystal is locally perfect except
close to the disclination line.

Q=9 Q= -90°

the free surfaces. These are the disclinations of negative angles. The case
for 1 = —90° is shown in Fig. 2.11.

The local crystal structure is destroyed only along the singular line
along the axis of the cheese. The rotation which has to be imposed upon
the free surfaces in order to force them together may be represented by a
rotation vector {} which, in the present example, points parallel to L and
to the cut. This is called a wedge disclination. It is not difficult to
construct other rotational defects. The three possibilities are shown in
Figs. 2.12. Each case is characterized by a vector. In the first case, ()
pointed parallel to the line L and the cut. Now, in the second case, it is
orthogonal to the line L and () points parallel to the cut. This is a splay
disclination. In the third case, {1 points orthogonal to the line and cut.
This is a twist disclination.

The vector 1 is referred to as the Frank vector of the disclination. Just
as in the construction of dislocations, the interface at which the material
is joined together does not have any physical reality. For example. in Fig.
2.12a we could have cut out the piece along any other direction which is
merely rotated with respect to the first around L by a discrete symmetry
angle. Moreover, instead of a straight cut, we could have chosen an
irregular piece as long as the faces fit together smoothly (recall Fig. 2.10).
Only the singular line is a physical object.

The Gedanken experiments of cutting a crystal, removing or inserting
slices or sections, and joining the free faces smoothly together were first
performed by Volterra in 1907. For this reason one speaks of the creation
of a defect line as a Volterra process and calls the cutting surfaces. where
the free faces are joined together, Volterra surfaces.
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FIG. 2.12.(a=c). Three different possibilities of constructing disclinations: (a) wedge. (b)
splay, and (c) twist disclinations.

L L
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2.4. INTERDEPENDENCE OF DISLOCATIONS AND
DISCLINATIONS

It must be pointed out that dislocation and disclination lines are not
completely independent. We have seen before in Fig. 2.5 that a dis-
clination line was created by removing stacks of atomic layers from a
crystal. But each layer can be considered as a dislocation line running
along the boundary. Thus a disclination line is apparently indis-
tinguishable from a stack of dislocation lines, placed with equal spacing
on top of each other.

Conversely, a dislocation line is very similar to a pair of disclination
lines running in opposite directions close to each other. This is illustrated
in Fig. 2.13. What we have here is a pair of opposite Volterra processes
of disclination lines. We have cut out a section of angle (2, but instead of
removing it completely we have displaced it merely by one lattice spacing
a. This is equivalent to generating a disclination of the Frank vector (2
and another one with the opposite Frank vector —{) whose rotation axis
is displaced by a. It is obvious from the figure that the result is a
dislocation line with Burgers vector b.

Because of this interdependence between dislocations and disclinations,
the defect lines occurring in a real crystal will, in general, be of a mixed
nature. It must be pointed out that disclinations were first observed and
classified by F.C. Frank in 1958 in the context of liquid crystals. Liquid
crystals are mesophases. They are liquids consisting of rod-like molecules.
Thus, they cannot be described by a displacement field u;(x) alone but
require an additional orientational field »;(x) for their description. This
orientation is independent of the rotational field w;(x) = 1g;09;u,(x).
The disclination lines defined by Frank are the rotational defect lines with
respect to this independent orientational degree of freedom. Thus, they

FIG. 2.13. The generation of a dislocation line from a pair of disclination lines running in
opposite directions at a fixed distance b. The Volterra process amounts to cutting out a
section and reinserting it, but shifted by the amount b.
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are a priori unrelated to the disclination lines in the rotation field
wi(x) = ted;up(x). In fact, the liqud is filled with dislocations and
w-disclinations even if the orientation field n;(x) is completely ordered.

Friedel in his book on dislocations (see the references at the end) calls
the n;-disclinations, rotation dislocations. But later the name disclinations
became customary (see Kléman’s article cited in the Notes and
References). In general, there is little danger of confusion, if one knows
what system and phase one is talking about.

2.5. DEFECT LINES WITH INFINITESIMAL DISCONTINUITIES
IN CONTINUOUS MEDIA

The question arises as to how one can properly describe the wide variety
of line-like defects which can exist in a crystal. In general, this is a rather
difficult task due to the many possible different crystal symmetries. For
the sake of gathering some insight it is useful to restrict oneself to
continuous isotropic media. Then defects may be created with arbitrarily
small Burgers and Frank vectors. Such infinitesimal defects have the
great advantage of being accessible to differential analysis. This is
essential for a simple treatment of rotational defects. It permits a charac-
terization of disclinations in a way which is very similar to that of dis-
locations via a Burgers circuit integral. Consider, for example, the wedge
disclination along the line L (shown in Figs. 2.5, 2.10, 2.11 or 2.12a), and
form an integral over a closed circuit B enclosing L.

Just as in the case of dislocations this measures the thickness of the
material section removed in the Volterra process. Unlike the situation for
dislocations, this thickness increases with distance from the line. If Q is
very small, the displacement field across the cut has a discontinuity which
can be calculated from an infinitesimal rotation

Au; = (Q % x);, (2.2)

where x 1s the vector pointing to the place where the integral starts and
ends. In order to turn this statement into a circuit integral it is useful to
remove the explicit dependence on x and consider not the displacement
field u;(x) but the local rotation field accompanying the displacement
instead. This is given by the antisymmetric tensor field

w;; (%) = $(0; 1;(x) — 8, u;(x)). (2.3)
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The rotational character of this tensor field is obvious by looking at the
change of an infinitesimal distance vector under a distortion

dx; - dx,' = (aju,')dx]'
= u,‘jdx]‘ - wijdxj. (24)

The tensor ficld w;; is associated with a vector field w; as follows:
@;(X) = &5 Wi (X) (2.5)
e.,
w;(x) =g w0 (x) = H(V X u);,
In terms of w;, the change of distance (2.4) takes the form
dx; — dx; = u;(x) dx; + (w(x) X dx),, (2.6)

with a transparent separation into a local change of shape and a local
rotation. Now, when looking at the wedge disclination we see that due to
(2.2), the field w;(x) has a constant discontinuity ) across the cut. This
can be formulated as a circuit integral

B

The value of this integral is the same for any choice of the circuit B as
long as it encloses the disclination line L.

Notice the way in which this simple characterization depends essentially
on the infinitesimal size of the defect. If ) were finite, the differential
expression (2.2) would not be a rotation and the discontinuity across the
cut could not be given in the form (2.7) without specifying the circuit B.
The difficulties for finite angles are a consequence of the non-Abelian na-
ture of the rotation group. Only infinitesimal local rotations have additive
rotation angles with only quadratic corrections, which can be neglected.

2.6. MULTIVALUEDNESS OF THE DISPLACEMENT FIELD

As soon as a crystal contains a few dislocations, i1t 1s realized that the
definition of displacement field is intrinsically non-unique. The displace-
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ment field is really multivalued. In a perfect crystal, in which the atoms
deviate little from their equilibrium positions x, it is natural to draw the
displacement vector from the lattice places x to the nearest atom. In
principle, however, the identity of the atoms makes such a specific assign-
ment impossible. Due to thermal fluctuations, the atoms exchange
positions from time to time by a process called self-diffusion. After a very
long time, the displacement vector, even in a regular crystal, will run
through the entire lattice. Thus, if we describe a regular crystal initially
by very small displacement vectors u;(x), then, after a very long time,
these will have changed to a permutation of lattice vectors, each of them
occurring precisely once, plus some small fluctuations around them.
Hence the displacement vectors are intrinsically multivalued, with u,(x)
being indistinguishable from u;(x) + aN;(x), where N;(x) are integer
numbers and a is the lattice spacing.

It is interesting to realize that this property puts the displacement
fields on the same footing with the phase variable y(x) of superfluid ‘He.
There the indistinguishability of y(x) and y(x) + 27w N(x) had an entirely
different reason. It followed directly from the fact that only the com-
plex field ¥(x) = |y(x)| e?™, the wave function of the condensate, was
physically observable.

Thus, in spite of the different physics described by the variables y(x),
u;(x), they both share this characteristic multivaluedness. It is just as if
the rescaled u,(x) variables, v;(x) = (2n/a)u;(x) were phases of three
complex fields,

i (x) = | (x)] e,

which describe the positions of the atoms.

In a regular crystal, this multivaluedness of «;(x) has no important
physical consequences. The atoms are strongly localized and the exchange
of positions occurs very rarely. The exchange is made irrelevant by the
identity of the atoms and symmetry of the many-body wave function. This
is why the natural assignment of u(x) to the nearest equilibrium position
x presents no problems. As soon as defects are present, however, the full
ambiguity of the assignment comes up: When removing a layer of atoms,
the result is a dislocation line along the boundary of the layer. Across the
layer, the positions u,(x) jump by a lattice spacing. This means that the
atoms on both sides are interpreted as having moved towards each other.
Figure 2.14 shows that the same dislocation line could have been con-
structed by removing a completely different layer of atoms, say S', just as
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FIG. 2.14. The figure shows that in the presence of a dislocation line. the displacement
field is defined only modulo lattice vectors. This is due to the fact that the surface S on
which the atoms have been removed is arbitrary as long as the boundary line stays fixed.
Shifting § implies shifting of the reference positions, from which to count the displacements
i, (x).
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long as it has the same boundary line. The jump of the displacement field
across the shifted layer §’ corresponds to the neighbouring atoms of this
layer having moved together and closed the gap. Physically, there is no
difference. There is only a difference in the descriptions which amounts to
a difference in the assignment of the equilibrium positions from where to
count the displacement field u,(x). In contrast to regular crystais there
now exists no natural choice of the nearest equilibrium point. It is this
multivaluedness which will form the basis for the gauge field description
of the solid.

2.7. SMOOTHNESS PROPERTIES OF THE DISPLACEMENT
FIELD AND WEINGARTEN'S THEOREM

In order to be able to classify a general defect line we must first give a
characterization of the smoothness properties of the displacement field
away from the singularity. In physical terms, we have to make sure that
the crystal matches properly together when cutting and rejoining the free
faces.

[n the scalar representation of magnetism and vortex lines described in
Part 11, Sections 1.5, 1.7, 1.8, this condition was given by the integrability
condition [recall (1.79), Part 11|

(8:6, — 9,8,) y(x) = 0, (2.8)

which really amounts to the Maxwell equation.
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(VX H), =(VXVy), = g8, 7= J. (2.9)

with j; = 0 away from the current loop. As long as the cutting faces are
avoirded, Eq. (2.8) was trivial since then the function y(x) was smooth.
Close to the Volterra surface § at which the free faces join, however,
there was danger. Due to the jump of y(x) across S, the gradient d;y had
a o-function singularity on §. Nevertheless, the gradient was supposed to
be the same on both sides of § and it was this condition from which we
derived that fact that the jump Avy(x) across the sheet had to be a
constant which, n turn implied, via Stokes’ theorem, that y(x) satisfied
the integrability condition (2.8) over the whole space including the sur-
face §, except for the singular current line.

Let us now study the corresponding situation for the displacement field
u;(x). Away from the cutting surface S, u,;(x) is perfectly smooth and
trivially satisfies the integrability condition

(0,0, — 0,0, ty (x) = 0. (2.10)

Across the surface, u,;(x) is discontinuous. However, the open faces of the
crystalline material fit properly to each other. This implies that the strain
as well as its first derivatives should have the same values on both sides of
the cutting surface §:

AH,‘J;: 0, (2113)
This severely restricts the discontinuities of u;(x) across S. In order to see
this let x(1), x(2) be two different crystal points slightly above and below

S and C", C be two curves connecting the two points. (See Fig. 2.15.)
We can then calculate the difference of the discontinuities as follows:

A (1) = Aw; (2) = [u,(17) — o, (1 )] = [, (27 ) — u;(27)]

= f_ dx, 0,u, — j_ dx; d;u;. (2.12)
I 1
C C

Using the local rotation field w;(x) we can rewrite this as
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FIG. 2.15. This figure defines the geometry used in the derviation of Weingarten’s
theorem [Eqgs.

(2.12)-(2.21)).

B,

Au; (1) — A, (2) = f dx;(4; — w;) — fﬁ dx (i — wy). (2.13)
L 1
(1+ (;7

The w,;; pteces may be integrated by parts:

= (x5 = x;(17)) +f dog (x; = x;(17)) g
N

- f d.xk (XI' — X,’(l —))Hk W,
{

l +

+ (x5, — x5 (17 )y

= [w(x,(zﬂ — (1) w, (2%) + f:cm(x, —x, (I )iy, | = [+— -],
(2.14)
Since
(1Y =x(17). 52" =x(2).
we arrive at the relation
Au (1) = Aw; (2) = = (x;(1) = (D) Hw,; (27) — 0;(27))
(2.15)

+ % dx{uy + (x; —x (1) 0, 0, )
‘-
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where C77 is the closed contour consisting of C* followed by —C~.
Since C* and —C™ are running back and forth on top of each other, the
closed contour integral can be rewritten as a single integral along —C~
with ;. and 9, w; replaced by their discontinuities across the sheet S.
Moreover, the discontinuity of 4, w; can be decomposed in the following
manner:

Aldrwy) =30, (01, — 9;1)(x ) — (X — x")
= (), ij(xi) — (')f le,-(xi) + %(8,\ (')‘,- - 8,- dA) u,—(x_)

o %(akaf — &0 ) ui(x) + (8,0, — A0 u(x7) —(x — x").
(2.16)

Since above and below the sheet, the displacement field is smooth, the
two derivatives in front of u(x™) commute. Hence the integral in (2.15)
becomes

_f dxk{Au,-k +(X},'“*XJ,‘)(I)A((",‘HA-[Wa_,,-llk,')}. (217)
C

This expression vanishes due to the physical requirement (2.11). As a
result we find that the discontinuities between two arbitrary points 1 and
2 on the sheet have the simple relation

Au;(2) = Au (1) — Q;(x,(2) — x;(1)), (2.18)
where () is a fixed infinitesimal rotation matrix given by
i = Aw;(2) = w;(27) — w; (27). (2.19)
We now define the rotation vector
Qp =4e;; L) (2.20)
in terms of which (2.18) takes the form
Au(2) = Au(l) + Q x (x(2) — x(1)). (2.21)
This forms the content of Weingarten's theorem: The discontinuity of

the displacement field across the cutting surface can only be a constant
vector plus a fixed rotation,
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Notice that these are precisely the symmetry elements of a solid con-
tinuum. When looking back at the particular dislocation and disclination
lines in Figs. 2.2~ 2.12 we see that all the discontinuities obey this
theorem, as they should. The vector Q is the Frank vector of the dis-
clination lines. For a pure disclination line, 0 = 0 and Au(1) = Au(2) = b
is the Burgers vector.

2.8. INTEGRABILITY CONSIDERATIONS

For vortex lines, the smoothness of the superflow velocity ¢, (x); ~ 9, y(x)
implied that the jump of y(x) was a constant and this, in turn, led to the
integrability condition

(9,0, — 9;9;) y(x) =0

away from any vortex line [recall Eq. (1.78), Part I1I]. Here we can derive
something quite similar for the rotation field w;(x). Taking Weingarten’s
theorem (2.18) and forming derivatives, we see that the jump of the
w;;(x) field is necessarily a constant, namely ();. Hence wy, also satisfies
the integrability condition

(8,— 8, = d] 8,) W = (), (222)
cverywhere except on the defect line. The argument is the same as that

for the vortex lines. We simply observe that the contour integral over a
Burgers circuit

B B

can be cast, by Stokes” theorem, in the form
Awff = f dSm €kt 04 0y Wy, , (224)
AYid

where S” is some surface enclosed by the Burgers circuit. Since the result
is independent of the size, shape, and position of the Burgers circuit as
long as it encloses the defect line L. this implies

Emke 5 0w (x) =0 (2.25)
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everywhere away from L, which is what we wanted to show.

In fact, the constancy of the jump in w,; could have been derived
somewhat more directly, without going through (2.22) — (2.25). by taking
again the curves C7, € on Fig. 2.15 and calculating

PR

A(J)”(l) - Aw”(Z) = f d)(k ('ik w;; — f dxk dy wy; = f dxk A(a/\ (U,'}),
l- 1 1

C ¢ C (2.26)

From the assumption (2.11) together with (2.16) we see that w,(x) does
not jump across the Volterra surface S. But then (2.26) shows us that Aw;,
1s a constant.

Let us now consider the displacement ficld itself. As a result of
Weingarten's theorem, the integral over the Burgers circuit B, in Fig,
2.15 gives

Au;(2) = %B du; = Au(l) — Q; (x;(2) — x;(1)). (2.27)

By treating the integral over B- in the same way as those over C*, C™ in
(2.13)-(2.15), we arrive at the equation

A, (1) — Qu(x,(2) = x, (1)) = (ﬁ dyp{uy + (x; — x,(2))0c 0, ). (2.28)

A.

Here we observe that the factors of x;(2) can be dropped on both sides by
(2.23) and Aw, = ;. By Stokes’ theorem, the remaining equation then
becomes an equation for the surface integral over S%

AH,(]) + gl,‘j./\",'(l ) = f dS( Efmk am {Hik + xf ak C!)”'}
Sz
- f dS( Etmk {(am Uix + ak wim) + Xy (}m a/\' Ct),'}'} : (229)
§éz

This must hold for any size. shape, and position of the circuit B> as
long as it encircles the defect hine L. For all these ditferent configurations,
the left-hand side of (2.29) is a constant. We can therefore conclude that

j dS( {E(mA [am”fk T (')A wim] + '\'1 Eimk "}m "}A (1),, Jl = (23())
&
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for any surfaces §' which does not enclose L. Moreover, from (2.22) we
see that the last term cannot contribute. The first two terms, on the other

hand, can be rewritten, using the same decomposition of d,w;, as in
(2.16), in the form

_f dS( Etmk (Skmi - Smr'k + kam) = f dS(’ Eemk Smkia (231)
S’ S’

where we have abbreviated

Skrm'(x) = %(ak am o am ak) Ll,-(X). (232)

Since this has to vanish for any §’, we conclude that away from the defect
line, the displacement field u;(x) also satisfies the integrability condition

(3 0y — 0,0 Op Y i (x) = 0. (2.33)

On the line L, the integrability conditions for «; and w;, are. in general,
both violated. Let us first consider w;;. In order to give the constant result
Aw;(x) = (}; in (2.24) the integrability condition must be violated by a
singularity in the form of a 8-function along the line L,

S5 (L) = fﬁl ds%—é@ﬁ‘”(x - X(s)) (2.34)

[shorthand for 8,(x. L). Eq. (11.1.76)] namely.,
Efmk Oy O W = Q[j o,(L). (2-35)
Then (2.25) gives Aw; = £; via the formula

f‘ dS¢8¢(L) = 1. (2.36)

In order to see how the integrability condition is violated for u;(x),
consider now the integral (2.29) and insert the result (2.31). This gives

Aui(l) + Qiixj(l) = f dS( Eemk (Smki + X am ak wij)- (237)
582

The right hand side is a constant independent of the position of the
surface $%. This implies that the singularity along L is of the form
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Eémk(am ak U; + xj am ak wij) = bf' 6( (L), (238)
where we have introduced the quantity

Inserting (2.35) into (2.38) leads to the following violation of the
integrability condition for u;(x) along L,

Etmk O Op U = (bi - Qij xj) O¢ (L) (2-40)

2.9. DISLOCATION AND DISCLINATION DENSITIES

In the last section we saw that the most general defect line L is charac-
terized by a violation of the integrability condition for displacement and
rotation fields which had the form of a é-function along the line L. In

analogy with the current density of magnetism and the vortex density y in
Part 11, (1.78)

Ji(x) = €, 0; 0, v(x) = 18;(L), (2.41)

we introduce densities for dislocations and disclinations, respectively, as
follows:

@ (X) = €ixe 0k ¢ U;(X), (2.42a)

0;(x) = € i1 9 wi(x), (2.42b)

where we have used the vector form of the rotation field w; =i, @y, In
order to save one index. For the general defect line along L, these
densities have the form

a;;(x) = 6;(L)(b; — Ly xx ), (2.43a)
0, (x) = 6;(L) Y, (2.43b)

where ; =1¢;;, Q) is the Frank vector.

In (2.43) the rotation by € is performed around the origin. Obviously,
the position of the rotation axis can be changed to any other point x, by a
simple shift in the constant b;— b/ = b; + ({1 X xy);. Then a;(x)=
8 (L){b; + (£} X (x — xy);} . Notice that due to the identity
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3;8;(Ly=0 (2.44)
for closed lines L, the disclination density satisfies the conservation law

which implies that disclination lines are always closed. This is not true for
media with a directional field, e.g., nematic liquid crystal. Such media are
not considered here since they cannot be described by a displacement
field alone. Differentiating (2.43a) we find the conservation law for dis-
clination lines d;a;; = —();8;(L) which, in turn, can be expressed in the
form

a,‘a,’j = T &k @k( . (246)

From the linearity of the relation (2.42) in u; and w; it is obvious that
these conservation laws remain true for any ensemble of infinitesimal
defect lines.

The conservation law (2.46) may, in fact, be derived by purely
differential techniques from the first smoothness assumption (2.11a).
Using Stokes’ theorem, Au;; can be expressed in the same way as Aw; in
(2.24), and by the same argument as the one used for w; we conclude that
the strain is an integrable function in all space and satisfies

(8,— Gk - 6k 6,) ng(X) = (). (247)
If we then look at a;; in the general definition (2.42a), rewrite it as

Qi = Eige Ok 0g Uy = Eie Ox (Ug + ;)

= Eikr Bk ugj + 51'1- ak Wy — aj w;, (248)

and apply the derivative 9;, this gives directly (2.46).

In a similar way, the conservation law (2.45) can be derived by
combining both smoothness assumptions (2.11a) and (2.11b). The first
can be stated, via Stokes’ theorem, as an integrability condition for the
derivative of strain, i.e.,

(0¢ 8, — 8, 8¢) 0 u;(x) = 0. (2.49)

Let us recall that from the first assumption (2.11a) we have concluded
in (2.16) that 9, w;(x) is also a completely smooth function across the
surface S. Hence, 9, w,;; must also satisfy the integrability condition
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(af an - an a() ak W (X) = 0.
Together with (2.49) this implies that 9, d;u;(x) is integrable:
(a( Op — 0, 0 ) P aiuj(x) =0. (250)

If we write down this relation three times, each time with €, n, k
exchanged cyclically, we find

O¢ Rypij + 9, Rygij + 9k Repij = 0,
where R, is an abbreviation for the expression,
Roki; = (0,9 — 04 9,) 0,u;(X). (2.51)
Contracting k with 7 and € with j gives us
3 Ryiij + 8, Ry + 0; R = 0.

Now we observe that because of (2.47), R,;; is anti-symmetric not only in
n and k but also in { and j so that

26]-R,-n]—,- - Bn RUJ’ = 0

This, however, i1s the same as
28j (% &‘qu Enke quk(‘) = Oa (252)
as can be verified using the identity

8 -

ipg Enke = ajn apk 5(](‘ + ajk 6{)(' aqn + 5]( 5[)}1 6(]/(

- 6jn ‘Sp( aqk - Sjk 3[)11 6(](‘ - 6/'(’ 6pk 8(])1 . (253)

Recalling, now the definition (2.51) and w, =!le&,,¢dpue, Eq. (2.52)
becomes

zgi[an."ap aq W, = 0-' (254)

and this is precisely the conservation law for disclinations (2.45)
[0, 0, = 0] which we wanted to prove.
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FIG. 2.16. Illustration of Volterra process in which an entire volume piece is moved with
the vector b;.

2.10. MNEMONIC PROCEDURE FOR CONSTRUCTING
DEFECT DENSITIES

There exists a simple mnemonic procedure for constructing the defect
densities and their conservation laws. This we now explain.

Suppose we perform the Volterra cutting procedure on a closed surface
S, dividing it mentally in two parts, joined along some line L (see Fig.
2.16). On one part of S, say S*, we remove material of thickness b; and
on the other we add the same material. This corresponds to a simple
translational movement of crystalline material by b;, i1.e., to a displace-
ment field

ue(x) = —8(V) by, (2.55)

where the 8-function on a volume V was defined in Eq. (8.21), Part I1. By
this transformation the elastic properties of the material are unchanged.
Consider now the distortion field d;u;(x). Under (2.55), it changes by

et (X) = dpue(x) — 9, 8(V) by (2.56)

The derivative of the -function is singular only on the surface of the
volume V. In fact, in (8.20), Part II, we already derived the formula
—0: (V) = 8,(5) so that (2.56) reads
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O lie(X)— dpup(X) + 8,(S) be. (2.57)

From this trivial transformation we can now construct a proper
dislocation line by assuming S to be no longer a closed surface but an
open one, i.e., we may restrict S to the shell §* with a boundary L. Then
we can form the dislocation density

aje(X) = £t ;g ue (X) = €44 ;64 (S) be. (2.58)

The superscript + was dropped. Using Stokes’ theorem on the & (S)-
function, as derived in (8.17), Part 1I, this becomes simply

a;e(x) = 6;(L) be. (2.59)
For a closed surface, this vanishes.
For a general defect line, the starting point is the trivial Volterra

operation of translating and rotating a piece of crystalline volume. This
corresponds to a displacement field

ue(x) = —=8(V)(be + €¢4r L2y x,). (2.60)
If we now form the distortion, we find
It (X) = 8¢ (S)(be + Se‘quqxr) - 5(V) Eegk Qq'

In this expression it is still impossible to assume $ to be an open surface.
If we, however, form the symmetric combination, the strain

Uke = %(ak ug + a{-‘uk) = %[Sk (S)(b€ + Efquqxr) + (kf)], (2'61)

is well defined for an open surface, in which case we shall refer to u,, as
the plastic strain and denote it by u’,,. The field

!/i‘( = 6/( (S)(bf + Eequqxr) (262)

plays the role of a dipole density of the defect line across the surface §. It
is usually called a plastic distortion. 1t is a single valued field (i.e.,
derivatives in front of it commute). In terms of g%, the plastic strain is
simply
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ul, =4BL, + BL), (2.63)

The full displacement field (2.60) is not defined for an open surface due
to the 8(V) term. It is multiple valued. The dislocation density, how-
ever, is single valued. Indeed, we can easily calculate
e = Eijg 00U (X) = £ 0, [8x (S)(be + £, Qyx,) — 8(V) eegifly]
i SE(L)(b( + E(qr‘(qur)a (264)

and see that this 1s the same as (2.43a).

Let us now turn to the disclination density ©,,, = ¢,,,,4,,d, ;. From
(2.60) we find the gradient of the rotation field

E),,w,- = 2'-8,';‘.( l:),, ()A Uy
= gle'kfarz[Bk (S)(b( + 8{’qr ‘Q'qxr) - B(V) Ef‘qk Qq]

718[/\( dn B + 6!1 (S) Q] : (265)

This is defined for an open surface § in which case it is called the plastic
bend-twist and denoted by x/, = 9, w”. It is useful to define the plastic
rotation

bhi=6,(5) 8, (2.66)

"y

which plays the role of a dipole density for disclinations. With this, the
plastic gradient of w; is given by

xhi =9, wll’ = 1Eke 0B, + {1’,. (2.67)
We can now easily calculate the disclination density:

. . . . | . . I3 . )
()p[ = Epmn O 0y W = Epmn O n,. —3&keEpmn OmOn Bi\-(’ + E[HHHdIH Hy -

In front of 8%, the derivatives commute [see (2.62)] so that the first term
vanishes. Use of Stokes™ theorem on the second term gives

0, = €pmnImdh = 8, (L)LY, (2.68)

in agreement with (2.44),
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Notice that according to the second line of (2.64), the dislocation
density can also be expressed in terms of 8%, and ¢%; as

ai = € Ble + Oy by — DY (2.69)

In fact, this is a direct consequence of the decomposition (2.48), which
can be written in terms of plastic strain and bend-twist as

_ ’ } } 2}
iy = Eie dk“I(,' + 0 %G, — xh) (2.70)

Expressing «/, in terms of B, and x/ in terms of @[ [see (2.63) and
(2.67)] we find

—_— | - ]) 7 _ IJ 1 - r - I) _ r ’J
@ = LEie iy B + O o oL + eme dka« + 8 €000y Bl — EikediBYe)-

“

But the quantity inside the parentheses is equal to ey, 9, 8%, . as can be
seen from applying the identity

6,",' E(’,kﬁ = 5/(] Eike + 6]’\ E:H/‘I + 8” E"fk

to d,Bke. Thus a;; takes again the form (2.69).

2.11. BRANCHING DEFECT LINES

We recall that from the geometric point of view, the conservation laws
state that disclination lines never end and dislocations end at most at a
disclination line. Consider, for example, a configuration of three lines
shown in Part II, Figs. 1.11, 1.12. Assign an orientation to each line and
suppose that their disclination density is

O, (x) = Q;8,(L) + Q) §;(L")y + Q/ 5,(L"). (2.71)
with their dislocation density being

a; (x) = 8;(L){b; + [ X (x — x¢)];} + &(L"){b] +[Q x (x—x)],}
+ 8;(L" )b} + [QY" X (x — x{, ],} (2.72)

The conservation law 9,0, = 0 then implies that the Frank vectors satisfy
the equivalent of Kirchhoff's law for currents
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Q.+ Q=0 (2.73)

This follows directly from the identity [see Eq. [11.1.83)] for open lines

dx,;

8;6,(L) = [dsd—8(3)(x -xX(3)) =¥ (x - x;,) — 6¥(x — X)),
s

where x; and x, are the initial and final points of the curve L. The

conservation law d,a;; = €;,0,, on the other hand, gives

bi = (X (x — X)) + bf — (" X (x = x0(),); = b] — (A X (x" = xyp));.
(2.74)

If the same position is chosen for all rotation axes, the Burgers vectors b,
satisty again a Kirchhoff-like law:

b, + b = b!. (2.75)

But Burgers vectors can be compensated for by different rotation axes,
for example, L’ and L" could be pure disclination lines with different axes
through x{), x{) and L’ a pure dislocation line with b’ = —Q' X (x{ — x§
which ends on L', L". Equation (2.73) renders different choices
equivalent.

2.12. DEFECT DENSITY AND INCOMPATIBILITY

As far as classical linear elasticity is concerned, the information contained
in «;; and ®; can be combined into a single symmetric tensor, called the
defect density m,;(x) [In higher gradient elasticity this is no longer true;
see chapter 18.]. It is defined as the double curl of the strain tensor

Ui (X) = Ejk¢ Eimn ak am Uep (X) . (276)

In order to see its relation with «;; and 0, we take (2.42a) and contract

the indices ¢ and j, obtaining

i

& = 26,’(1),‘. (277)
Using this, (2.48) can be written in the form

Eike OxUen = 0w — (—aty + 16, 004). (2.78)
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The expression in parentheses was first introduced by Nye and called
contortion®

K= —a;, + 16, 04 . (2.79a)
The inverse relation is

a; = —Kji+ 8, Ky . (2.79b)
Multiplying (2.78) by &;,,,0,,. we find with (2.42b)

Ny = Ejmn Eike Om a.k Uep = Ejmn am an Wi = Eimn am Kni

= (Oji = Ejnn am Km" (280d)

The final expression is not manifestly symmetric. Let us verify that it is,
nevertheless. Contracting it with the antisymmetric tensor ¢, we find
€ O;+ 4Ky — 0, K¢, = €0, + 0;a;. But this vanishes due to the
conservation law (2.46) for the dislocation density. Thus 7, is symmetric.

There 1s yet another version of the decomposition (2.80a) which is

obtained after applying the identity £;, 6,., + €imn0ig + Emin by = €jjm 6

nyg

to ama-'qn BIVINE &gy am(airr _ %Binakk) = "%am (smjnain + (U) + Eijn amn)-
Hence

i = O = 10 (Emin O + (i) = €ijn A )- (2.80b)

This type of decomposition will be encountered in the context of general
relativity later in Part 1V.

The double curl operation is a useful generalization of the curl
operation on vector fields to symmetric tensor fields. Recall that the
vanishing of a curl everywhere in space implies that a vector field can be
written as the gradient of a scalar potential which satisfies the integrability
condition (#;4; — 9;9;) y = 0 everywhere in space:

"In terms of the plastic quantities introduced in the last section the plastic part of K, reads

= ] » 4l N3 P
K{‘f = Elk{’dkB’f‘J + 26rj8nkf“dkﬁm + d)r,"
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The double curl operation implies a similar property for the symmetric
tensor, as was shown a century ago by Riemann and by Christoffel. If the
double curl of a symmetric tensor field vanishes everywhere in space, this
field can be written as the strain of some displacement field u;(x) which is
integrable in all space [i.e., it satisfies (2.33)]. We may state this con-
clusion briefly as follows:

Eikt Ejmn Ok OmUen(X) = 0— uy; = 1(0;u; + 0;u;). (2.82)

If the double curl of u,(x) is zero one says that u, (x) is compatible with
a displacement field and calls the double curl the incompatibility, i.e.,

(INC 1);; = €1k Ejmn Ok O Uen - (2.83)
The proof of statement (2.82) follows from (2.81) for a vector field: we
simply observe that every vector field V,(x) vanishing at infinity and
satisfying the integrability condition (9,9, — 9;6;) V. (x) = 0 can be decom-

posed into transverse and longitudinal pieces, namely, a gradient whose
curl vanishes and a curl whose gradient vanishes,

V,' - 8,(,0 ~+ 80‘]\- a,Ak N (284)
both fields ¢ and A, being integrable. Explicitly these are given by

1

1
Ay =7 Exem e Vi + 0, C, (2.86)
where
(—3°) "' = 1/(47|x — x'{) (2.87)

is the Coulomb Green function. Notice that the field A, i1s determined
only up to an arbitrary pure gradient 8, C.

By repeated application of this formula, we find the decompositions of
an arbitrary not necessarily symmetric tensor u;:

Uie = 8;0p + €10 Ake = 000 + €50, (e P t Epmn 01 Akn)- (2.88)
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Setting
(P:-’ = Eijk aj‘P)'\ R (289)

this may be cast as
Ui = ai ‘PE + at’ ‘P;! + Eijk E¢mn aj amAkn . (290)

For the special case that u; is symmetric we can symmetrize this result
and decompose it as

Uie = aiuj + ajui + Eijk E¢mn ajamAgn s (291)
where

u; =i +¢7), (2.92)

and A3, is the symmetric part of Ay, , both being integrable ficlds. The
first term in (2.91) has zero incompatibility, the second has zero
divergence when applied to either index.

In the general case, i.e., when there is no symmetry, we can use the
formulas (2.85), (2.86) twice and determine the fields ¢¢, ¢, Ag, as
follows:

1
er = ? Ok Upe » (2.93)
) |
Ak(’ = -? Skpq ap uq( + ak C(' ’ (294)
1 , 1
Cr — _—y Ekpg ap de Uye + 55 dg ¢ CF > (295)

1 1
Ay = _§ Ekem Enpy dq ap Umg + g (_? Enje aj Cl) + 0, Dy, (296)

so that from (2.88)

. 1 1
¢ = —g 8i61)8(,u];q + 5-2-0( Uje. (297)
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Reinserting this into decomposition (2.90) we find the identity
1 1
Uie = ?(aiak Upe T 0¢Opllix ) — (‘azafaf (9, 0,Upg)

1
+ —a—Z Eijk €Etmn ajam (ekpr Engs ap aqr Ups ) ’ (298)

which is valid for any tensor of rank two. This may be verified by working
out the contractions of the ¢ tensors.”

While the statements (2.81) and (2.82) for vector and tensor fields are
completely analogous to each other, it is important to realize that there
exists an important difference between the two cases. For a vector field
with no curl, the potential can be calculated uniquely (up to boundary
conditions) from

1

@

This is no longer true, however, for the compatible tensor field u;,. The
point of departure is the fact that the functions ¢; and ¢ in the decom-
position (2.90) are not unique. They are determined only modulo a
common arbitrary local rotation field w;(x). In order to see this we
introduce the replacements

30 (X) = 9,0 (X) + &0 wq(x), (2.100)

de @i (X) = 3¢ @i (X) + £piqwqy(X), (2.101)

and see that (2.90) is still true. The field (2.92) is only a particular
example of a displacement field which has the strain tensor equal to the
given Upe,

“Later, starting with Chapter 4, we shall introduce an efficient technique for handling such
involved derivative expressions using helicity projections. For the reader who is already
familiar with this technique let us mention that (2.98) can be derived from two identities:

Ejmj' Eent' PmPn = P (PHD + PO D = ploy POy, e,
Pip; S+ Pipe Sy — pipepype = PPV 4 PED 4 pib g pll= 4 Py,
The first will be derived in a footnote to Eq. (5.19). The second is a direct consequence of

(4.127) and (5.14). If we square the first identity and add the second we obtain a decom-
position of the identity which coincides with (2.98).
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U, = L(9ug + deul) = tre. (2.102)

This displacement field may not, however, be the true displacement field
u¢(x) which is actually present in the crystal which also satisfies

Y(0rue + detar) = uge - (2.103)

In order to find this true displacement field we would need additional
information, namely, the rotation field

Wpre = %(ak U — d¢ uk). (2104)
Only if we know both u(x) and wi¢(x) can we calculate
Apte(X) = Upe(X) + wie(x) (2.105)

and solve this for u,(x).

In order to make use of this observation we have to be sure that
w; = 1 g wy can, in fact, be written as the curl of a displacement field
u;(x). This is possible if

8,-60,- = Efjka,'a]'uk = 0, (2.106)
which implies that [see (2.77)]
Qi (X) = (). (2107)

In later discussions we shall be confronted with the situation in which u,
and 9;w; are given. In order to obtain w, from the latter we would have to
make sure that w; is an integrable field, which is assured by the constraint

®fj = Ejr¢ Bk 6(- w; = 0. (2108)

Thus we can state the following important result: Given a crystal with a
strain u¢(x) and a specific rotational distortion w,(x). If we want to find
from these field quantities a single valued displacement field u,(x), the
crystal has to have a vanishing defect density =;(x), a vanishing dis-
clination density ©,(x), and a vanishing «; =0, i.e.,

(X)) =0,  ©,x) =0, au(x)=0. (2.109)
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The relation (2.80b) implies that for this to be true it 1s sufficient to have
n;(x) =0, a;(x) =0, (2.110a)
or
0,(x) =0, a;(x)=0. (2.110b)

Notice that it is possible to introduce, into a given elastically distorted
crystal, nonzero rotational and translational defects in such a way that 6,
and a; in (2.80b) cancel each other.Y Then the elastic distortions do in
fact remain unchanged. The local rotation field, however, can be changed
drastically. In particular it may no longer be integrable.

2.13. DEFECTS IN TWO DIMENSIONS

At some places we shall consider defects in two-dimensional systems. It is
useful to imagine such systems as lying in the XY plane of some three-
dimensional space. Then dislocation lines degenerate into points and the
dislocation density is a vector which coincides with the 3, i components of
the three-dimensional density

a,-(x) = O.’_?,,'(X) = quap Bqu,- = (6,62 - Bzal)u,-, (2111)

where &,, = ¢,,3. The local rotation vector has only one component, i.e.,

w=wy=le, w,, =1€,,0,u, =1(d,u; — 1) (2.112)
so that the disclination density becomes a scalar quantity
G)E@_;_;:e,,qal,aqw:(6183-638|)w. (2113)

By writing the dislocation density as

@; = Ex Oty + &4;) (2.114)

dFor an accurate counting of the defect degrees of freedom sce the discussion accompanying
Eqs. (16.14)-(16.28).
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and inserting o;; = £, we find the following two-dimensional version of
(2.48),

;= Ekgakue,' - 8,-w. (2115)

As was true with O, the defect density 7;(x) also has only a 33
component 7(x),

TI(X) = 7733(?‘) = ExeEmn Ok OmUen (2116)

and applying ¢,,,0, to (2.115) we find the two-dimensional analogue of
(2.80b),

n(x) = O(x) + €,,,,9,, a, (X). (2.117)

A contortion vector K,, may be introduced as K,, = —a,, but since there is
only a sign difference with respect to a, there is no real use this.

For completeness, let us also introduce the plastic distortions and
rotations 8%, ¢, which were defined in three dimensions in Section
2.10. Here they follow from the trivial Volterra operation [compare
(2.60)]

ue(x) = —8(V)(be — Q&g x,)
as
ke = 66 (S)(be — Qegx,) — 8(V) Qeye, &, = 6,(5)Q, (2.118)
where § is now the /ine along which the Volterra cut has been performed.

The &-function 8, (S) is defined to point along the normal of this line, i.e.,
it is given by

8:(S) = e f dx,6P(x — %). (2.119)
S

It satisfies the two-dimensional version of Stokes’ formula (11.8.17):

dx, dx;
£k 8,04 (S) = €1 €4 f dsd—5(2)(x —X(s)) = —f ds — ” *9;,6P(x — x(s))

d
= f dsaam(x —X(5)) = 8W(x — %) - 6P(x - X;), (2.120)
5
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FIG. 2.17. Illustration of 8, (L) in two dimensions, defined in Eqgs. (2.121}), (2.122), which
is singular only at the points where L pierces the x,x, plane.

.xZ

.

i

where x; and x; are the initial and final points of the line §. The right-hand
side is the 2-dimensional version of 8, (L). It can be thought of as being
the third component of the three-dimensional 8-function for a closed line
L,

S (L) = i ds%a(f‘)(x —x(5)), (2.121)

which picks up the two points where L pierces the xy-plane (see Fig.
2.17)

83(L)|x3:0 - § d.f:; 6(X3 - §3) 8(2)(Xl - ii)|x3=0
L
=8¥(x —x;) — 8P(x — x;)|, -0 (2.122)

Using (2.118) and the notatton (2.122), the dislocation and disclination
densities read explicitly

@ = Ex¢ 0y B’(’, —¢f = 53(L)|.r,=u(bi - epx,),
O = &b = 33(L)|x_1=()ﬂ- (2.123)

The first is the i3 component of the three-dimensional density a;(x), the
second the 33 component of @;(x), both restricted to the 12 plane.
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CHAPTER THREE

ENERGETICS OF DISLOCATION LINES

3.1. STRAIN AND STRESS AROUND DISLOCATION LINES

We are now in a position to study the elastic properties of a solid with
defects. For a start, let us restrict ourselves to pure dislocation lines which
are characterized by a constant discontinuity across some surface S with
Burgers vectors b:

Au,—=§ du,-=b,—. (31)
B

This specification is sufficient to calculate a displacement field u;(x) over
all space. Notice that the relation

u;(x) = fd"’x'G,-j(x —x") f;i(x") (3.2)

with f;(x) =0 cannot be used since it holds only for smooth field
configuration u;(x).

The appropriate method to deal with singular surfaces is, however, well
known in potential theory. There, one uses Green’s theorem which is a
simple consequence of Gauss’ law for a vector field [recall Part II, Eq.
(1.151)]. Here we have to generalize this to an arbitrary tensor field,

818
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J.d3xaka,...k,,=fdeTkl...k,,, (3.3)
v s

where S is the surface enclosing V with dS; directed outward. Applying
this to the tensors

TI£ = u,-(x') a.;( Gmn(x'r - X), T(2 = (6; U; (X,)) Gnm(x’ - X), (34)

we have

|| a6 3G o = 5 = [ 5106 3G (5 = 0.
1% S

fvdSX’ak(Géus(X’))Gmn(X’ — X)) = fstL(aéuf(X')) Gon (X' — %) (3.5)

Subtracting these equations from each other, we obtain a generalized
version of Green’s theorem,

f d’x'[u;(x') 30 Gron (X' = X) = (37 14y (X)) G (X" = X)]
Vv
= f dS;u;(x) 3% G (X' — X) — f dS;(3¢u;(x')) Gn(x’ —x).  (3.6)
A S

Contracting this equation with the elasticity tensor —c.,. the left-hand
side becomes, by (1.68) and (1.80),

u,(x) — fdx’ Gom(x —x') f, (x"). 3.7
The right-hand stde becomes
—j dSeCifrm Ui (X") 01 Gy (X' — X) + f dS; o4, (x') G, (X~ Xx) (3.8)
S s

so that we remain, in the absence of local body forces f,,,(x"), with

u,(x) = —deSéC{*ik,n u;(x')0; G, (X' — x) + fs dSj G, (X') G (X' — X).
(3.9)
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FIG. 3.1. The infinitesimalty thin cllipsoid enclosing the Volterra cutting surface S of a
dislocation line along L. The thickness is greatly exaggerated to allow for a better
representation,

Consider now an infinite crystal with a single dislocation loop which is
constructed by removing one or more layers of atoms from the lattice
thus causing the discontinuity Au; = $pdu; = b; (recall Fig. 2.2). The
whole space outside the plane may be considered as V such that S
becomes the surface of a very thin ellipsoid enclosing the surface of
discontinuity (see Fig. 3.1). Let S™ be the upper surface whose normal
points downward and §~ the lower surface with the normal pointing
upward. The integral (3.9) may then be transformed into a surface
integral running only over S~ = S if the integrands are replaced by their
discontinuity across S. We may assume that x lies outside the surface S
for otherwise we would be able to move § to another place. Since the
stress as well as the Green function are the same on both sides of S, the
second term in the integral disappears and we arrive at

U, (X) = _blf dS( C(."knra;\’ Gmu (xf - X). (3 10)
A

In the isotropic case, we may insert (1.23) and the explicit result (1.90)
for G,,,, and arrive at
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1
U, (X) = _%‘[\s‘ dS; {:U“(bnR.kkf + bm B(HR.kkm) + /\b('R,kkn

At
A+ 2

[2#’ka.”(/\' +Ab(R.kkn]}‘ (311)

where we have introduced the notation
R =R, 30,0 R=R (- (3.12)

for brevity. This expression can be rearranged in the form

1

u,(x) = _8_7;{,[ dSib, R g + f [dS:rb{R‘kkl - deb(R.kk(]
s 5-

A+ u

+2
A+ 2u

f dS; (b( R,/\/\n - h/{R.n(.*'\')} ) (313)
AY

The integral still runs over the surface. The construction procedure a la
Volterra however, has taught us that the position of this surface 1s
irrelevant and only the boundary L can have a physical reality. There-
fore, we may use Stokes’ theorem to arrive at a contour integral over L.
The most convenient form for the application needed here is

. [ "t
%dxli Ekim Tn]n: A de: Ejik Ekhndi Tulnz o

_ f @Si 9T~ dSydi Ty ) (3.14)

where ... denotes more possible tensor indices. In particular, we obtain
the formulas

fﬁ (1)(,-’ Eine b( R.kk = _f (d’S:lb( R,kk( - d'S; bl R.kkn)!
I R

% (1,’(;81'(kb( RJ\'H = ﬁf (dS: b(R.k/\'n o dSIr\b( R.(kn)* (3 15)
I 8§
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where we have used the fact that §,R = —9,,R. With these formulas, we
can bring (3.13) to the alternative form

1 1
U, (X) = _g‘I_TJ;' dS;‘bnR.pp&' + _f‘ﬁqui' gint’b(fR.kk

8
1A+p§
— dx; €0xbe R o
AmA+ 2u Lxlgl(k AW <
b, 1 b 1 dx' X R
dS——-— X X =t b »
i) PR T a4 ), R 81— ) R

(3.16)

where R; = x; — x; and where we have worked out the derivatives,
R‘,' - R,‘/R, RU = 6”/R — R,R]/R3 »p = 2/R R [ka 2Rk/R3
The first integral,

b,

mIrs

dS;R(/R*,

is recognized as the solid angle through which the positive side of S is
seen from x. It appeared in the vortex formula (1.157), Part [. Thus we
have simply

b
1.
47

This is the only term in (3.16) which keeps track of the surface of
discontinuity S over which u, jumps by b, . If we change S, to S5, the
solid angle as defined by

R,

Q(x) = dS( R%

(3.17)

changes by

Qu(x) ~ Q,(x) = L ds;

In order to describe the same dislocation loop, §, and $> must have the
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same boundary line so that S, — 8, is a closed surface around some
volume element V. Hence we can use Gauss’ formula and write

"R-‘ ’ R I 1
Qs(x) — Qy(x) = fvd3x’6{-R—;= —Jvd3x E){Té: fvde G%E

4 xeV
= 3,1 80 —x') = = ’
417de x' VN x — x') =47 (V) {O xeV.  (3.18)

Thus the solid angle is unchanged for observation points x which lie
outside the volume enclosed by the two surfaces S,, S, while it changes
by the discontinuity 47 if x lies inside.

The constancy of this change is what permits us to define strain and
stress tensors which are independent of the surface §. Writing

R 1

1 1 1
=a(-Uds;a;—§— fds;afﬁ) - de,-a%-—é
1
= E,—,k('i,f dx;\_R‘i‘ 4776,(5)., (3.19)
1.

the first term is the same as the magnetic field of a unit current along the
boundary line L of S. Only the second term depends on §. It corresponds
to a magnetic field due to a layer of magnetic dipoles placed on §. The
derivatives of the displacement field d;u;(x) are smooth everywhere in
space as long as x does not fall onto §. If x is to pass the surface §, we
may simply shift S to another position §’. Then the derivatives can be
continued smoothly through S. The whole procedure is recognized as the
three-dimensional generalization of the continuation of an analytic
function through a cut in the complex plane.

Since the dipole layer is an unphysical artefact of the Volterra con-
struction, only the smooth part of the gradient of the displacement field

(814, ™ (x) = (8, (x) — 8:(S) b;)

is a physical observable. This combination is invariant under changes of
the surface § from § to §', under which

1 (x) = u;(x) — 6(V) by, 5:(8) — 6,(5) — 9;6(V).
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Looking back at (2.62) we recognize the piece
Bi(x) = 6,(S) b;

as the plastic distortion. The distortion d;u;(x) which still contains jumps
in u; is called the rotal distortion [sometimes written with a superscript T
as in (9;u;(x))7].

Notice that while d,u;(x) is not uniquely defined, depending on the
position of the jumping surface S, the smooth part of the gradient
(9;u;)"™" is unique. In fact, its symmetric composition

™ = 3((9,0 )™ + (i) = uy — 5(8:(S) by + (if))

is an observable quantity, being proportional to the stresses of the
system. The subtracted piece

uh =1(8,(S) b; + (if))

is recognized as the plastic strain tensor of a pure dislocation line [defined
in (2.61)].

In the theory of linear elasticity of defects one often finds calculations
of physical strains and stresses without this explicit subtraction. In that
case, all formulas are understood as being evaluated away from the
jumping surface S. For a while, we shall also adhere to this somewhat
sloppy convention. Only later shall we be more careful and uncover the
interesting gauge structures inherent in this subtraction procedure.

Forgetting the jumping surface S, we can find the strain tensor asso-
ciated with a given dislocation line by using (3.16) and forming the
derivative

1

~ 8m

1
dx |:£jk('biR,pp€ - EfkebeR,ppj — 7 Ekmn bnR,mij] . (3.20)

“ij 1—v

after which the strain and stress can be expressed as follows:

1

Uy = 8—773ng;( [%(SjkebiR,e + €ixebR ¢ — einebe R j — EjkebeR,f),pp

1
1—v

Ermn bnR.mij:| »



3. ENERGETICS OF DISLOCATION LINES 825

n : :

+

1 - vdxi Skmn(R.mij - 6in./rr;)11)] . (321)
As a check 1n our calculation we may verify that the stress is divergence-
less, 9,0, =0, as it should.

3.2. ELASTIC INTERACTION ENERGY BETWEEN TWO
DISLOCATION LINES

Suppose a crystal contains two dislocation lines. Let us calculate their
interaction energy. The stress field of the first line o}(x) is given by
(3.21). If a second line is introduced into the crystal, the atoms are
displaced by an additional amount u;"(x) which can be calculated from
(3.16). This is independent of the presence of the first dislocation line
since, in the approximation of linear elasticity, all displacements are
additive. Correspondingly, the change 8F in elastic energy is simply
obtained from the integral

oF = deXUiJ'Sulj = fd3x(fij6j5uj
as
E' = f dxolaul, (3.22)

This can be evaluated in complete analogy with the magnetic energy of

the current loops or the stress energy of the vortex loops [see (2.137),
Part IIJ.
First we use d;0;; = 0 to rewrite (3.22) in the form

EMl = fd3xa,-(o},-u}' : (3.23)

Then we transform this into a surface integral,
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EM = LHS H+dS"dcr,]u, , (3.24)

where the part over the surface at infinity $* vanishes and §*, S~ form a
thin ellipsoid enclosing S (see Fig. 3.1). For a dislocation line along L, u;'
has the discontinuity u}'|, — u/"|;, = b; across the thin ellipsoid S~ + ™
enclosing it and the energy becomes

E' =, L_ ds!o? . (3.25)

This differs from the magnetic formula in (1.146), Part 1I by the
additional index j. 1t looks as though there were three “‘magnetic fields™
al, ob, ok, each being divergenceless, g0l =0, 3,05 =0, 9,05=0,
and associated with three ‘“‘currents” by, by, b;. Therefore, we can
proceed as in the magnetic case and introduce three gauge fields Al AL,

AL in terms of which the stresses can be written as a curl,
I
0= Eike akA%'j- (3.26)

The properties of the gauge field Aj; will be discussed in detail in Section
4.1. Here will only make use of the fact that with (3.26) we can apply
Stokes’ theorem and bring the interaction energy into the local form

E' = b}‘#; dxl' Al (3.27)
n

It is straightforward to find A};. Using the stress formula (3.21), we can
directly read off:

2v
A(‘j g_rbl §1 ] Eikp Ejmn R,km (afp dxrlr + ‘Snp dxg‘ + I—__W; 8{'n dx,tl)) . (328)

Inserting this into (3.27) we obtain the analogue of Biot-Savart’s law for
dislocation loops, first found by Blin,

2v
L M= 8 r Y § # Eike Ejmn R N (drn dx + 86 n dxllw dXII)l + 1 dX} dx}rl)
T -V
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_ﬁ_% § bl'dxlb“~dx"_2b‘Xbll-dx'xdx"
_477 I R R

1
+ -f_—v(bl x dx'); (b x dx”),-a,-a,R) : (3.29)

Of course, this can be generalized to an arbitrary number of loops just as
the magnetic formulas (1.162) to (1.163) of Part 1. Also, the generaliza-
tion to a continuous distribution is straightforward: all we have to do 1s
replace

b}b}l§>1§ dxt i (3.30)
1) u

%fd3xd3x'a€i(x) a,,j(x'), (331)

where a;(x) is the dislocation (pseudo-current) density (2.59) [compare
(1.164) of Part I].

NOTES AND REFERENCES

The contents of this chapter are standard and can be found in most books on this subject
(see the references at the end of Chapter 2) and in the review article of
R. De Wit, Solid St. Phys. 10 (1960) 249,



CHAPTER FOUR

LOCAL FIELD DESCRIPTION OF
INTERACTING DISLOCATIONS

4.1. ELASTIC PARTITION FUNCTION

In the case of superfluid *He we have seen that it was possible to describe
the long-range interactions between vortex lines in terms of a local field
theory. We simply had to express the bending energy in terms of a gauge
field and couple this locally to the random chains of vortex lines. Their
ensemble, in turn, followed a disorder field theory, thereby permitting a
simple discussion of the superfluid phase transition.

In this section, we shall prepare the ground for a similar treatment of
defect lines in crystals. As a first step we shall derive a partition function
for the thermally fluctuating stress gauge field A, (x) which was defined in
Eq. (3.26). This yields the stress tensor via the curl operation applied to
the first index:

Ty = Eige Ay
This decomposition is invariant under the local gauge transformations
A(j (X) — A(](X) + E)(A]'(X). (41)

The symmetry of o; imposes the constraint [which is compatible with

(4.1)]

828
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d; A (x) = 9, A;(x). (4.2)

This follows directly from the condition &,,;0;(x) = 8; A,; ~ 9,4, = 0,

As a consequence of (4.1) and (4.2), A, has only three physical
components, as was the case with the symmetric divergenceless stress
tensor oy;. If we insert o;; = g9, Ay, into the elastic energy in the form
(1.43), we obtain a rather complicated looking expression,

1

Eg=—
T 4

I —v

v
dx l:akAhakAPr = GeApdp Ap; — (04 Api 0 Ay,

— 0 A0 A+ 06 A0 A+ 0; A0, Agi — 0eAgide Ay — 3iArf'3,‘Ae])]-
(4.3)

According to (3.27), the local interaction with a single dislocation line
running along L was

Ein[ = bj.%dX(A(, (44)

For a general distribution a,;(x) of dislocations this becomes

E. = ]dﬁsxa(,_,(x)Ag,-(x). (4.5)

Hence we expect the elastic partition function of the dislocation density
a;(x) to be given, in analogy with the vortex lines in superfluid *He, by

Z= f@A{’j(x)a(ajAPj — 3eA)P[ Ay ) exp{(Ee + iEin)/T}.  (4.6)

The s-functional enforces the constraint (4.2). The factor ®[A,;] fixes the
gauge in a convenient way which will be explained later. When inte-
grating out the fluctuating gauge field, this partition function has to give

1
Z = const. X exp{? Emin}’ (4.7)

where Egy;, is Blin's energy formula (3.29)-(3.31). As was true for vortex
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lines, a factor i in front of E;, is necessary in order to obtain the correct
sign of this energy.

When looking at the complicated gauge field energy (4.3), the inte-
gration looks, at first sight, somewhat difficult; in particular, since we
have to respect the constraint (4.2) and the gauge-fixing factor DA ]
The problem can be simplified considerably by transforming the field
componentes A (x) to a more convenient basis in which the energy is
diagonal.

As far as the spatial variables x are concerned, the energy diagonalizes
by going to Fourier (= momentum) space and expanding

. d* ,
A (x) = f e A e, (4.8)

After this, the 3 X 3 index space can be diagonalized by finding another
p dependent. basis known as the helicity basis. Since not every reader
may be familiar with this concept. let us interrupt the discussion for a
moment and give a brief, general description of the helicity decom-
position of vector and tensor fields.

4.2. HELICITY DECOMPOSITION OF A VECTOR FIELD

Under a rotation of coordinates
x,'! = Rf,'qu (49)

a vector field v;(x) is defined by the transformation property [see (3.116).
Part 1]

vi(x") = R,v;(x). (4.10)
The rotation matrix can be expressed in terms of the rotation vector «
whose direction points along the axis and whose length gives the angle of
rotation, i.e.,

R;=(e"™®);. (4.11)

where the matrices S, form the adjoint (spin-one) representation of the
Lie algebra of the rotation group.
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For infinitesimal angles this gives the well-known formula [see (3.138),
Part 1]

OX; = X; — X; = ag &4%; = — (a0 X X),. (4.13)

Inserting this into (4.10), the local change of the vector v;(x) is, up to
terms Q((8x)?),

0ri(x) = v/ (x) — v;(x) = v/ (X") — v,(x") = v/ (x") — v (x) + v;(x) — v,(x")
= [ (S ):‘jl’j(x) - 5%‘"’]1?(") = fa (S )i;‘l’j(x) + oy Eg, X 3,'":’(")

= 10 (Sg )0 (x) + oy Ly vi(x), (4.14)

where we have introduced in the second term the generator of orbital
rotations,

Ly = —ieg;x;0;. (4.15)

In momentum space, the transformation laws arc found similarly,
pi = R,p;, (4.16)
v/ (p") = R;v;(p). (4.17)

du(p)=v/(p) — v;(p) =v/(p") —v:(p')

= lay (S )f/”,’(p) + iy Ly v (p), (4.18)
with
. %,
Lk = —l{t‘k,"'p,‘;)j‘ (419)

The latter fields v;(p) have the advantage of diagonalizing the translation
group generated by the differential operators
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These, together with (4.19), form the inhomogeneous rotation group
(also called the Euclidean group FE(3)) which is characterized by the
commutation relations

[pi. pi] =0, (4.21)
[L,', pj] = iS;‘jkPk . (422)
[L,', L]] = iEijk Lk- (423)

The helicity basis is now introduced in the following two steps:

1. We choose an orthogonal set of three basis vectors e/ (p), e (p),
e} (p) in the subspace of a fixed momentum in such a way that e} (p)
cotncides with the unit vector along the momentum direction,

p=p/lpl. (4.24)

2. We form combinations of these, called the spherical components,
(B) = (e’ + ie))) = e(p),
V2

e V(p) = —\/Lg(e' — ie”)(p) = —e*(p),
e"(p) =e’(p) = p. (4.25)

The vectors e™(p) for h = =1, 0 constitute the desired helicity basis.
They have the following properties. First they are an orthonormal set
of vectors with respect to the complex scalar product,

e (B) el (p) = 5" (4.26)

Hence they also form a complete basis in three-dimensional space. This
property can be expressed in terms of a completeness relation,

Y ") e (p) = 5. (4.27)

h=0,%1

The different terms in this sum, i.e.,
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P(p) = el"(p) e/ (P). (4.28)

for 1= +1, 0 have the products
P(B) P(D) = PI(B) o (4.29)

and are, therefore, projection matrices. With these, the completeness
relation (4.27) reads

Y. PP =5, (4.30)

h=0.x1

This result makes it straightforward to expand an arbitrary vector
function v;(p) in terms of the new basis: We only have to multiply v;(p)
by (4.30) and obtain

gp) = PP®)1(p) = D B B)y(p) = Y. e(B)o™(p).

h=0,=%1 =0, 1 =0,*x1
(4.31)

The components v*(p) are called helicity components of the vector field
ri(p).

Let us now come to the second characteristic property of the vectors
e!"(p). Under rotations they transform as a vector field [recall (4.17)]. In
order to see this we perform a rotation which changes p; to p; = R;p;.
Then the vectors e¢/”(p) change according to

e (p) = Bi = RyB; = Rye"().  e*V(p) = Ryel '(B).  (4.32)

As a consequence, the components »®(p) have very simple trans-
formation properties with respect to the basis e¢(p). While the old
Cartesian components of v(p) were mixed with each other under rotations
[see (4.17)]. the new components v(p) remain inert. They transform
like a scalar field,

v™'(p') = v"(p). (4.33)

Infinitesimally, this amounts to the transformation law

Sv(h)(p) = U(li)r(p) _ U(h)(p) — iakL;( U(h)(p), (434)
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where L is the differential operator (4.19).

The third property (which is actually not unrelated to the second) of
the basis vectors e!"(p) is that they diagonalize the generator of spin
rotations projected along the direction of momentum, i.e., the so-called
helicity matrix

H(P) = P Sk. (4.35)

and & are its eigenvalues. This can be shown directly. Let us first take p
to point in the 3-direction so that H is the matrix

010
H@E@) =S,=—i| —100 |, (4.36)
000

while ¢/"(Z) are the vectors

0 | 1
o= o) ate =gl ) (4.37)

Then we find, trivially,
H,(Z)e!"(2) = he(2). (4.38)

For an arbitrary direction of p we may obtain the three vectors e!"'(p) by
(4.32)

e/"(B) = R, (B) ¢"(2). (4.39)

where R;(p) is a rotation matrix which brings the z-axis in the direction
p. L.e.,

pi= Rn’(ﬁ)ff‘- (4.40)

Applying (4.35) to (4.39) we can verify that e¢/”'(p) is an eigenvector of
H(p). First we note that

H,(P)e/"(p) = H; (D) Ry (P) ef(2)
= Ry(B) R (B),S, oo Row (B) el(2).  (4.41)
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But the spin matrix S, is a vector operator and satisfies

Ri' (S Rew = Ry (8)in = (S)in (R 1), (4.42)
so that

Hyi(B) ¢/"(B) = Ry (B)(S)m (R(P)s,' ) €1 (2).

By (4.40) this becomes

Rij(B)(S)jm 2, €0 (Z) = Rij(P) H(Z) €1 (Z). (4.43)
Then we may use (4.38) and (4.39) to obtain

H(P) e/"(P) = h R, (B) €1 (Z) = hey(P). (4.44)
Thus ¢;"(p) are indeed cigenvectors of the helicity matrix H,(p), with
eigenvalue /.

[t turns out that what-we have just shown could have been obtained
more directly from the general relation

Hiy(B') = Ry Ry Hy o (B) = (RH(P)R 1)y, (4.45)

where R is a matrix connecting p’ and p. Equation (4.44) is a
consequence of the fact that the helicity operator is a rotational tensor
field [compare (4.10)]. It is really for this reason that the helicity

amplitudes defined in (4.31) do have the simple transformation law
(4.33).

4.3. HELICITY DECOMPOSITION OF A TENSOR FIELD

The result obtained above can be generalized to tensor fields. In the
present context, we shall be dealing only with tensors of second rank, say
t;(p)- These transform as

tei(P') = Renm Rt (D), (4.46)

or infinitesimally,

8,li(p) - _iak(Sk)f’mtmi(p) T iak (Sk)zjtfj(p) - iakth(ff(p)' (447)
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It is easy to find the helicity basis tensors el "(p) which span the space
of tensors and have the same transformation properties as these. They
can be constructed from appropriate combinations of products of e/")(p),
which diagonalize H. In the present case, the eigenvalue h of H is not
sufficient to specify the basis tensors uniquely; an additional quantum
number is needed. This is supplied by the total angular momentum s. It is
well known that in order to span the whole 9-dimensional tensorial space,
the products of vectors e/"(p) e/(p) have be coupled to form objects of
total angular momenta s = 0, 1, 2, the dimensions of these spaces being 1,
3, and 5, respectively. The coupling can be found explicity by noting that
H may be considered as the third component of the three generators of a
helicity rotation (or little) group,

H(p) = H;(p) =ef"(B) S,  Hio(p) =ef (P)Si.  (4.48)
By (4.35) and (4.40) we may write
H;(®) = R;(p) ;. (4.49)

These matrices satisfy the same commutation rules as the generators L;
[recall (4.23)], namely,

[Hi(ﬁ)s H;‘(ﬁ)] = iEijk H (P). (4-50)

This follows directly from (4.23) and the invariance of the g, tensor
under the rotation group,

ik = Rip Ry Ryg €501
Therefore, we can define helicity raising and lowering operators

H.(B) = (H\ + iHL)(B) = V2 e '(p) S,
H_(p) = (H, — iHy)(p) = —VZel™(p) S, (4.51)

which commute according to the rules
[H3, H1]= th, [H+, H,]ZZH:; (452)

Since e/(p) are orthonormal, the total spin is measured by
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H(p)’ = S°. (4.53)

The same algebraic relations remain valid if the spin-one matrices (Si),;
are replaced by any higher dimensional representation. The possible
eigenvalues of H” are s(s+ 1) fors =0, 1, 2, ... Here we shall look at
the tensor representation

(Sk)(fwnj = Shn(sk)ij + (Sk)(m 81’]" (454)

It is straightforward to construct linear combinations in the 3 X3
dimensional product space of all e{"(p) e/ (p) with i, h' =0, *1,

erNp) = Y, Clie™(p)e(p). (4.55)

h+h=h
which diagonalize H and have total spins s =0, 1, 2, 1.e.,

H(ﬁ)(!,mj ef’s&_h)(ﬁ) =h 6’}" h)(ij)a h= -8, ..., 5,
HA ()i mper"(B) = s(s + D ely"(B), s=0,1,2, ... (4.56)

We simply use the well-known vector addition or Clebsch-Gordan
coefficients (s h, s,h>|sh) and write

By = M (LhLholsh) el(B) el (B) = (1) el (B),  (4.57)

h+h.=h

In particular
e V= (11 11)22) el el = epe, = el 77",
e = (11 10]21) e el + (10 11]21) " "

\f(evp, +poe)=—elr "

el = (11 1-1)20) e el " + (1=1 11[20) el Vel + (10 10[20) & ¢!

1 , 2 ,
= “%(‘-’1 e +efe)+ \/;pr efw mk- (4.38)



838 III. GAUGE FIELDS IN SOLIDS

We now employ the completeness relation (4.27) of the three basic
vectors e, e*, p in the form

ece; +eve,+pep;= 8y, (4.59)

to rewrite the (2, 0) basis tensor as

3. . 1
f2 0 = "2‘([76[7:' — 33“) _ (4.60)

For total spin one we obtain
(.n _ 11 10|11> (1 (0 (1)
epr = e e 4 (10 11]11) & e!

\/—(f’(Pz Pee) = —ey

el = (11 1-1]10) &’ el + (1-1 11]10) €} Vel + (10 10[10) € el

- (et —ehe) =" (4.61)

These formulas can be rewritten, using

- - 1 -
% (66 Pi— P¢ ei) = % E¢ik EemnCm Pn

1 1 . . [ 1 )
= %8(&%(3(” X P + ze(z) X p)k = %Sﬁk “ﬁ(e(l) + le(z))k

I

= %sﬁk €k -
ecef —ete;=1(el + ief”)(e!" ief-z)) —c.c. = —i(e el — &P e")
—1&¢ik Exery €§ ) ( ' = evic (e X ), = —1EcuPrs
as
(1. 1) _ I (1L =1 (Lo _ I ~
f’u = VZE(‘ikek —€t.i)s ("n = \/zgfikpk- (4.62)

Finally, the spin-zero tensor is
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e = (11 1-1]00) e} el + (1=1 11/00) & el + (10 1000 e/ ;"

I

1
B, P, = —=6. 4.63
.\/gpfpl \/3‘ ¥ ( )

\/_(e, “+ele)+

The fact that
H2(p) e "(B) = 5(s + 1) "(p) (4.64)

follows directly from the matnx elements

H.o(p) " () = V(s — h)(s + h + D e " (p),
H (p)e" "(B) = V(s + h)(s — h + 1) "~ (),
Hy(p) e""(p) = he™"(p), (4.65)

as can be verified by direct calculation:

H’e® " =[{(H,H + H_H.)+ H3]e" "
=[{(s+h)s~h+ D)+ (M +h+1))+ h*) e
=s(s+ 1)e™", (4.66)
Because e“ "(p) are all eigenvectors of the hermitian matrices H® and
H; with different eigenvalues, the eigenvectors are necessarily ortho-

gonal. The Clebsch-Gordan coefficients automatically normalize their
scalar products to

el " (B el (D) = 8y S (4.67)

For this reason the matrices

P i (B) = € " (P) e ™" (P) (4.68)
satisty
Py ) Poy " (B) = Pk (B) (4.69)

and are projection operators into the s, h subspaces. The polar*
tensors e%; "(p) are complete, a fact which may be expressed i
projection matrices as
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Z P?I ?n; 5(»1 if - (470)
s.h

One may verify this by inserting the explicit expressions, (4.68), (4.58)-
(4.63), and using the completeness relation (4.27) for the basis vectors.
Therefore, given an arbitrary tensor field A, (p). we can expand it as

Ay(p) = Z] P (§) A,y (p) (4.71)
= ). el "(B) A" "(p), (4.72)

s.h

the helicity amplitudes being

A% (py = el " (B) Aui(p). (4.73)

4.4. HELICITY FORM OF THE MAGNETIC ENERGY

In order to illustrate the use of the helicity decompositions let us recall
the familiar magnetic situation to which we apply this formalism. By
Fourier transforming the fields, i.e.,

Sg
A(x)=[(2;;3e"""A(q), (4.74)

the magnetic field energy took the form [compare Part I, (3.10}]

d?

1
Emlg 2“fd2x(va)__ Qn )

— A ()45, — q:9,) Alq).  (4.75)

Using the completeness refation, the matrix q28,j — ¢,4;, can now be
expressed in terms of projection matrices (4.28) as

8= qiq; = (85— 4:4;) = q(e;ef + el e)) = (P(P) + PUU(D)).

Therefore, E,,,, diagonalizes as

f Gy CACOP@ + P@) Aw)
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_ 1 [dq
C2ul) @)

@’ (A (@[ + [A7"(q)]). (4.76)

Here we have used the fact that for a real field
A(q) = fdgx eI A(x) = A(—q)* (4.77)

and thus

A(—q)e™(@)* = A*(q)e™(@)* = (e"(Q) A(q)" = A"(p)*.  (4.78)

The gauge nvariance of the magnetic energy manifests itself in the
absence of the longitudinal helicity A""(q) in the expression for energy.
That this has to happen follows immediately by considering the gauge
transformation

A,’(X)"‘“) A,‘(X) + ajA(X), (479)
which reads, in momentum space,
Ai(q) — A;(q) + ig;A(qg). (4.80)

On going to the helicity basis we see that while the # = +1 components,
whose spin 1s transverse to their momentum, remain unaffected, 1.e.,

AN (q) - A% (q), (4.81)

the longitudinal component on the other hand, for which the spin 1s
parallel to q, changes by

A"(q)— AYq) + i|q| Aq). (4.82)

Clearly, the energy can remain invariant under this gauge change only if
the longitudinal component does not appear at all. This component is
unphysicatl.

Consider now the interacting part of the energy

B = [ @60 A0, (4.83)
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This is also diagonalized in the helicity basis. Let us Fourier transform
and decompose the current in the same way as the field A;(x):

jilq) = ; ef(@) " (q) = ji(—q)*, (4.84)

with the helicity components

j*(q) = " (@)i(a)- (4.85)
The condition for zero divergence,
qiji(q) = 0, (4.86)
eliminates the longitudinal A = 0 component so that
ji(q) = (@) "(q) + (@) " (q). (4.87)

This decomposition shows that the current i1s purely transverse.
In the helicity decomposition therefore, the total magnetic field energy
now has the simple diagonal form,

= d3q L 2 (n 2 (—1) 2
+7""(q)A(q) + j‘“”(Q)A“”(Q)}' (4.88)

The advantage of this form is obvious: The field equations are trivial, i.e.,

g’ATN(q) = nj""(q). (4.89)

Only the two transverse components appear. The helicity formulation no
longer requires invoking gauge invariance since it permits working only
with physical field variables.

4.5. HELICITY FORM OF THE STRESS ENERGY

After this exercise we are ready to apply the same type of decomposition
to the stress energy in (4.3). Let us first see how the constraints (4.2)
manifest themselves in the helicity expansion,
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Aa(p)= 1 €b"(p)ACP(p). (4.90)

s=0,1,2

Contracting p; with the helicity basis gives

pieiy =0, (4.91)
S0
p:eh 0: (492)
~ (2.0) _ 2,
Pi€ei = *3”17(», (4.93)
~ (0.0 _ 1
Pi€e = %Pe, (4.94)
Furthermore,
en_ 1 (1. 1) (2.-1) 1 % _ (1 =1)
Pi€e = “—2|P‘ € =Pi€s » Pi€y T _"\/_§|P‘ €¢=PiCyi (4.95)
so that
Lo oen_ e
i—=(e" T =Ty, =0, 4.96)
P2
Also, since all ¢f; "', except e\ " = V3, are traceless we see that only the
SIX components
2.2 1 2+ + l
P PN %(6(_. <1 _ L. ...1))’ 7?;(\/je(z_ 0) 4 ol 0))’

satisfy the three constraints (4.2). The three orthogonal components
(1/V2) (e "V + e ), (1/V3)(—e™ D + V2" ) do not. In the follow-
ing it will be useful to have an abbreviation for these combinations of
polarization vectors; we shall call

+ 1 + + e A.
el = __(e(z. =) 4 el 1))“. - i}-’i,,
—efpfa

+ 1 2 o+ + A' i’
e’ = 5 (e T = g0 ),, = { e (4.97)
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€6 = """'( —e® 0 4 V2O O)) 6= _“(5& Pebi),

ekl =— (\/‘e” Nt e M, =pyp;. (4.98)

Then Ay; can be expanded as follows

A (p) = €5 (P AT (p) + e B)A® 2(p) + €l “(p) A" (p)
+ei ' (B)ATT(p) + e (B)A (p) + ek (B)AY (D). (4.99)

Let us now form the stresses
" . ~ 5. h s, h
O = Eike Ok Aej = ‘|P| Zh Eike Pi e(e]' Al )(P) (4.100)
5,

and expand them again in the helicity basis. For this, let us first consider

—~

Eike Pk eéj-‘ h)(P)-

Using (4.58), (4.62), (4.97), (4.98) and the relations

ipxXe=e, —ip X e* = e*, (4.101)
we calculate directly;
ieiePre; " = xel Y, (4.102)
[€e P €ej lﬁlkePk\/—(aef; PeP;) l(jl 0), (4.103)
i€iePres; = iegePrPed; =0, (4.104)
iE,‘k(ﬁk e;j+ = l(f) X e),-pj =€ p= e,;'_+, (4105)
igyePres = —i(PpXeX)p=elp=—e; , (4.106)
ieePreg” =i(p X Pp)ie =0, (4.107)

iegePreg = —i(p X P)ef =0, (4.108)
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- ~ (1,0 _ i - * = * — 1 * *
LEire Pr€ej = _\/z[(P X e)iej —(pXe )iej] = _W(eiej —€; ‘-’j)

1 o 1
= _ﬁ(aij - pipj) = _\/—§(‘e(2‘ D+ V2e 0)):‘,'

= —ef (4.109)

i
This leads to the formula

0y = e Ip Ay
_ 22) A2 _ L2 -2 42 =2 _ L 4(1.0) gt = g
= [pl{eff PA%? —e P A —ei AT T tefTAT —ef T A
— e VALY (4.110)

Since the A,; have only the six nonzero components shown in (4.99), we
obtain the decomposition

a;(p) = pl{el; P(B) A" 2(p) — & ~2(p) A™ (q) — efi(p) A" "(p)"}.
(4.111)

which displays the three physical components of the 3 X 3 matrix A,;.
They correspond to two transverse and one longitudinal phonon,
respectively. Using the orthonormality of the polarization tensors we see
that

|5 (p)I* = p*{|A%2(p)]* + |A% ~2(p)2 + |4 O(p) |2},
|7 (p)]? = 2p?|A™-O(p) ]2, (4.112)

Thus the stress energy [which we now can take directly from (1.43)] has
the helicity form

d’ l—v
= [ (10 20+ 14 2 12 ). i

That only three of the six components of A *(q) in (4.99) survive is,
of course, a direct manifestation of the gauge invariance of the decom-
position (4.100) under local transformations,

Ag(x)—= Agi(x) + d¢ A;(x). (4.114)
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In Fourier space, A,(p) may be expressed in terms of longitudinal and
transverse parts, as defined in (4.31),

doA=i(pe A" —peef AU+ pp A,

where ACD, A" are arbitrary functions of momenta. In terms of helicity
components (4.97). (4.98) this amounts to

g A = ilpller, AV + e  ATY e A, (4.115)
Thus gauge transformations modify precisely the last three components of
the helicity expansion (4.99) and this is why they cannot occur in the
gauge invariant energy (4.113).

In the helicity formalism the partition function (4.6) must contain only
the three fluctuating physical gauge field components as integration
variables,

7 = fQAQ 2)@14(2‘ —2)_@/4(1.[1] e—(l/T}([-_}l+1‘l~.}m)_ (4116)

The three physical components satisty the specific gauge condition

as can be seen directly from (4.91), (4.92). The gauge-fixing factor in the
formulation (4.6) i1s therefore

®[A] = [T 83, Ar)) = 83, Ay)). (4.118)

X/
Notice that this gauge together with the constraint implies the
tracelessness of all p # 0 components of A (p). 1.€.,

Ay (p)=0. for all p#0. (4.119)

It is useful to visualize the effect of the six &-functionals in the
integrand (4.6) for a particular Fourier component A (p). If the
momentum p points in the z-direction, the constraint and gauge
conditions read

piAe(p) = 8e3p3 A, (P). (4.120)
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and

p3Asz(p) =0, (4.121)

respectively. Inserting the second into the first we find

AP =0, Ay =0, A«(p)=0.

This leaves us with only three independent matrix elements Ay, A,s,
A,y, as it should. Incidentally, it should be realized that in the helicity
formalism we could have restricted the A fields to be traceless right from
the beginning. The constraint would then have simplified to 9; A;;(x) =0
and three components eliminated. Gauge invaniance, on the other hand,
would have been restricted to transverse functions A; only, i.e.,

Af’.——l’ A” + a{' A]‘,

with 9;A; = 0. Correspondingly, the gauge condition 8¢ A¢; = 0 would no
longer have implied three independent statements. In the example in
which p and Z were parallel, this would have showed up with A3 = 0 being
automatically satisfied.

Let us now turn to the helicity-representation of the interaction in
(4.6). Here we encounter a difference with respect to the magnetic case.
The dislocation density ay,(x) satisfies only the three divergenceless
conditions

dea(x)=0 (1=1,2,3) (4.122)
and nothing equivalent to the constraints (4.2) which would be cast as

;i (X) = ¢ a(X). (4.123)
Using the equations (4.91) to (4.96) and the fact that e((’, ", e?}‘ " are
symmetric in €, j while e({lj‘ " is antisymmetric, we sce that the first
condition is satisfied by the helicity components

3o - = 1 — +
e‘[,: - e((Z, 2), e((l, 0)‘ E’i‘f = ﬁ( e+ V2 n))“_ ’
l _ 1
el \Q(e(z_ Dy, et = _\/j (e@ 1 4 DYei.
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The last three components would be eliminated by the condition (4.123)
which, however, does not exist. Thus we have the peculiar feature that
within linear elasticity, stress couples only to the first three of the six
independent components of o ",

The field energy in the partition function (4.7) reads

1 )
_? (Eel + lEint)

1 ( &
=-= (2753{ 4n (IA(2 Ap))* + 1A% I(p)* + IA“ K (p)lz)

+i(a® p)* A% (p) + o P(p)* A (p) + o (p)* AT 0’(p))} '
(4.124)

The three components a* =, a” are absent. They carry no stress energy at
the level of linear CldS'[ICIty.

We can now integrate out the physical fields A% 2, A% 72, A" 9 in
(4.116) and, after a quadratic completion, arrive at

7 = const. X e—mfr)fw*pf(zwy*)(lfpz)(la‘2~?’(p>13+ a3 p)* + (1 + v¥i(1 = via )

(4.125)

The exponent must be the momentum space version of Blin’s interaction
energy for arbitrary dislocation densities which was derived before in the
traditional way [see (3.29)—(3.31)]. In order to verify this not immediately
obvious fact let us rewrite (4.125) in terms of the tensor of dislocation
density a¢;(p) by using the projection matrices into the helicity states,

7 = const. X e~ W@ pIam’) Vet (p)PEEB) + PE DB + ((L+ w1 = )Py B awy (p)

(4.126)

This can be brought into a somewhat more convenient form by observing
that (P®? 4+ P72 4 P9y, .. can also be written as 8 8¢ minus all
orthogonal projections P&V, p2 -b  pli. b5 pl. =D pE0 - pO.0" From
(4.68), (4.58)—(4.63) we calculate

& 0 - Fon s -~ o~ ~ ~ -~
PG =3pePiPe Dy — 3(Peb;Sejr + 84iPe Pir) + 8¢ B¢y,

(P + P DY, i =1(ecp; + Pied) (€ Py + Peel) +cc.
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=WPePe (8 — PiPj) + PiPy (See — PePe)
+PeP; (B —PjPe) +PiPe (8¢ — PePir)}

=3(8¢eP; Py + 8y PePe + 8¢y PiPe + 80 PePyr)
—2PeDiPe Py

(PUD + PY )y g = Aee pj — Pee;)ee Py — Peej) + c.c.

=34{(8¢e — PeDe)P; Py + (8 — PiPj) PePe
- (5@" - ﬁeﬁ;’)ﬁjﬁe' - (3;'{" - ﬁ]’pf’)ﬁ(’ﬁj’}

= %(aé’f’ﬁjﬁj' + O DePe — 8¢ PiPe — 8¢ Pe D),

PO = 18,80, (4.127)

By current conservation, p a.;» = 0, most terms in (4.126) cancel so that
of these projection operators only the tensors

=3DPeDjO¢j + £6¢i 8¢y, 1(Bee pipji £ 80 Pepjr), 164 B
survive in front of a,; (p), respectively. This shows that
(P2 4 P24 PO-OY s (p)
= [8¢e (8 — PiD;) — 1(8¢ — Pebj)bej)ae;(p). (4.128)

When multiplied from the left by a,;(p) the last term vanishes (since also
agpe = 0) and (4.126) becomes

Z = const. X e WDI@p2m ) Up* o)yl (3 — B,5y) — (1288 + 21— ) Pl Jalp)es

(4.129)

A final simplification is based on the observation that the projection
matrix P, whose explicit form is

Pt U)(ﬁ)f’j.e'r = SE¢k €¢'j i Pr Prrs
[see (4.68), (4.62)] can be expanded as

PUO(P)eyy e = §(Oee 8 — 8¢y 8) + $(=8¢e Py By — 8 Pepe
+ 8¢ PePj+ 8¢;Peby ) (4.130)
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Between conserved ay;(p) matrices, only

1 — B A —

100 (8 = PiPy) — 18 80
survives and the exponent in (4.129) can be rewritten as

d'p | l 2 i
2 ) wa,,(p) 5(/; §5k,'5r', +1_‘—P(,;, ae'_;"(P)«

ar

(]

= dp L 5 S . (1. ) .
va’n(P) ¢ Opjr = Epprp € T I P(,] e Uft';"([))-

(4.131)

Going over to position space, this amounts to the partition function
[recalling (1.81), (1.89)]

I

M 3 3.0 1
Z = const. X cxp{—mjd xd x aq,(m)[2 Op; 8¢y — Erig Uk o

1
+ T—, Eep Eerjr O Dy R] oz(»,«(x’)} - (4.132)
— v

This exponent coincides with Blin's law (3.29)-(3.31) for arbitrary dis-
location densities.

4.6. THE TWO-DIMENSIONAL CASE

Here the situation 1s much simpler. The conserved stress tensor can be
expressed in terms of a field A;(x) as
o, — f";/\ aAA’,, (4133)

)

where ¢, 1s the antisymmetric unit matrix, ;;, = e, =0, £, = — £, = 1.
Notice that A; is no longer a proper gauge field. This is peculiar to two
dimensions. When written out in component form. (4.133) reads

(Tll:aZAlﬂ (722:“'('“/42, (I'[z:azAz. ()'21:A(")1/4|. (4134)

The symmetryv is guaranteed by using a transverse A, ficld.
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alAl +62A2=0. (4135)

In the isotropic case the stress energy becomes

—

. I v
E = fdzxm _(ka I A - = v(Efk akAi)2:|

1 v
:[dz ;1‘"; (akA,‘)z_m(a]Az_azAl)z]. (4136)

A partial integration in the mixed second term, together with (4.135),
brings this to the form

¢ _; 2 2
E* = +v)fd x(a,A))”. (4.137)

apart from a surface term.
In two dimensions. for which defect lines degenerate into points, the
density of a dislocation with Burgers vector b at the place x, is

@;(X) = 404 9 1;(X) = b,-62(x - Xy). (4.138)

The 1nteraction energy of a dislocation in the stress field of another is
found, just as in (3.22), to be

ENT = fdzx alou' = fdzx i Ok A;(x) 01" = fdzxA_,-(x) Eix 0 O Uy
= fdzxA,(x) a,(x) = b; A;(xq). (4.139)

The partition function of stress for a given set of dislocations is (8 = 1/T)
7 = fg/)Aj B(8;A;) e Pliml + NIfdi@.a)" + B d A, (e (x) (4.140)

The A, field can be integrated out with the result

—1/ _ o B d e i = & .
7= const. X det(de) l/_(J Breil +|]J([,lrl,\ (X, (x x)u,(x)’ (4141)

where z*,-j,-r(x — x’) 1s the transverse Coulomb potential in two dimensions
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calculated in (1.124). The exponent is the two-dimensional analogue of
Blin's law.

The potential v;] has an infinity. Let us isolate it and discuss it
separately. It contributes an exponent

2
Bu(l + v)(fdzx a,?"(x)) %T(log (ge“f) +%) (4.142)

where § is the small regulator mass. The superscript T of @’ records the
fact that lﬂ,-f(x) acts only on the transverse projection of «;(x),
a/ (x) = (8, — (8,8,/37)) a;(x). In the limit §— 0, this exponent diverges
to —x= so that the dislocation can have a finite contribution only if

f d2x a7 (x) = 0. (4.143)

We shall refer to this condition as dislocation neutrality. For such neutral
systems, the infinity in (4.141) cancels and we can write

—J.dzx d*x’ af (x)v ] (x — x') o] (x) :—fdzx d’x’ af (xX) v’ (x — x)a/ (X)),
(4.144)

where

1 X X;
’;_T ! _ N T
/(X —x) 4W(6,]log|x| |x|2) (4.145)

is the subtracted transverse Coulomb potential.

The fact that the elastic energy couples only to the transverse part of
the dislocation is the two-dimensional analogue of the coupling to only
a> P, a7, o' " The energy is indifferent to modifications of the
longitudinal part of a,, a’(x) =(3;0;/8°) ¢;(x), or in Fourier space to
a’(p) = p;p;a;(p). just as it was previously indifferent to the components

L _

1 )
o —V—g(_a(-.n)_*_\/ia(n‘o))’ a++=%(a(2‘ ”+a“‘”),
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(2. -1) + a(l. —1))

o
« ——\/Z(a

[recall the discussion after (4.123)].

NOTES AND REFERENCES

See the end of the next chapter.
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CHAPTER FIVE

STRESS ENERGY OF GENERAL DEFECT DISTRIBUTIONS

5.1. THE SYMMETRIC STRESS GAUGE FIELD

So far, the development has been very similar to that of vortex lines in
superfluid *He. The forces between line elements are of the 1/R type and
the only additional complication consists in the different possibilities of
contracting the indices related to the Burgers vector. The situation
changes drastically when it comes to including also the line-like defects of
the rotational type, the disclinations. If they are present, the gauge field
A;(x) is no longer useful since it does not couple locally to disclinations.
A further derivative is necessary to achieve this goal. We therefore
introduce a gauge field x,, (x) which has the property that its double cur!
1s equal to the stress tensor,

7 (X) = ikt Ejmn a1!'( am Xtn (X) (5 1)

This representation has the advantage of being automatically symmetric
if x(, is. The local gauge transformations which leave o invariant are
now

Xtn (X) — X¢n (X) + a(‘ gn (X) + 6:1 f(’ (X) (52)

This ensures that only three of the six components of x;;(x) are physical.
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It 1s straightforward to derive the coupling of this gauge field to a
general defect line. For this we consider again one line L' in the stress
field of another L', so that interaction energy is

EM = Jd xayug (5.3)
Using the gauge field (5.1) this can be rewritten in the form

11 . 3.7
E[’ = J.d}x(f‘jk(* Epnn dk dnrx(l”n)u;{il- (54)

A partial integration yields
ELT = f X Xtor Eeki €punj Ix D (5.5)

Hence we see that the symmetric gauge field x,, couples locally to the
total defect density n,, which was introduced in (2.76),

ELT fd X Xen (%) M6 (X). (5.6)

With the gauge field x, it is now straightforward to derive a partition
function for the stress fluctuations around an arbitrary defect con-
figuration [the analogue of (4.116)]. For this it is again convenient to go
to a helicity basis. Expanding the gauge field x,,(x) into its Fourier
components [as in (4.72)], we use (4.71) to decompose

Xin () = 23 POl () xew(®) = 1 €8 B) x> (p).  (5.7)

s s.h

with the helicity amplitudes
¢ 5.0 * o~
X(L h)(p) = eknl ! (p) Xtn (p) (58)

By virtue of the symmetry of x,,(p), only the six components with spin
s = 0 and 2 can be nonzero. Three of these are gauge modes. From (5.2),
these have the general form
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i(qe&n(p) + Py ée(p))- (5.9)
Decomposing &, (p) into longitudinal and transverse components,
& (p) = Pn €O+ e, (p) €+ €5 (@) 77 (5.10)

we see that (5.9) can be written as [see (4.58)—(4.63)]

1
2i|Q|l:ﬁ( PnE(p) + (Vé(eéﬁn + pee,)EV(p) + c.c.):|

1 ) 2
= 2i|q] [\/—j(\/i om0 4 e M) g0 (21 gy C.c.)} : (5.11)

Hence the components (2, 1), (2, —1) and the linear combination x* =
(1/V3)(V2xZ "+ x"™ ™) are unphysical. Using the previously defined
polarization tensor [see (4.98)}]

o 1 3 Oy rmn m
B =5 (V2R @) + " ®) =P (5.12)

the unphysical components are spanned by e P, e¢? Y and e’". The
physical components, on the other hand, are spanned by the orthogonal
complements e *, ¢ ) and the previously defined

N 204 " 1 -
e, (p) = ﬁ(“e(& "(B) + V2, "(p)) = 5 Bt = Pebn)- (5.13)

It 1s useful to introduce also projection matrices associated with the
polarization tensors e’ and e’

P{.Tn t'n' (ﬁ) = Efdn(f)) 8%71’ (ﬁ) = %(6% - ﬁfﬁn)(‘sf'n' - ﬁf‘"ﬁn’)’
P (B) = €6, (P) €6 (P)

PePnDePr- (5.14)

In terms of these, the completeness relation reads
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h#0

: 1
( 22 P(z'h) + PL + PL ) = 5(8(‘(' er' + 6(.’::' Srrf')' (515)
h= -2
€n, €'n

The right-hand side is the unit matrix in the space of symmetric tensors.
The physical components of x,,(p) are projected out via

X?:lr‘\(p) = (Pll. 2 +- P(z- -2 + PL)FH.F'H’ Xf”n'(p)
= ey () x> P(p) + €2 (P x' 2(p) + €4 (P) x"(p). (5.16)

They satisfy the obvious gauge condition

P (p) = 0. (5.17)

These are three equations which suffice to eliminate the three unphysical
components, since the corresponding polarization tensors would give

1 ) 1 ]
peeiy () = 75 (P): peet 2’(p)=—ﬁ6‘1‘1(p), pfeﬁf(p)=\/—§pm

(5.18)

which are three nonzero independent vectors such that their sum vanishes
only if the components do.

The stress tensor can be calculdted from xph“(p) by observing that the
physical polarization tensors e "2(p), e (p) are invariant under the
operation of the double curl, up to a factor p?, and a trivial sign change
for the L component. For e* *?(p), this follows directly from (4.102):

(‘) +‘))

~ 2 _) ('! +‘))
llE[k( PA i E]mnpm €¢n (p) = ]nmpm m (p) = € (p)

For e“(p). we use (4.103) and calculate

(1. 0)

. ~ ~ PPN _
LEip¢ Prl EimnPm € (p)(n = —i mmpm m (p)

The right-hand side becomes, with (4.109), —(1/V3)(—e™ “(p) +
V2e" ")) = —e/ (p) and this proves our statement. Note that the un-
physical components vanish under the same operation, as they should,
due to the gauge invariance of the decomposition (5.1).
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As a result, we can expand the stress tensor directly in the form®

() = pef7 V() X 2(p) + €= V(B X V(p) ~ e (D) x“(P))  (5.19)

and identify its helicity components as

o (p) = p* x> =(p). o “(p) = —p*x " (p). (5.20)

Comparison with (4.111) shows that x* * and the former gauge field A*"
are related by

ACT(p) = [p|x* *2(p).  AY"(p)=—[plx"(@.  (5.21)

Inserting these into (4.113). the stress energy takes the helicity form

1 d’p
F=— | -—-p' (2.2 2 (2. -2 2 4

l—v, 3

—x" : 5.22
o, X)) ) (5.22)
The linear coupling (5.6) with the defect density can be decomposed in a
similar way. Since 7;(p) is symmetric and divergenceless, it has the same
helicity decomposition as the stress tensor, namely,

2 (2.

7 (p) = e M(B) 0 (p) + e (B 0 (p) + e (B)n"(p)  (5.23)

and the general interaction energy now reads

d3
Eim = _I@% Tlen (P)*Xm (p)

d3 (2.2 R v 5 _n I
- _J-(zf:;s(’?{“ p)x© N (p) + P x© () + (p)*XL(p)),
(5.24)

“More generally, we could have derived the following identity [using Egs. (4.70), (4.68).
{4.102)-(4.109)1:

S(m('gmj‘lﬁmﬁn . 5 -
= Efn1l”ij"ﬁrnﬁn([)(2- 2)+P(H '~)+P(—- 1)+P(2 7]]+PII+PL
L P DL pllo =D pll. n))“”‘ .

3

- (P(“‘ Dy P(z\ -2) pt 4+ pl. 0))(”,’_

Applying this to x, ;- gives (5.19).
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5.2. ELASTIC PARTITION FUNCTION FOR A FIXED GENERAL
DEFECT DISTRIBUTION

After these preliminaries it is easy to write down the partition function
for a fixed set of defects with all their stress fluctuations,

7 = f@x(z, ] _(LZSX(Q‘ -2) @XI e—(l/T)(E+iEm.)_ (525)

Since the physical components satisfy the gauge condition (5.17), the
measure of integration can also be written as

[I { f z/xf,,(x)}ﬂa(a(xf,,).

X.n
Integrating out the three physical gauge-field components gives

Z = const. X e*(p/'l')ﬂt!"p Cay i Up Y eI + I Tl + (1 + v — v ey (5 26)

This partition function i1s the proper generalization of formula (4.125).
The exponent is the momentum-space version of the elastic energy for
arbitrary defect distributions.

The expression can be simplified in a manner similar to (4.131). For
this purpose we insert the projection matrices (P ¥ + P& 72 + (1 + v)/
(1 = v) PY)¢, ¢ and rewrite them as the symmetric traceless unit matrix
in the subspace of symmetric tensors, (1/2)(8¢¢ 8,0 + 8¢, 6,¢) minus the
matrices

2v

P(: 1) _+_ P(z -1) + PL' .
I —v

PL. (5.27)

These matrices are now contracted with the tensors n¢,(p)*. 1 (p)
which are divergenceless, i.e., they satisty the conservation laws

Penen(®)=0.  p,me,(p)=0. (5.28)

With the aid of the explicit polarization tensors (5.14) we see that P’ (p)
gives no contribution while P“(p) can be replaced by (1/2)8,, 8., .
Moreover, due to (4.58) and (4.59), the matrix PP 4+ PG ~D between
the n tensors vanishes since it can be rewritten as
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(P(l l)(p) + P(l _-”(p))(n(’n’ :il( (pn +ﬁf en)(e(’pn’ "‘P{" e,,f)+C.C.
:%[(8” ﬁfﬁ(’)ﬁf!ﬁr:’+(6nn’ _ﬁnﬁn')ﬁl'ﬁ(’

+(6tu’ _ﬁ(ﬁfr')ijf:ﬁ('+(8fr(’ _ﬁnﬁ(’)ﬁ(ﬁn’];
(5.29)

clearly there are always momenta that are contracted with the 7 tensors
and give zero. Thus we arrive at the matrix form of the exponent,

w dp 1

b — 8,00, + wp).
T (271.) , [ t(p)l: ( tn'y’ 5(n 6:1( ) + 6(:1 6( ‘n' j| Ti'n (p)

(5.30)

In position space, this amounts to a partition function for stress
fluctuations, i.e

Z = const. X e*(.u/l'},fn"l‘ffj—l"[m,,lx}nm(\') + (00 = ) (N 1, (X)) 0t - XY (S ';1)

where v4(x) denotes the potential

y(x) =

ey (5.32)

In Eq. (1.88) we had calculated this potential and found that it consisted
of two terms: a constant

| [ *d
c=—s| Y-y, (5.33)
277'“ 0 (]‘_

which diverges due to the small g fluctuations (infrared catastrophe) and
a subtracted potential

ri(x)=ryx) — v (0) = —R/8w. (5.34)
Inserting this decomposition into (5.31). the subtracted potential leads to
Z = const. X (,{/.ls"'l'!‘lvll“xu’"x'|n.,,(\ln,,,h') + L= e e (N) M AN 630N — \’)- (S ‘;i)

The infinite constant can be treated following (4.141). 1t gives the overall
factor
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e—mﬂ')rJd"xd-“r'[nm(x)m,,(x') + (vl — )y (x)n.,,.(x')], (5.36)

which may be rewritten as

oS s e 0) + @b, o) (5.37)
where
] 1 + 21) 1 5 38
o = — — . .
3 Il —v ( )

Since ¢ diverges against plus infinity, the factor vanishes unless

JdBX(”’?m (x) + ady, m;i(x)) =0 (5.39)

for each ¢, n. Separating 7,,,(x) into its traceless spin-two part nf;)(x) and
the spin-zero part 7;(x), this amounts to the two equations

fd3x ni(x) =0, fd3x 7:(x) = 0. (5.40)

These state that only such defect contributions have a non-vanishing
stress partition function whose integrated densities vanish. We shall call
this property charge neutrality of defects or defect neutrality.

Let us decompose the defect tensor m;(x) into dislocation and
disclination densities according to (2.79b), (2.80a)

nij(x) - (g)r'j (X) + Einn Hm(ajn (X) - %ajnakk(x))' (541)

The dislocations by themselves satisfy automatically charge neutrality
(5.40)" due to the derivatives in front of «;,. When inserted into (5.35),
these derivatives ensure that the potential between dislocations goes like
1/R as given in formula (3.29). Just as for dislocations, the force between
disclination lines is repulsive for line elements and attractive for opposite
line elements, but the potential is linear. This leads to a ‘‘permanent
confinement™ of opposite line elements. In a statistical ensemble they can

“Under the usual assumption that ., (x) vanishes at large |x|.
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never be found far from each other. This situation is analogous to the
permanent confinement of quarks and antiquarks in elementary particle
physics, which apparently cannot be isolated in the laboratory. Only their
bound states, the strongly interacting particles (mesons and baryons) are
observable.

For disclination lines we have seen in the general discussion of Section
2.4 that the bound states of lines of opposite sign are distocation lines.
The permanent confinement implies that a crystal in thermal equilibrum
never contains free disclination line elements. Only their bound states,
the dislocation lines can be found. External forces are necessary to
generate disclination via plastic deformations. Nevertheless we shall see
later that it is possible to produce disclinations by heating, but only at the
expense of a complete destruction of the crystalline order in a melting
process.

5.3. TWO-DIMENSIONAL DEFECTS

In two dimensions, the stress tensor can be written as
(T,",'(X) = Eik Ejm Hk 8”,)(()() (542)
and x has lost both indices (since it corresponds to restricting x,, t0 X3
only). As was previously true for A, it is no longer a gauge field.
Explicitly we have
o =dX. on=dx, o =0y = —ddx (5.43)
The field A, is related to x via

Aj(x) = e dxx(x). (5.44)

It is explicitly transverse. The elastic energy reads [compare (4.137)]

: [ PR
Ec.l — m fd',\'(()_)()_- (545)

The field x now couples to a defect tensor n (corresponding to n33)

EM = ifdzxx(x) n(x). (5.46)
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Hence we obtain for the elastic partition function [compare (4.140),
(4.141)]

7 = f_(/-x(x) e~ 1B/ + eI Ei)” + Bidvx(x) n(x) (5_47)

= const. X det(Ba?)”V2Ze putl + v amnix —xImkx) (5 48)

The potential v,4(x) was calculated in (1.121). Using a small cutoff mass 6,
it contains an infinity 1/(478°)— >. This shows that Z vanishes for
any defect distribution which does not satisfy the condition

szx n{x) = 0. (5.49)

This implies two-dimensional defect neutrality.

Neutrality 1s not yet sufficient to guarantee a finite Z. There is another
infinity in v4(x) which goes like —|x|*log8. This is eliminated as follows.
We write the exponent as

—log & [ fdzxdEX'(x ~x')* n(x) n(x')}

2
= Iog6[2fd2xx2n(X)fd2X' n(x’) — ZUdzxxn(X)) ]

9

= 210g8(fd2xxn(x))_. (5.50)

From this we see that only such defect distributions can occur which aiso
have a vanishing dipole moment,

fdzxxn(x) = 0. (5.51)

This condition will be called dipole neutrality. Once 7n(x) fulfills both
conditions, the partition function can be written in the form (5.48) but
with v,4(x) replaced by the finite potential vj(x) = (|x|*/8m)log|x| of
(1.122).
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CHAPTER SIX

KINEMATIC PROPERTIES OF DISLOCATION LINES

So far we have studied only static defect lines. For a complete under-
standing of the plastic properties of materials caused by defect lines it is
necessary to know also their kinematic properties. In this text we shall be
mainly interested in equilibrium thermodynamics of defects and stresses,
where these properties are, to a large extent, irrelevant. For complete-
ness, however, it will be useful to recapitulate the way defects move in a
crystal.

6.1. GLIDE

In Section 2.1 we already saw that a dislocation line of the edge type
facilitates the movement of one crystal picce over another. The move-
ment proceeds in a slip plane parallel to the Burgers vector and
orthogonal to the line. Such a movement is called planar glide. If the
stress is not applied uniformly over the surface of a crystal, dislocation
lines take a piece-wise screw character (see Fig. 6.1) and the slip planes
become cylindrical (see Fig. 6.2a). Just as in the planar slip, only
switching of bond directions is required as long as the lines move so as to
keep a constant projection along the b direction.

865
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FIG. 6.1.a. If a slip starts with a pure FIG. 6.1.b. The atoms above and below
edge dislocation line and the shear forces a mixed dislocation piece connecting edge
become  inhomogeneously  distributed and screw parts. This can move to the
along the y-axis, the edge line acquires right via slight shifts in bond directions.
the screw and mixed sections shown in Fig. The circles and dots are atoms above and
6.1b. K below the slip plane, respectively.
27
J by ) 900008
ledge T
[“screw
(a) (b)

FIG. 6.2.a.b. The mixed edge-screw dislocation line in glide configurations on a cylindrical
surface whose projection along b is the line shown to the left of the figure. This slip occurs if
a force pushes to the right in the center and to the left outside the periphery. In Fig. 6.2b we
also find a cross-slip away from the slip plane (see also Fig. 6.4).

slip surface

force

force

(a)

6.2. KINKS

It may be expected that the slip movement of a line is not a continuous
one. Due to the periodic nature of the crystal, the positions where the
dislocation line can lie most comfortably are determined by potential
grooves which in a s.c. lattice would run parallel and orthogonal to b in
the slip plane [see Fig. 6.3 for an illustration of the orthogonal grooves].
In such potentials a dislocation line may form kinks in which the line
jumps across one potential barrier and proceeds in the next groove. Kinks
are single linc elements of screw character. A finite-line piece of screw
character may be seen as a multi-kink jump in a pure edge dislocation.
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FIG. 6.3. The kinks due to the undulation of the effective potential for a dislocation line
which is caused by the periodicity of the lattice (Peierls potential). We have omitted the
undulation orthogonal to b which 1s certainly also there.

6.3. CLIMB

A movement of a line away from the slip surface is in general restricted.
In order to understand this most simply, consider the possibility of a
dislocation line moving orthogonal to b X dx, a movement which is
meaningfv]l only to the non-screw piece of a dislocation line. Such a
movement is called a climb. Looking at Fig. 2.2. we see that such a
movement of the dislocation line to the right or left can only take place
by extending the plane of excessive atoms. This, in turn, requires the
presence and rearrangement of the interstitial atoms. We conclude that
the climb must be a degree of freedom which hardly occurs in a plastic
deformation. It can take place only on a long time scale which is needed
by the interstitial atoms to diffuse to the climbing line.

6.4. GENERAL CONSERVATION MOTION

Closed dislocation loops have a slightly easier possibility of performing a
climb without requiring extra interstitials. For they may use their own
excess atoms and simply change their arrangement. Such a climb is called
conservative. In general, any movement of defects which can take place
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without the need of extra interstitial atoms is called conservative. It is
characterized by the invariance of

1
;fsfjsfbi, (61)

since this obviously counts the number of excess atoms in the dis-
location loop. The conservative movement may also be characterized
by an integral along the dislocation line. Let 8x(s) be the displacement of
the line. The excessive atoms of a dislocation line lie in the direction
dsx(s) X b where dsx(s) is the infinitesimal tangent vector. Thus a move-
ment 8x(s) requires

A = %J‘ds()k X b) - 6x(s) (6.2)

additional atoms. In terms of this expression, we see that a glide always
proceeds in such a way that for each line element it only displaces the
same set of excessive atoms, i.e., 8x(s) is orthogonal to the excessive
layer:

(x X b) - dx(s) = 0. (6.3)

Thus a glide is a conservative motion.

A climb is defined by (6.3) as being nonzero. One speaks of a conser-
vative climb if it possesses at least a vanishing integral around the whole
line

%f ds(x x b)- 8x(s) = 0. (6.4)

Even though a conservative climb 1s much easier to generate than a
non-conservative one since the diffusion of atoms along the dislocation
line is casier than the diftusion in the bulk of the crystal, it nevertheless is
extremely unfavorable when compared with the glide.

6.5. CROSS SLIP

At this place we may observe that there is another possible dislocation
movement which is not a glide but also of the easy type by having
(x X b)-8x=0. It arises for screw dislocations for which x X b = 0.
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FIG. 6.4. A cross slip. Two toops on different slip planes can fuse without need of extra
intestitial atoms, or a screw piece of a dislocation may suddenly escape from the ship plane
in such a way that its projection along b is a line (compare with the cross slip tongues
forming in Fig. 6.5b).

il

[/ R/ .,

Therefore, a whole section of screw dislocations can move away from the
slip plane without need of interstitial atoms. Such a movement is called
cross slip and shown in Fig. 6.2b. It is characterized by its projection
along b being a line. A cross slip may also form and connect two different
dislocation loops on different slip planes as shown in Fig. 6.4.

6.6. DISLOCATION SOURCES

If a dislocation line has moved once through the crystal, the plastic
displacement is equal to the Burgers vector b of the line. In order to
arrive at macroscopic deformations, a great number of lines is necessary.
It was pointed out by Kuhlmann-Wilsdort and by Frank that in order to
understand the large deformations observed in many materials, an
efficient source must exist by which dislocation loops can be created
under external stress. The basic mechanism by which this happens was
discovered by Frank and Read and is nicely explained in the book by
Read. A modification of his pictures is shown in Fig. 6.5a-d. By
inspection we see that if the upper portion of the crystal is sheared against
the lower, the section DC of the edge dislocation line starts circulating
around the axis DFE in the clockwise sense thereby expanding the slip
plane once through the whole crystal. The result is a movement of the
upper portion against the lower by b.

The importance of the mechanism lies in its periodicity: After one
sweep. the line DC has returned to its initial position from where it can
start the next sweep. In the illustration, the surface of the crystal seems to
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FIG. 6.5. The periodic motion of a dislocation according to Frank and Read which cuts a
crystal an arbitrary number of times and permits a plastic shift of the top half against the
bottom half by any number of Burgers’ vectors.

(d)

FIG. 6.6. The Frank-Read mechanism in Fig. 6.5a—d in a large crystal. [t can produce
dislocation loops which lie completely within the crystal. Only for small crystals, smaller
than the typical loop size docs it lead to a complete slip of the upper portion against the
lower.

A RO
yd - - >, c;//f_/.jﬁ//? A

play an essential role. But this is not really true. A similar process can go
on completely inside a crystal leading to the periodic formation of dis-
location loops. In order to see this we may consider a symmetric initial
configuration as shown in Fig. 6.6. By applying shear stress to the upper
portion in the direction of b the line DC will bend and sweep out the
same arc as those in Figs. 6.5a-b within the crystal. The return to the
original position proceeds, however, in a different way. After a certain
amount of sweeping. the curve collides at point M. There the section
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DMC separates from the outside ring and re-establishes the initial line
DC. The outside ring remains inside the crystal. This is obviously an easy
movement since all that is necessary for a shift is a slight switching of
bond directions as indicated by the dashed line.

Certainly, the dislocation lines in this plastic deformation process are
not necessarily as smooth as shown. Even in a homogeneous stress field,
the segments of the line have edge, screw, and predominantly mixed
character.

It should be noted also that the lower part of the double cross slip in
Fig. 6.4 can also act as a Frank-Read source.

6.7. INTERSECTING LINES AND JOGS

Another important aspect of dislocation movement is the possibility that
lines can be driven to intersect and pass each other. This happens if
external shear forces are large enough to overcome the elastic repulsion
between the lines. The conservation of interstitial atoms does not permit
the lines to have the same shape before and after intersections. A
moment’s thought shows us that, in general, each line acquires a jump
orthogonal to its own slip surface whose size equals the component of the
Burgers vector of the other line in this direction. An example is shown in
Fig. 6.7 for two lines AB and XY which are straight before intersecting.
Afterwards, the line XY is still straight since the Burgers vector b of AB
lies 1n the slip plane of XY. The other line AB, however, acquires a
vertical component PP’.

Such jumps orthogonal to the slip plane are called jogs. They are the
counterparts of kinks, which are jumps within the slip plane. The main
difference between the two consists in the fact that whereas a kink
requires no migration of atoms, a jog does. In the example, the jog line
contains an extra row of atoms below the line AP which is necessary for
this partial climb of the line. These atoms have, of course, been left
behind by the dislocation line XY. In order to see this we only have to
keep in mind that the line XY before the intersection has a layer of
excess atoms to the left while AB has such a layer extending down-
wards. After the intersection, the layer to the left of XY is reduced
by one Burgers vector b so that it contains one row of atoms less. It is
precisely these that have been left behind in the row to the right of the

JOE.
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FIG. 6.7. Two lines before and after intersection. The line AB has a jog PP’ as large as
the Burgers vector of the line XY, which points orthogonal to the slip plane of AB. The
other line XY remains straight since the Burgers vector of AB lies in the slip plane.

6.8.

BASIC ENERGETIC CONSIDERATIONS OF BRANCHING
OF DISLOCATION LINES

We saw in Section 2.11 that defect lines can branch off each other
satisfying conservation laws like those for electric currents. If a pure
dislocation line L, with Burgers vector splits b, into two others L,, L,
with b,, bs, they obey the analogue of Kirchhoff’s law:

bl :b2+b3.

(6.5)
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Energetically, such branching configurations are usually unstable. Just as
in the case of vortex lines, the elastic energy of a dislocation line increases
roughly quadratically in b. Thus, if the square of one vector is larger than
the sum of the others, say

b; > b3 + b3, (6.6)

the line L, will slice open in favor of two lines L, and L;. This is
analogous to the case with elementary particles where a decay process
takes place with the conservation of the momentum vectors

P = P21 P (6.7)

as soon as the masses satisfy

ny > m, + ms. (68)

From this argument, it is obvious that among all admissible Burgers
vectors only the shortest ones have the largest chance of being stable.
Others may be stable because of elastic anisotropy or because their
atomic configuration in the core has a low energy. In a simple cubic
lattice, the Burgers vectors

bl = (1, 0, O)Q, bz = (0, 1, O)a, b3 = (0., O, 1)(1, (69)

and their mirror images are stable while all others decay into them. In a
body-centered cubic lattice which is spanned by basic lattice vectors

a = (1,0, 0)a, a= (0,1, 0)a, a; = (1/2)(1, 1, Da, (6.10)

the shortest Burgers vectors which are of the form (6.10), as well as the
next longer ones pointing to the six next nearest neighbors

b=14(1. 1, Da. {(I. 1. =D)a, ..., 4(~1. 1. —a  (6.11)

are stable. In a face-centered cubic lattice, the situation is similar. Here
(6.9) and the twelve shortest Burgers vectors
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b= +(172)(0, 1, Da, =(1/2)(0, 1, £1)a
+(1/2)(1, 0, Da, £(172)(1, 0, £1)a
*(

12)(1, 1, O)a, =(12)(1, =1, 0)a. (6.12)

In the following it will be useful to think of all unstable dislocation lines
as composite objects consisting of those stable lines into which they can
decay. This is similar to the old fashioned theory of elementary particles
in prequark days when all hadronic resonances were thought of as being
composed of pions and nucleons. The smallest set of stable dislocation
lines capable of building up all others will be referred to as basic or
fundamental. Only these fundamental objects must be included explicitly
in the field theory of defects to be developed later. The others can be
viewed as consequences of the field interactions.

6.9. ANCHORED BRANCH POINTS

Branching dislocation lines have interesting properties as far as motion is
concerned. In general, three slip planes intersect each other only in one
point.? In this case the vertex cannot perform any conservative motion.
One therefore speaks of anchoring a vertex. The Frank-Read source
mechanism for dislocation loops can take place between any two such
anchored vertices. In line configurations which are formed like the letter
H and in which the four external lines do not lie in the slip plane of the
cross connection, this can perform precisely the same periodic sweeps as
discussed above, thereby producing sequences of loops.

NOTES AND REFERENCES

For more details sce the books listed in Chapter 2 and the book by
W.T. Read. Jr.. Dislocations in Crystals (McGraw-Hill, New York. 1933).

*An important exception is that of

hlzg(lg_lu U}; bj:'(‘)_{(l‘()‘_l). bs:g(”}_l; l)

with b, = b, + b, and all three vectors lving in the plane orthogonal to the space diagonal
(1, 1, 1).



CHAPTER SEVEN

SOME GENERAL PROPERTIES OF THE
MELTING PROCESS

So far we have studied specific defect configurations with their elastic long
range stress interactions. These interactions were described by a gauge
field coupled locally to the defect densities. In the previously investigated
case of superfluid "He we saw that given a system of random lines with
such a coupling, it is relatively easy to develop a disorder field theory for
a grand canonical ensemble of such lines. This field theory permitted the
study of phase transitions in which vortex lines condensed. In *He this
transition carried the superfluid into the normal state.

In Chapters 4 and 5 we found gauge structures which are very similar to
those in superfluid *He. Hence we might expect that a very similar
disorder field theory can be set up for the defect lines in a perfect crystal.
At a certain temperature. the entropy of the lines overcomes the energy
and the lines become infinitely long and proliferate. Once the crystal
is filled with long defect lines it loses its high degree of symmetry. The
fluctuations of the defects carry the atoms of the crystal to arbitrary
positions. The resulting disordered state may be expected to behave like a
liquid®. Thus. once we succeed in finding a proper disorder field theory of
defect lines, this should provide a possible theoretical basis for the study
of the melting transition.

When attempting such an approach, however, one immediately realizes
that there exists an important difference between the two phase tran-
I the time scale of defect movements is sufficiently short. Otherwise the state will be
glasslike.

875
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sitions. The superfluid transition in *He is a second-order phase tran-
sition. Near the critical point, the physically relevant fluctuations are all
of very long range. This makes the critical behavior, in particular the
critical indices, independent of the properties of the system at short
distances. For this reason a lattice model of the superfluid phase tran-
sition such as the classical XY model is able to reproduce the critical
behavior with arbitrary accuracy, even though the phenomenon of super-
fluidity does certainly not take place on a lattice. The critical behavior
does not depend on the particular choice of the lattice structure. This
property of second-order phase transition is called universality. It has
been one of the most important achievements in theoretical physics in the
past decade to have recognized this property and developed methods to
understand the different universality classes theoretically. Universality is
the reason why the critical behavior of second order phase transitions can
not only be described by various lattice models but also by a suitably
chosen field theory. The field has only to be capable of representing
properly those degrees of freedom of the system whose fluctuations
acquire an infinite range at the critical point. For the superfluid
transition, it had to be a complex field.

In contrast to this pleasant situation with the superfluid transition, the
melting process which we would like to understand in this part of the text,
is a first-order process. Just above the transition temperature, in the
molten phase, all correlation lengths are finite. Thus the melting tran-
sition can certainly #ot be a universal phenomenon in the same sense as
second order phase transitions are. Crystals with different lattice
structures show different transitions. For these reasons, there cannot be a
simple universal field theory from which to extract quatitative poperties
of all melting transitions which are comparable to the critical indices in
second order phase transitions. The results will depend on short range
properties of the field theory which differ from crystal to crystal. This has
to be kept in mind when we go about trying to construct a field theory of
melting. The best we can hope to achieve is to exhibit a universal
mechanism of the melting transition.

7.1. HISTORICAL NOTES

The process of melting was probably one of the very first phase
transitions ever observed by man in prehistoric times. The ancient Greeks
were certainly wondering about it. For its understanding they possessed,
around 450 B.C., two important theoretical concepts.

1. Atomic build-up of matter, as advanced by Leucippus and Demo-
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critus: In solids the atoms were supposed to be hooked together by
branch-like ¢lements. In liquids, they were imagined as smooth and
rounded objects, comparable to poppy seeds.

2. Ceaseless motion of atoms: This concept was an extrapolation of the
dance of dust particles as seen through a sunbeam. It can be con-
sidered as a predecessor of the Brownian motion, which was to be
discovered in the 19th century.

Both concepts are beautifully recapitulated in the famous book on the
history of science, De Rerum Natura, written in verse form in the year 57
B.C. by the Roman Lucretius (see the quotations in the beginning of
Parts I, 11, III, IV).

For a proper description of the transition between the solid and liquid
phase the Greeks lacked, however, two important theoretical ingredients.

1. The connection between motion and heat.

2. The role of entropy, which gives a preference to states with many
microscopic configurations over those with few.

The first of these two ingredients did not become available until 1762,
when Joseph Black (1728-1795) discovered latent heat, a discovery which
went hand in hand with the practical development of the steam engine by
James Watt (1736-1819) in 1765. Many years later, in 1809, Humphry
Davy (1778-1829) claimed to have demonstrated this connection even
more directly: he showed that ice melts when two pieces are scraped
against each other’. In 1850, Michael Faraday (1791-1867) observed that
increased pressure lowers the melting temperature (a fact which in the
opinion of many people forms the physical basis of the art of ice skating)
and in 1860, R.W. Bunsen (1811-1899) determined the volume changes
during the melting process. The second theoretical ingredient was
discovered around 1850 by R. Clausius (1822-1888), W. Thomson (Lord
Kelvin} (1824-1907), and W.M. Rankine (1820-1872) who formulated
the second law of thermodynamics.

The statistical machanical basis embodying both ingredients was laid
down in 1877 by L. Boltzmann (1814-1906), who showed that a macro-
scopic state of energy E occurs with a probability We 27 where W is
the total number of microscopic possible configurations of this state. He
also found that the experimental quantity § (entropy) was a measure for
W, namely, W = ¢**#. Therefore, different configurations of energy E of
a system occur with probability e T = ¢~ (6 =191 and the quantity F
was introduced as the free energy of a system.

Since then it has been clear, at least in principle, how the melting

"The experiment, however, seem to have been faulty. The friction between the pieces would
have been too low to do the required work. There must have been a heat leak in his setup.
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transition should be described theoretically. The practical calculation,
however, remained very difficult due to the collective nature of the
transition. While it is rather easy to describe a cold solid owing to its
regular structure, the breakdown of crystalline order poses difficult
theoretical problems, some of which are not yet understood even today.

Experimentally, the melting transition has been the subject of many
detailed studies. Since there exists an excellent review by Borelius,” we
shall not dwell into the many interesting aspects of the process but refer
the reader to that article. We only display the specific heat and the
thermal expansion coefficients for two typical simple crystals, Na and Pb
(sce Figs. 7.1, 7.2). We also show the important discontinuities, the
jumps in volume, AV and entropy, As = AS per atom, for a number of
substances (sec Table 7.1 and Fig. 7.3) which have to be reproduced by
theory. Notice that the data lie approximately on a line which intersects
the As/kg axis at about log 2.

7.2. THE LINDEMANN CRITERION

Within statistical mechanics, simple rough ideas about the temperature
scale of the melting process can be formulated following Lindemann.
In the ideal solid, each atom undergoes thermal vibrations about its
equilibrium position. Its average displacement is controlled by the elastic
energy. Neglecting the differences between the elastic constants we may
estimate the energy by

E = §fdx(du,) 1@ Y () =1 Y K P (k (7.1)
X k

where @’ is the volume per atom, a’ = V/N = ¢. Thus, in Fourier space,
the different modes decouple. According to the law of equipartition, each
mode has the same average energy, 1.e. {no sum over j),

a’ (uk (k) = kg T
In x-space, this amounts to the correlation function

3
kBT 1 efk'("“")ég-z kBT d’k eik-(x—x')ﬁ. (72)

pal N 5 k’ I 27)* k’

(u; (%) u;(x")) =

“See the Notes and References.



FI1G. 7.1.

7. GENERAL PROPERTIES OF THE MELTING PROCESS

500 1000
1 |
sl ! 1 1 | | 1
C
cal
7 mole X deg
/ C.\'m
-
6F_=’— . -
-
rd
/ C(l
5 .
35
<lav
3() 10 VdT Eim
Eip
25
20
7 £,
e s ——
/ -
E(l
15
| | 1 ] 1 ] 1 |
0 500 10060

879

The specific heat and the expansion coefficient of two typical Na (b.c.c.) through
the melting transition (after Borelius, op. cit. in the Notes and References).
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FIG. 7.2. The corresponding curves for Pb (f.c.c.).
500 1000

1 I 1 T T I 3 I 1 J I 1 I
C!’N}(H 4

cal
mole X deg

Ctm

1

VdT
(@]
B % Egm I
.Y

ol - £ —

, -
7+ &y -
6L Pb
5 1 1 | 1 1 1 1 1 L 1 1 1 1

0 500 K

T d%k 1

() ~ 352
n

Since the momenta k all lie within the Brillouin zone of size =/a, this
gives, roughly [see also Eq. (7.166)]

(w(x)) ~ > |2kl _KsT (7.3)
m Vi pa  2ua.

Thus, for rising temperature, (u®) increases linearly. It is obvious that
this increase cannot go on indefinitely. As oscillating atoms begin to
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FIG. 7.3. The entropy and volume jumps at the melting transition for various materials
(after Lasocka and Tallon, op. cit. in the Notes and References). The two points for Ce
(0.61, —1.1) and Pu (0.37, —2.4) arc from Gschneider, J. Less-Comm. Mat. 43 (1975) 179,
Table 2. T thank Prof. Lasocka for a communication of these points.
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invade into the regime of the nearest neighbours the crystalline structure
necessarily breaks down.

According to Lindemann, the melting temperature T,,., can therefore
be characterized by a dimensionless number, the ratio of V(u?) with
the length scale a,

v (ll2> kB Tmclt _ kB Tmcit
- 3T 3 (7.4)
a na na

The 1nverse of this ratio,

pa’

L=y R
kB Tmclt

(7.5a)

is tabulated in the literature as the so-called Lindemann parameter.
Actually, what is given in the tables is usually the following com-
bination of material properties (see Table 7.2),
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TABLE 7.1. Discontinuities in the melting transition, As/kz = entropy jump per atom,
(AVIV)(%) = relative volume change in percent (after A.R. Ubbelohde. op. cit. in the
Notes and References).

b.b.c. AV, f.c.c. i AvV .
metals 2AsTky 7( o) metals 2Aslkn 7( %)
Li 1.58 2.2 cAl 2.76 0.5
Na 1.67 2.5 Co 2.19 3.5
K 1.66 2.5 Ni 2.42 5.4
Rb 1.68 2.4 Cu 2.30 4.2
Cs 1.66 2.6 Pd 2.25 5.9
TI 1.72 2.2 Ag 219 3.8
Ca 1.84 — Pt 2.30 6.6
Sr 2.10 — Au 2.24 5.2
Ba 1.85 — Pb 1.91 36
Sc 1.86 — Mn 2.31 1.7
Cr 1.62 — Yb 1.51 —
Fe 1.82 35 Nb 2.34 —
Mo 2.69 —
La 1.24 0.6 Sm 1.53 3.6
Ce 1.22 —1.1 Fu 2.02 4.8
Pr 1.36 €.02 Gd 1.52 2.0
Pu 0.74 -2.4 Th 1.59 31
Nd 1.32 0.9 Dy 1.57 (4.5)
Yh 1.67 5.1
h.c.p W 2.31 —
metals W] 1.45 2.2
Mg 2.32 3.0
Zn 2.53 4.3
Cd 2.49 3.8
Ho (2.31) (7.4)
Er 2.65 (9.0)
Tm 2.22 (6.9)
L= ®D Vll‘l’iz)l (A/Tmclt)uza (75b)

where 0, is the Debye temperature, measured in K, V,, the volume per
mol in cm®, A the atomic number, and T, the melting temperature in
K. See, for example, the book by A.R. Ubbelohde (cited in the Notes
and References). In order to find the relation between 1. and this L it is
useful to recall a few basic properties of Debye’s theory of specific heat.

7.3. REVIEW OF DEBYE'S THEORY OF SPECIFIC HEAT

The Debye temperature is experimentally accessible through measure-
ments of the specific heat which for low temperature behaves as
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TABLE 7.2. Lindemann parameters L and melting temperature 7,, in K (from
A.R. Ubbelohde. op. cir.).

f.c.c. L T, /K b.c.c. L T,./K hex. L T,./K
Ag 148 1235.0 Ba 147 1983.1 Be 150 1558.1
Al 138 933.5 Cr 125 2133.1 Cd 168 594.2
Au 137 1337.5 Cs 118 301.7 Co 132 1767.1
Ca 124 1113.1 Fe 121 1813.1 Gd 129 1583.1
Cu 143 1357.6 K 122 336.3 Hf 143 2503.1
Ir 155 2720.1 Li 124 453.1 Ir 155 2720.1
Ni 143 1728.1 Mo 138 2893.1 Mg 134 923.1
Pb 149 600.6 Nb 104 2698.1 Re 134 3453.1
Pd 138 1827.1 Na 114 370.9 Ti 140 1943.1
Pt 151 20451 Rb 118 311.9 Tl 138 577.1
Rh 167 2236.1 Ta 110 3273.1 Zn 151 692.7
Sr 140 1043.1 Zr 133 2123.1
Th 159 1973.1 Se 91 493.1
v 123 2193.1 Te 178 723.1
W 135 2640.1
Rhomb. L T,,/K Orrhom. L T,./K Tetr, L T,./K
Bi 201 472.4 Ga 261 302.9 In 142 4297
Hg 171 234.2 \% 192 2193.1 Sn 259 505.1
Sb 138 903.8
As 170 886.1
127 T\
Cy = ng(%) . (7.6)

The T° behaviour is a consequence of the quantum nature of the elastic
lattice waves. In order to derive it we have to use the quantum partition
function [recall (1.84), (1.86) in Part I]. The Euclidean action is

fhikeT
AE:J, drdex[—ip(X, ) u(x, 1) + By, + EJ, (7.7)
0

E being the elastic energy [recall (1.20})],

!

2 3
L= fd3x (Mur‘zj + %(Z ”ii) ) = %E (k28 + (e + Ak k) uf (k) u; (k)
K
(7.8)

and E\;, the kinetic energy
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2
E. =g Y PE&D 7.9
i = 0 L= (7.9)

The parameter p denotes the mass density. The partition function of
clastic waves, including quantum effects, reads

3
7= f@%{ (x, 1) _—@#e—um)m‘ (7.10)

(s

The measure of integration is well-defined only on a lattice. If a is the
spacelike lattice distance and ¢ the timelike one, the action reads

AE = 613 E {lp(xv Tn) ) (u(x, Tn) - U(X, T,,—l)) + E“__p(x,zg,,)z}

+ae Z M [(uij(xv 1,”))2 + % (Z uii(x - i, z'n)) :| ’ (711)

where w;;(x, 7) is a convenient lattice version of the strain tensor which
we shall take in the form

uz(x, 1) = (V,u(x, 1) + Viu(x, 1)). (7.12)

We have shifted the argument of the A term in (7.11) from x to x — i. This
will be advantageous to us later when we come to calculating correla-
tion functions of wu;(x, ) on the lattice. Integrating out the conjugate
momentum variables p(x, 7,) gives the lattice version of the elastic
partition function,

du;(x, 1,) } [ 1 {p o
Z = H —F/— [ €X — -—a38 —_— VTui X, T, 2 + u% X, T,
X7, i [ V2nehia’p P h ,LET” 2 82( ( )"+ puj(x, 7,)

+%(Z wi(x — i, 1, ) }] (7.13)

Recall that 7 is an imaginary time. For real times, the (V,u;)* term would
have the opposite sign. Then, for e — 0, the extrema of the action would
be given by
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This is the first place where we see that it pays to have shifted the
argument in the A term. Had we not done so and used the naive form
(X,u;:(x))* instead, the equation would have read

which contains three different matrices in ij — space. With the shift, there
are only two matrices which can be diagonalized by the standard
methods:

. = vy, s ViV

where V,V,/V-V and §; — (V,V;/V-V) are projection operators onto a
lattice analogue of longitudinal and transverse sound waves. In Fourier
space they satisfy the equations

(pw® — uK-K)u/(k, w) =0, (po® — Qu+ VK- -K)ul(k, w) =0,

(7.14)

with the two “transverse” and one ‘‘longitudinal” sound velocities

2; + N
cr= \/E e, = 4 T2 (7.15)
p p

The imaginary time variable is periodic in A/kzT so that the Fourier
decomposition reads

1 .
ui(x, 1) = N kE et rienty (K, w,,), (7.16a)

where w,,, are the Matsubara frequencies
w,=m-27kgTh, m=20, =1, =2, ... (7.16b)

In terms of these variables, the action Ap reads
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1 1 o
AF = gaSE{ 2 uiT(kq wm)* (—5 Qm Q}n + C%"_QK ) K) uiT(k’ (J)m)
£

a
I * 1 2 2 ] 7 d L
+ Z Ll,"(k, wm) —QQQO + CL?K'K U; (ka wm) ? (717)
k-wm E

where (,,, (1, are the analogues of K and K for the timelike direction,

0,,Q,,=2[1 — cos(w,, £)] = 4 sin? (%) (7.18)

and u;, ul the lattice analogues of the transverse and longitudinal

components, 1.€.,

uiT(kw wm) = (61}' o K,]{:/K ’ K) uj(ks wm)»
K.K;

K
ulL(k* wm) = l_( . l(lblj(k., wm)' (719)

Integrating out the u; variables according to the rules of Chapter 1, Part 1
gives

Z = H o~ P 1028 thy, + G KK) + (1200g(8L,, 1, + f (20 R - K)| 7.20
y . (720

The sum over (), can now be performed using Eq. (6.248) of Part 1. In
the limit of zero timelike lattice spacing, the result is particularly simple
and (6.250) of Part I leads to

7 = — 2Rk g N (KY2T )+ log(l — ¢ Hor®ikaTy) e—((h/k,,)(w, (KY2Ty + log(l —e hot “"‘*HT'))’ (7-21)
e
k

where we have set
wr=cr VK- K/a*, w; =c¢; VK-Kia’. (7.22)

The factor for cach k represents the well-known partition function

x

Zm _ 1 _ 2 e-(n + U hw/ky T (723)

. hw n=0
2sinh
sin kT
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of a harmonic oscillator having frequencies wr, w; [see (6.251), Part .
The internal energy is found by differentiating log Z. This gives the
standard *‘blackbody’ radiation energy

= ) Eﬁwh(k)( 1 1). (7.24)

h U +] k flw[,(k)l’k”T —_

The sum over 4 covers the three polarization modes of the phonons. The
momentum sum is usually evaluated in the approximation of an isotropic
continuum for which [for the general case see Appendix 7B]

w; r~cp 7Kl (7.25)

so that one may change momentum integrals into frequency integrals,
l.e.,

— = wg"(w :
Z Vv Vfd“’(zw)” Vfdg (w). (7.26)

(2)‘

The functions g'"(w) are called the densities of states. It is necessary to
introduce a cutoff in the integration so that the total number of modes is
equal to the number of atoms for each polarization. (Note that the proper
lattice sum over k would have done so automatically, since Ly = N.) This
gives the conditions,

Ui)

Vf dwg(w)=N, h=0, =1, (7.27)
{

where wfy are called the Debye frequencies. Hence we have

5

477' w> w”
() = — 3N 7.28a
g = Vg TN o (7.28a)
3 1/3
Wil = 2”(417‘//}\/) c¢, = 2meylr, (7.28b)

where r, is the radius of the spherical volume associated with each
particle.
A simpler but cruder approximation uses only a single density of states,

gw)= ) g"(w),

h=0,%1
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which is given by

47 W

g(w) 3XV(2 )7) =3’

(7.29a)

where ¢ is an average sound velocity

_ i _1— 1/3
= [3/(0} + C;,'” . (7.29b)

Then g(w) can be parametrized as

,.’

g(w) =3 x 3N (7.30a)

[)

where

1/3
3 _ .
wp = 27’;‘(477‘//]\[) Cc = 277(,‘/"(). (730b)

/1)

The temperatures related to w)y’, wp via i and the Boltzmann constant

kg are the Debye temperatures
@%l) = ﬁw%')/k,;, ®D ﬁw[)/kB (731)

Using the averaged density of states g(w), the internal energy (7.24) can
be rewritten as the integral

T 3 ,OnT 1 1
U=9NkgT| — déE | =+
B ®D ,[; gg 2 €§— 1
3
1 T - B/ T
= INkOp| =+ [ —
ol (a) .

and the specific heat at constant volume becomes

T () /T f §4d§
C= 9NkB(®D) f“ iy (7.33)

} EI_ 1], (7.32)

“In D dimensions. ¢ = [DI((D — Y2 + 1eP]YP and ry = 2w /wy, = ((DISH)(VIN)Y
where S, = 2a"”7/[(D/2) is the surface of a D-dimensional sphere. so that U—>
Nop" TP 'DID + DUD + 1) = VS,(272) PTPH'I(D + 1){(D + 1) per mode.

I
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l
Using the well-known integral f c!f‘f”;——l =D+ 1) (D+1) and
0 T

J(4) = 77190, the low temperature behaviour of U and C is seen to follow
the well-known 7% and 77 laws, respectively

U

1
9Nk[g()[) ( 9NI\B_7T4(T/®D)

1
g SﬂA(T/(@D)-L)‘ C——

1 << ()” ] << ()1)

(7.34a)
For high temperature, they tend to the classical limits

U———>U"=3NkyT. C——>C"=3Nky. (7.34b)

T» 0O

This limit is in agreement with the law of Dulong-Petit according to which
a classical harmonic system has a specific heat of Nk /2 for each degree
ot freedom. where kinetic and potential degrees are counted separately
(C = (3+ 3)Nky/2). Using the Avogadro number of 6.022 x 10** atoms
per mole this amounts to a specific heat of

C= 5.96% X number of moles.

The ratio C/C' varies with temperature as a universal function of 716,
which is plotted in Fig. 7.4.

In real materials, this universality is violated for increasing tempera-
tures as a conscquence of the anisotropy and anharmonicity of the crystal
and the temperature dependence of the sound velocities which were
neglected in the above derivation. It is customary to display the violations
by fitting C to Debye’s formula while allowing ©,, to be a function of
temperature, ©,,(7). The deviations of ©,,(T)/@,,(0) from unity can be
of the order of 10% (see Fig. 7.5).

After this mterlude, it is now easy to find the relation between the
parameter L of (7.5a) and the Lindemann parameter L of (7.5b). We
simply combine (7.30b). (7.29b) and find the Debye frequency

1/3 ‘ 1/3 1/3
3p 2 1 3p \ i
=2 S+ ) =2mn =) o *
o ”ﬁ(%M) (/( )) ”’(wM) U= 1=n)"”

(7.35)

(B



890 1II. GAUGE FIELDS IN SOLIDS

FIG. 7.4. The specific heat €, (for constant volume) divided by the classical Dulong-Petit
value C§' = 3Nk, for various materials with different Debye temperatures as compared to

the universal Debye curve.
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FIG.7.5. The variation of the Debye temperature 0, with temperature necessary o
achieve a perfect fit of the universal function (7.33) to the specific heat data of various

materials.
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where M is the mass per unit cell and the ratio

~

I
™ ‘f‘a
|~

(7.36)

is 2 number which lies between () and 3/4. It is related to the Poisson ratio
[see (1.40), ve (—1. 1/2)] via

_ 1/2—v

1 —v | —r

r (7.37)

Inserting (7.37) into (7.35) and (7.5b) we see that the Lindemann number

is indeed proportional to Vua'/ T, Before doing this however it is

useful to rewrite (7.5b) in a slightly different form involving proper
dimensional quantities:

/3 /2
L =90 A8 A . (7.38)
K pem Tmc'll/K

Using the fact that the mass per unit cell is M= Am, where
m, = 1.6762 X 107%*gm is the proton mass, this may then be reexpressed
in the form

Y L3 I N R B Y, (7.39)
\g/  emg"Vkg KT T ’ |

where L. which will be referred to as the modified Lindemann number,
has the form

| 1/2 RS r“"“-ra3 |
E =),k _qal M) ( ) — (677_3)]/3 : .
PR (ﬁ_ kB Tmclt kl_? 7mcll ‘Q/l — %(] — i’)

= L{6m/(1 =1 =]~ (7.40)

Thus we arrive at the desired relation between L of (7.5a) and the
Lindemann number L of (7.5b). (7.38):

L=228(1-Y1-r) "L, (7.41)
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Some experimental numbers for L are shown in Table 7.2 and we see
that L. ranges between () and 180 for materials of completely different
hardness. As an example we may compare silver and beryllium which

have
10.4
L
scm .65 cm
N Cy X 1()’

sec 12.89 sec
T = 1233 K 7.42
( melt — 15581 - ( . )

In spite of the differences, their Lindemann numbers arc almost the

148\ _— 25 — 5.8
same: L = L~ L~ X
150 26 6.1

In general anisotropic media the Debye theory is quite complicated.
Usually, however, the samples are polycrystalline, and sound propagates
isotropically on the average. Then formula (7.15) can be applied again
but with wand k in A = k — _%,u replaced by the following averages of the

7

|l
I¥

Lxl\)
“

) 10" dyne cm 7,

‘L)J

L.»J

1 |

elastic constants:

t |

| |
1-((11 + b O3 Oy = G — )+ ;((’44 + €35 + Coq)s

1 2
K = [)‘(('u T+ en) + 6(02 + 3+ 03). (7.43)

This is derived in the classic book on elasticity by Voigt (referred to at
the end of Chapter 1). For cubic matenals one has simply

Dol M :

M= %-(Cll — ¢+ 3ep) = 2(3 + .?.é:)

_ 1 I 2

K= ‘i(('ll + 2¢a) = + E(('H —(Cx) T A+ gp.«_f. (7.44)

Let us translate the Lindemann number back to the physical quantity
{1}y at the melting point. According to (7.41) we have L ~ 150, which
corresponds to L ~25. L ~ 6 so that (7.3) leads to the estimate
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(u?) 1 1

il == g 700 I ] . -
W el Yo (no sum in {) (7.45)

This is an important observation: The melting process occurs when the
displacements of the atoms are still very small compared to the distance
between neighbors. For such small displacements the movement of the
atoms can be considered nearly harmonic. The breakdown of crystalline
order occurs all of a sudden, before the atoms invade deeply into the
nonlinear regime of the interatomic potential. It is a strongly cooperative
phenomenon. This fact will be essential when we comes to formulating
our defect theory of melting in the next chapter.

7.4. QUANTUM CORRECTIONS TO THE LINDEMANN
PARAMETER

If we include quantum effects, the atomic displacements are given by

(u 0)u(ﬂ)>—kBTZf(2ﬂ

kik; 1 kik;
X |~V 5” - ey + b 2 77
w,‘, + w“T(k) k- w;, + w7 (k) k-

k dk 1
:”; Zf

(27)° [w,, + wi(k) w,z, + wj (K)

:I , (7.46)

where w, = 2mnkz T/ are the Matsubara frequencies. Summing these up
according to formula (6.261) of Part I gives

dk | 2 I I
(1;(0) 1;(0)) = f(21'r) [w}(k)ﬁ‘”(k)(i b T 1)

l ] 1
+ (})'}_ (k) ﬁw[‘ (k)(i + el'mj, (kWhpT 1>:| : (747)

This can be written as

1 [ &k |
(14,(0) 14,(0) ) = 5,,-5[ Gy Z;: 0 ,(K). (7.48)
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where & runs over the three polarizations and u,(k) is the average
energy of a single harmonic mode of momentum k.

In fact, this formula could have been written down directly. It is a
consequence of the equipartition theorem. On the average, the energy for
these modes is (no sum over i)

M,. oM o s 1= 1 I
—2—|u(k, w)l“ = ‘z“w"(k) ‘ll,-(k, w)l‘ = EE(k) = Eﬁ w(k)(i + H(k)) .
(7.49)

where 7 is the average number of quanta 1/(e™*#" — 1). At the level of
the Debye theory we can replace Z = V[ (d*ki(2m)%).
k

(/1) (/1) b

vj ’ dwg(’”(w)=3Nf " do—oss
0 0 wS )

and find

{ /i

1 (u”‘ 1 1
(4:(0);(0)) = 6’1"%:/\/1@’;)3[” dwhw (5 + W) (7.50)

where M is the mass of the atoms. Changing the variable of integration to
& of (7.32) gives

i (kaTN (O (11

7 Mo\

52 T\ e 1
=80 |1t 4 [ dég :
! ,Z AMk 5 ) [ (@5’;’) o et — 1]

(7.51)

The ratio of \/%(Zu?({)))‘ to the cell size a = (V/IN)"? = v'7 is given by

\;l<2uz(0)> . 2 IvEs 1/2
AN [1 " : [1+4( T)J(””dcfé 1 H .

4 Ma* Gk, 08 oy ef— 1

O
a

(7.52)
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Using the modified Lindemann number L of (7.40), this ratio may be
written as

(H)I) Z 1
; w(T/0) ) (7.53)
2 L null I (/)
where
I/ 77_2
=1+47 =1 44—+ . 7.54
w(T) T f“ P et ( )

This function is plotted in Fig. 7.6. For high temperatures, it grows
linearly with 7, i.e.,

FIG. 7.6. The function which rules the temperature dependence of the mean square
displacement {u?) within the Debve approximation [see Eq. (7.53}]

1) | 85 EW(T/H””)
3@ AL T, 7 ey

j (TOp)

4.—.

0 1 I -
0 0.5 T/6,, 1




896 IIl. GAUGE FIELDS IN SOLIDS

Thus, if the melting temperature lies far above the Debye temperature,
which is usually the case (classical melting), then

V3| T (1w 03\ |
R o 5; oi) | (7.55)

which of the order of 7% at T = Ty, (for L ~25).
In general, w(7/0,) lies above 7/0j, due to quantum fluctuations.
These are seen in pure form at zero temperature for which

1V3 \/1 Op
S — ) == .
02 L T el 32,,: e (7.56)

The classical value (7.55) can be checked by calculating [more accurately
than in the estimate (7.3)] from (1.77)

&k |1 kik; 1 kk
(Uf(o)uj(())):kBT —S[E—Z(SU—" 1)+ ]]

(2) k? A+ 2u k?

N kgT ( d*k | 2 N 1
3 J e \uk? (A + 2k

Using the frequency distribution g'(w) of (7.28a), this becomes

w.(';) 7_ C%— f wgn 2 c;
5+ d 5
(:(0)1;(0)) = 6" V/N I:hmzﬂ w%’” po® Jy v i)’ (A +2p) 0
kgTyr [ o 1
iy M ; 0 W ([l);)? W
It follows that
kgT 1
(,(0)1,(0)) = 8,2 Z;] i (7.57)
which implies
5 T2
1{ T 1y 0p
- = ! 7.58
SL] \/§ L {Tmclt 3 ] ®([l)1)2:l ( )
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as in (7.55).

Some values for §, at the melting point are given in Table 7.4.
Actually, this table does not quite show the same & as defined here but
Srable = V(12 u?)/d where d is the nearest neighbour distance. In b.c.c.
and f.c.c. lattices, d is given by d=(a,/2)V3=0v"3(3"3/2%%)~ v x1.09,
d = ay/V2 = v'"?(41°V2) ~ 017 x 1.122, respectively, where aq, is the
lattice spacing (so that a’ = v = }/2)°. The second to last column is
calculated from L of Eq. (7.40) and the purely classical approximation
(7.58). The last column comes from a more elaborate numerical evalua-
tion of (7.47) using a realistic w;, (k). It does not assume crystal isotropy
but respects the proper b.c.c. and f.c.c. symmetries (while restricting
itself to central forces between the nearest and next neighbours, thus
satisfying the Cauchy relations, i.e., ¢, =c4). We see that for
each of the two groups of b.c.c. and f.c.c. crystals, the relative amplitude
of the melting point is indeed quite universal, with &, = (%E,-u,-z)/d
ranging from 0.11-0.46 for b.c.c. and 0.065-0.077 for f.c.c. symmetries.
The strongest quantum effect in the table occurs for Li for which the
result of a purely classical calculation would be 0.067 rather than 0.116.

Accepting the universality of the Lindemann number also for the
quantum regime we are led to conclude from (7.56) that a crystal at zero
temperature whose Lindemann number L when evaluated with T
replace by ©,/4 [i.e., the number 2(v?*M/h*)"*(kg®p)"?] becomes
smaller than 25 will melt. This is the case for *He and “*He, which are
solid only for pressures of more than 30 bar. There the sound velocities
are of the order of'

c~300™ _23kAKE.
sec f

At a molar volume of v N4 ogadro = 21 cem?® (v =3.27 /3;) this implies

h

ks

O Voémc/v'? ~30.5K (7.59)

so that the Lindemann number L, for T,,., — ©,/4, becomes

E | Tmclt

o, =2V Mkz0 /82 = 10. (7.60)

“See the Appendix.
"More accurately, c,,/p = 400 m/sec, c,/p = 337 m/sec, c12/p = 362 m/sec (see the Notes and
References for sources).
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TABLE 7.3. Various material parameters associated with nonlinear elasticity (after
A. Eucken, Lehrbuch der Physikalischen Chemie (Akad. Verlagsges., Leipzig, 1944) p. 675.

Griineisen spec. heat
coeff. of vol. constant compressibility per mole molar volume
expansion _aVk k71 [10% ¢ Navog @’ Navog

a-10° [K™] Y70, dyne”} em’l  [erg/(K-mole)]  [em¥mole]
Na 216 1.25 15.8 26.0 23.7
K 250 1.34 33 258 45.5
Cu 49.2 1.96 0.75 23.7 7.1
Ag 57 2.40 1.01 24.2 10.3
Al 67.8 2.17 1.37 22.8 10.0
C 2.9 1.10 0.16 5.66 3.42
Fe 33.6 1.60 0.6 24.8 8.1
Pt 26.7 2.54 0.38 245 9.2
NaCl 121 1.61 4.2 48.3 27.1
KCl 114 1.54 5.6 49.7 37.5
KBr 126 1.68 6.7 48.4 43.3
KIJ 128 2,12 8.6 48.7 53.2

2
TABLE 7.4. The relative displacements &= 1H%L>— calculated in two different
3 d
ways (after Shaptro, cited in the Notes and References).

6rnelt

Ormelt from latt.

from L dyn. w.

b.c.c. L T,./'0, (classical) qu. corr.
Li 124 1.08 0.067 0.116
Na 114 2.47 0.073 0.111
K 122 3.36 0.068 0.112
Rb 118 5.20 0.070 0.115
Cs 118 6.70 0.070 0.111
Bmelt

Omelt from latt.

from L dyn. w,

b.c.c. L T,./0p (classical) qu. corr.
Al 138 2.42 0.072 0.072
Cu 143 4.38 0.058 0.068
Ag 148 5.61 0.056 0.071
Au 137 7.43 0.060 0.073
Pb 149 7.07 0.056 0.065

Ni 143 3.93 0.058 0.077
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FIG. 7.7. The temperature dependence of the specific heats of molten metals at fixed
volume (after Grimwall. op. cit. 1in the Notes and References).
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1.0 1.5 2.0 2.5 3.0

This is indeed smaller than the average number L ~ 25 so that the
zero-point fluctuations in solid *He exceed the Lindemann size. This is
why the crystal exhibits melting into a quantum liquid at zero tempera-
ture, if pressure decreases below 30 bar.

Notice that the Lindemann criterium can be verified directly, at least
in principle, by looking at the decrease of the Bragg intensities with
temperaturc. The scattering cross section for X rays® is governed by the
dynamic structure factor S(q. w) where

S(q, w) = f “ 2d_7:-€nuf Z eﬂ'q-x,; < ez‘mu,(xn.r)e*iq,u,((}. 0)>‘ (76])
- n

In the harmonic approximation, this can be calculated, giving

S(q, (U) — e,--ZWJ- ﬁeimr Z E,ﬂq-m,,e((,v,u,(x,,.!)c,v,u,(O.(l))1 (762)

L2 .

¢The differential cross section per solid angle d€) and energy interval dE is

do ip_ls,( )
dOdE~ Ndmp p @0

where o is the individual cross section for each atom in the lattice.
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where
2W = ((q:1;(0, 0)%) (7.63)

is the so-called Debye-Waller factor. Expanding the last exponential in
(7.62) into a power series, the sum over n can be analyzed according to
a purely elastic contribution which carries a 8(w) function, due to energy
conservation,

Sei(q, @) = e 5(w) N ), ¢ c. (7.64)

where ¢ are the reciprocal lattice vectors plus multi-phonon
contributions. The elastic contribution gives the sharp peak seen in Bragg
scattering. Its intensity has a temperature dependence, e **. For isotropic
systems

— q2(_uz_)_ (7.65a)
3

If 6 is the Bragg angle, then q° = 4sin’6 (47*/A%), where A is the
wavelength of the light and

4 #? 1
2W = sin ¢ Y ——w(mew
2 MG kp®OP (1705°)

4 2
= sin2 @ A—Zaz 452, (7.65b)

Thus, in Bragg scattering, one can directly observe the temperature
behaviour of 8% (7.53). If the Lindemann criterion is right, all crystals
melt when the Debye-Waller factor has reached the same size e %
which depends only on the crystal structure.

7.5. CLASSICAL MELTING

When comparing the melting temperature T, with the Debye
temperature ®, we realize that for most materials T}, lies far above 6,
(see Table 7.4). There arc only a very few exceptions to this, one being
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the quantum crystal of solid *“He. Thus, in general, the melting process
takes place in a region where all Debye expressions have approached
their classical limit. In particular, the internal energy has approached the
linear behavior (7.34b) and the specific heat, a constant (Dulong-Petit
law). From (7.21) we see that for high temperatures, the partition
function is dominated by the classical expression

Zy = [ [ o2 tonthortmnty - wgtho tika) (7.66)
k

This, in turn, arises from the full partition function (7.20} if one uses only
one infinitesimal 7 interval in which the only Matsubara frequency i1s
Q,.=0.

In the path integral (7.13). we arrive at the same limit by noticing that
for high temperatures, the 7 interval is so small that u(x, r) has “no time”
to vary and the time-dependent fluctuations are completely frozen out.
One may therefore forget the infinitesimal time slicing and keep only the
initial and final times 7, = 0, 1, = A/kg T, setting £ = #i/kp T. Since u(x, 1)
is periodic in this interval, u(x, 1) = u(x, ), the kinetic term in the
exponent of (7.13) disappears and the partition function reduces to the
classical limit,

———=—\ 3N %
7 7. [keTdp I1 Aui(X) | —kat Ealug)
cl = 27Tﬁ2 ! . 4 e ’ (767)

where

Ealu;] = ‘E[uu,, (Z )] (7.68)

is the static elastic energy and u; are the lattice versions of the strain
tensor, u; = (V;u; + V,u;)/2a. The prefactor

T 3N
Ziin.at = (\/ gﬂ-;:?p) (7.69)

leads to a specific heat per atom of (3/2) kg. It collects the three kinetic
degrees of freedom of the harmonic oscillations. The second factor
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du;(x o
Zp()l,c[ = H I: f—-w# e_(“l‘ﬁl)bdfuul (770)
X.!

accounts for the three potential degrees of freedom. Integrating out the
u;(x) fields we obtain

(7.71)

1 1
Zoo o= 1H(VIrk, T _ .
ot 1;[( o 1) (V@rR-KP?Va'Qu + VK- K

Combining this with (7.69) we obtain again

2
kgT\ (kgT
ch = Zkin.cl Zpot.cl = H ( £ ) ( 2 ) (772)

k ﬁCt)T ﬁ(z)l_

in agreement with the classical result (7.66).

7.6. LATTICE EXPANSION UP TO THE MELTING TRANSITION

Since the interatomic forces are anharmonic, the crystalline phonons are
not independent of each other but are subject to interactions. This gives
rise to some changes in the results derived up till now. Fortunately, apart
from a few quantum crystals, melting occurs at very small displacements.
Therefore, the anharmonic effects are quite small. They can be taken into
account by a simple lattice expansion and renormalization of the elastic
constant (softening). In order to see how this happens let us consider the
elastic energy of the crystal up to the cubic terms in the strain tensor. In
the isotropic case this may be parametrized as”

"Some authors (see the references at the end) employ the invariants
L= Yegeq =u,. 1= L Eintttiy, = Hui = uy).
[ = %F”k £ o Wi Wy Uy = %(uf( — 3w u; + 2ut 0y, )
and they expand
e = (1 = I)[=2uds + (A + 2020 + (¢1] + ml [ + nis)

s0 that
O = (6= (A4 20)2) + (M2 + )24 nl6, oo =[0m/2 + p) + nlf2, cy=nf2.

The factor (1 — 1,) in ¢, comes from the expansion
det(8,;, — 2u, )" =(1 =21, + 4, =8I =1 - [, + ...

due to which the quadratic energy density, which is defined with respect to the invariant
volume elements. receives a cubic correction when expressed in terms of the volume
elements of the ideal reference lattice. which appears as [ d'x in the integral (7.73).
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A()
= fd3x (,(.L(] Lljzj + 2“%() + fd3x(clu?(, + Czll(gu,% + C3uijujkuk,'),
(7.73)

where g, A, €1, C2, ¢3 Will be called “bare elastic constants.” The elastic
partition function on the lattice is now [see (7.13)]

Z:x,l;,,l,f-[ d,——zghz) ]exp{—~a EZ[ L rn))2+ee.]},

(7.74)

with the classical limit [see (7.70)]

me.cl = H |: JM] e_ECIIkBT, (775)

X./ d

apart from a prefactor Zy o = (Vg Ta’p2ahi®y* [see (7.72)].

In Chapter 5, Part I, we introduced the concept of an effective energy
which allowed us to study a field theory in the presence of a non-zero
field expectation value. let us apply these methods to the present
partition function. Since the cubic terms produce an asymmetry between
positive and negative dilations, we expect the fluctuations to lead to a
new minimum at a non-vanishing strain (u;) = U;. For symmetry
reasons, only the diagonal elements can be non-zero and must be equal
to each other. Hence, they are equal to 1/3 of the relative volume
expansion:

1AV
<”u> = q - 5:/3 A= 31;57 (776)

According to the rules of Section 5.4, Part I, we can calculate the
effective energy by inserting the field u; = Uy + du; = §;1A + éu;; into
the exponent, expanding it in powers of Su;, and summing over all
one-particle irreducible vacuum graphs involving the propagator and the
interactions of du;. The resulting expression can then be minimized in A
and yields the volume expansion due to fluctuations. The smallness of |8u|

(<< a) permits us to consider only the one-loop correction which is quite



904 I[II. GAUGE FIELDS IN SOLIDS

casy to calculate. With' u; = §,(1/3)A + du;; . the elastic energy density
becomes

€ = €y(A) + de., + Szed

= ey(A) + e[ (A), du;; + Le (A)”M(Su Sy, + . (7.77)
where
(A il Gy ala= |l + 25904 A
(”( )- 3+2+ (1+3+9 ! - ,)K()+ 3 9
(7.78)

1s the elastic energy of the dilated solid and

8()C| = [K(l+ 3((‘1 +%+%)A:| (SH” (779)

describes the linear deviations while
3 2 A 3 7 2 2
87e. = poSuj; + ~2-6u;( + (c2 + c3)Aduy; + (3('1 + 5(‘3) A bu;, (7.80)

the quadratic ones. These can be rewritten succinctly as

Ao(d)

—

8¢ = po(Q) duj + Stize. (7.81)

where u, A are the bare elastic constants in the dilated crystal:

I'L()(A) = Mo + (C2 + C})A, /\(](A) = /\() + 2(3('1 + %Cz)A. (782)

'Hence 5

trae = A+ Sty tr(ue ) = A— + 3 2 Aﬁuw (3If,,):~

tr(u’) = AT + A*Suw + Adu;, + (du),.

A

A-
te(uet) = %+ %A Ste,, + 2 3 =~ (bu,, )+ A(Su) + (&)},
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The bare modulus of compression defined by

d’e (A
—% = ko(A) (7.83)

consists of the usual combinations,

2 > C
Ko (A) = gl«ln(A) + Ap(d) = ko + 6(C1 t3 + 5) A. (7.84)

The anharmonic constants ¢, ¢, ¢3 depend on the volume expansion and
are experimentally accessible via the dependence of the sound velocity
upon changes of the volume. What one can easily measure are the
so-called Griineisen constants.,

] a('()'[‘(A) 11 a 1 1
A . TN | BT
ot Cor  0A  |a=o 2 GAM'( ) A=0 ,uUZ( 2F )
1 ey (A) T
= —-—— = - ——— — (2 + AoHA
vor Cor.  0A  |aco 2 (2uy + Ay) 6A( Ho oH&) A=0)
1 1 10
= ———-|6c;+—c>+2 ) 7.85
(2o + Ay) 2( “ 3 “ C3) ( )

With (7.81). we can now easily calculate one-loop fluctuation corrected
effective potential [see Section 5.3, Part I] of the crystal, associated with
the classical partition Z,, . which is equal to the free energy density of
the anharmonic crystal:

| kgT ([ d’k

Fhorat(8) = Pl ala] = €0(8) + == | 753

{2 log[p(A) K - K]

+log[(2uo(A) + Ao (A) K -K]} + %log(ZﬂT/as).
(7.86)

To lowest order in A, we can replace wy(A), 2uy(A) + Ap(A) by the full

fluctuation corrected values w, 2u + A. Including the prefactors of Z
[recall (7.67)]. this gives
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1 kpT [ d'k ficr K hc, K
va(d)=yTaldl=en(@) + =5 (2w)3[2‘°g(/<,q—r7‘)+'°8(k;T)]'

(7.87)
where K = VK- K/a? is the lattice version of |k| and
2+ A
cr=cr(A) zgﬂ cL=c (A)=FE (7.88)

are now the properly renormalized sound velocities of the softened
crystal. Apart from e,(A), this energy coincides with the expression for
the classical partition function (7.71) except that now

wr(k) = crK, w; (k)=c¢; K (7.89)

are the volume dependent frequencies of the sound waves of wave vector
k extrapolated linearly to zero temperature.

If we now minimize v, (A) with respect to the volume dilations we find,
using

d’k 1 (d’ka® 1

——= == === 7.90
Qm)' &) Qw)Y o ( )
a’ being the volume per unit cell,
kgT
ku()A = Qyor + y) — 5 =0. (7.91)

To lowest order in T (which is really the only reliable order at the
one-loop level), this amounts to

1
A= pEn Qyor + yor) kg T + O(T?) (7.92)
0

The factor in front of T is the thermal expansion coefficient and 1is
commonly denoted by a, 1.€.,

1
a=__= E(ZM)T + Yuz,)kB + O(T)- (7-93)
0
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Given the linear expansion law (7.92) we find from (7.82) that the elastic
constants soften linearly with temperature as follows'

K= }L()(l — 2'}’[)TCET), 2[..L + A= (2[.1, + /\)()(1 - 2'Y()1_(YT). (794)

It is straightforward to include also the quantum effects. For this, all we
have to do is replace the logarithms in (7.87) by

knT [ dk [ [hork) )
2 + l l _ hwp(KWART
[ (2kBT og(l —e )

2 2m)?
ﬁwl (k) —h n
+ - _ v (K)ApT
(ZkBT + log(l — e ) (7.95)
[recall (7.21)]. If we now minimize v(A) with respect to A, we find
d’k 1
KA - (2 ) ':2'}/()Tflw](k)( ef””f'(k]”‘ffT_ 1)
1 1
+ ')/(”‘fl(,t)[‘ (k) 5 + efiwi KVAnT 1 - U (796)

The integrals can be replaced by as the internal energy densities uy
associated with the transverse and longitudinal modes [compare (7.24)]

d*k 1
umzf(z 5 ﬁwr,(k)( b T 1) (7.97)

and the thermal expansion is now given by
ko(A)A = Cyorur + yor ur). (7.98)
In isotropic systems it is easy to calculate this expression. Let us work
with the separate Debye approximation for each polarization with the

densities of states [recall (7.26)]

) 2
47 w° 4T w

g'(w) = V@“T*j“i;; g (w) = Vmg (7.99)

'Here we have omitted T+ terms which, at the one-loop level, are unreliable.
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each having its own Debye frequencies

3 1/3

The three modes have a internal energy density

3 L
3N T 8 e, /T 1 1
= kg T = s+ . .

At high temperatures these have the Dulong-Petit behavior

N 1
”T.l.—"_/kb‘T:;kRT~ (7.102)

so that (7.96) reduces to the previous classical equation (7.91). At low
temperatures, the internal energies are given by (7.34a) i.e..

3. 0 70Ty
“T‘L l‘kB()D [8+E(W) + ...

§ﬁCT.L27T iT_ I
8 vr 30 hey

(kpT) + ... (7.103)

Thus, the cubic terms give rise to a volume expansion at zero temperature
due to quantum fluctuations,

3h2
Kody = Lyoarcr + YnLCL)S “:n-. (7.104)
F)

Starting from this value. the thermal expansion sets in with an expansion
coefficient

il

dA 4 1 1
=" = (2%T 3 T Yor :)__(kBT) Kp. (7-105)
oT K CTr

It is useful to introduce the quantity

T I3

1 1
Yo=C (27()TC7 + Yor. C”)) . (7.106)
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called the overall Griineisen constant. It governs the change of the Debye
temperature due to volume expansion,

dlog®), 1 o 19 _
= — -_ — —@ = —— -
Yo alog V (':f)[) oA b A=0 ¢ 0A A=0
e el a2 LY (B, Y} (g 07)
3 oA A=0 3 aA T Cy, CT CL

This quantity can be extracted from purely thermodynamic measure-
ments. In order to see this we observe that within the Debye approxi-
mation (7.99), the free energy with quantum effects (7.95) has the general
form

F=E,+TY, f(OU/T)=E, +F,. (7.108)
h
where E is independent of temperature. The internal energy is given by

U=

(FIT)

- Yu,=Y e @r (7.109)
((l/T) y 2,: / Z )

From this one finds the pressure,

p= —% = —"—E" — Z,: Y (O /T)O%,)-»@y;’ (7.110)
and further the thermal expansion coefficient
Lo Lavl _vapntly _1ap
Vari, Vaplaylr «xaT |y
=£lv ;, Oh f(()“”/T)( O‘([/,;)-a—@)g’p). (7.111)

We may identify

I a l ! (:) ! H
i = ap Un =3 00 =2 f (04T
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with the specific heats of the modes of polarization & whose sum is the
total specific heat at constant volume,

Cy = E Cvy- (7.112)
h

The derivatives

- Ch (7.113)
C

where ¢, are the sound velocities ¢y ;, are recognized as the Griineisen
constants defined before. Moreover, we may introduce the overall
Grineisen constant y at arbitrary temperature 7,

Z YuCvr
_ h
o), —_— e ———_—_——
E Cvi
h

(7.114)

[which has the same low T limit as (7.106), by (7.34a)]. In this way,
(7.111) becomes

1 -
az;ycv; (7.115)

hence vy can indeed be obtained from a compressional experiment for
k= —V(ap/aV)|r and the thermodynamic measurements of a = (1/V)
(8V/aT)|, and cy = (U/V)(QUT)|y = (1/V)T(8S/0T)|y. Actually, the
latter quantity is usually taken from

2
i1 oV
CV=CP—TO(2K=CP+TE,11 p/VEI; . (7.116)
since the specific heat at constant pressure,
1_.a§
p=oT— 7.117
P V aT pa ( )
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Is easier to measure. The connection follows from the well-known Jacobi
identity

. _TraS| _To@s, V) TS V)yoT. p)
PUVaAT|y Va(T, V) Va(T, p)a(T, V)
: ; : V 1
_T_ 1 (aspavy aSpavi)_ 0 TaS| v . (7.118)
Vﬂ/ oT p E)p T ('Jp TaT p V(?p TaT p 8V
op | ap T
in conjunction with the Maxwell relation
A J d d oV
— =———|F+pV]|(p, T)=——=—[F+pV](p, T)= —
o, apaT[ pVilp, T) = aTap[ pViip. T) aT|,
(7.119)

It should be noted that all these relations are special cases of the very
general properties of a phonon gas of frequencies wy,(k), which does not
necessarily factorize as c¢y- K, ¢; - K and which may have an arbitrary
dependence on the temperature. In the general case, the free energy is
given by

ﬁwh (k)
2

F=E,+ Floor = EU+2h k[ + kg Tlog(1 —e'*wf:(kwfﬂ)], (7.120)

where F,= Ve, is independent of temperature [compare (7.87) and
(7.108)]. The pressure of this gas is found from

aF

Pz_WT

_Ey 1 9
aV Z]uh(m[ h(k)avwh(k)] (7.121)

where we have introduced the internal energy for each momentum state,

1 1
uy (K) = Loy (K) I:E + S AaT 1] . (7.122)

The coefficient of thermal volume expansion at constant pressure is
therefore given by
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_lovi _1oplaT|y Lap

“TVvar|, VaplaVly «aT|y

Vv oa
= (K (k 7.123
Vhil[ i )][ i v )] (7.123)

The derivatives
Vo9

k) = k 7.124
’Yh( ) h(k)avwh( ) ( )

may be defined as the Griineisen parameter per state. For a linear sound
spectrum,

w; (k) = ¢, K|, (7.125)

these certainly reduce to the constants (7.113) introduced before.
We may also introduce the temperature derivative of u,, (k),

hoy (k))z et Ve T 7126

d
CVh(k) - Mh (k) = kB ( kB T (eﬁm;!(k)/kn r_ 1)2 ’

as the specific heat at constant volume for each momentum state. Its
integral and sum over A,

4k
Zh] jmc,,(k), (7.127)

is the total specific heat at constant volume. Using these quantities, the
thermal expansion coefficient can again be written as

1

a=—ycy, (7.128)
K
where
E Yn (K) cyn (K)
= bk (7.129)

E cyi (K)
h.k
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is the overall Griineisen constant for a general phonon spectrum. For the
linear spectrum wy, (k) = ¢, |Kk| it reduces to the previous constant (7.114).

7.7. SOFTENING OF ELASTIC CONSTANTS

In Eq. (7.82) we observed that the cubic terms not only cause an
expansion of the crystal but also a softening of the elastic constants. If
we force the total volume to remain constant, by some external walls
for example, this mechanism becomes inoperative. Still there is softening
of the elastic constant due to higher anharmonic terms, with the quartic
term predominanting. Such a situation had been encountered before in
Sections 7.6 and 7.7 of Part II in the context of the XY model. There, we
had the partition function

z=11 [ f 4y(x) ] L) (7.130)

oy 27T

Recall that we had two options for dealing with the low temperature
regime. One was the perturbative approach in which we expanded cosV;y
in powers of the argument

)icosViy=), [1 —%(V,y)z +%(ny)4 - ] (7.131)

X

used the second term X, ;(V,y)*/2 as a free-field energy, and treated
the remaining powers as interactions. The other was the Hartree-Fock
approach in which we removed from the exponent an unknown quadratic
piece,

R R
B Z cosV,y=BD — % Z (Viy)* + Z [B(COS Viy=1) + %(Vn’)z]
(7.132)
and treated the rest in such a way that an infinite set of diagrams was
automatically included, namely, those diagrams which brought the inter-

action to normal form. The renormalization of 8 which achieved this was
determined by a self-consistency equation,

BR = ge~ s, (7.133)
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This determined the softening of the effective stiffness 8% as a function
of B.

Let us now follow a similar approach for the softening of the elastic
constants. For this we write the partition function of the crystalline N
body system in the form*

7 H[J' du,(x) } g~ (B12) Son®x + u(x) = y = u(y), (7.134)

where ®(x —y) is the (symmetric) pair potential, u(x) the displacement
field and the sum over x covers all lattice sites. The bare elastic constants
are obtained by expanding ®(x) around the lattice sites, i.e.,

—ZLMx+mm—y—ww)

x¢y

=_E (I)(x—y)+ 2 3 P(x — y)(u;(x) — u;(y))

xiy x#y
+ = §a DX — y) (%) — (V) () — w(y) + .., (7.135)
47y
where
Y a,®b(x—y) =0, (7.136)
XFYy

since x, y are the equilibrium positions. Rewriting the quadratic piece as

2—Zaa¢u—wuumu@—uwn

x#y

and transforming u(x) to Fourier space,

1 ik
u(x) =—= e *u(k),
(%) = 7 L™ ulk)
we have

“We omit the factor 1/N! due to particle identity and the kinetic part, for brevity.
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V(K (K)u; (k) = Z d:0; D)1 — e MV (k)u;(k). (7.137)
S

1
2 2,

We now decompose u;(k) into eigenstates of V;(k),
u; (k) = Y, e(K) u (k) (7.138)
A

we rewrite (7.137) in the form

1M 5 >
S ) ) K M (K) P, (7.139)
2 p

where p i1s the mass density MN/V and

(k) = le x;,d D)1 — e ) eMHR) EN(R).  (7.140)

These are the elastic constants for the wave vectors k and with
polarization A. If kinetic terms are included', (M/2) £, u7(x), these have
the corresponding decomposition (1/2)ME,|iV(k)|* so that the elastic
constants determine the frequency in the usual way,

(A)k
¢ ( )kl

W M(K) = (7.141)

[c'V(k)/p]"? being the sound velocities.

Let us now see how these results change due to thermal fluctuations.
We could again proceed as in Section 7.6, 7.7, Part II, but find it more
convenient to use the effective action formalism as in the last section. We
introduce expectation values of the displacements,

Ui(x) = (u;)

and write

| du;(x)
7 - H i (’,_('[yj)":\i’(l)(x + U(x) + u(k) — vy — U(y) — u(y)) (7 142)
X.i J—x a

'We suppress the time variable in the arguments of 1, (x). 1;(k).
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Then we expand the exponent in powers of U(x) — U(y) as follows:

s Y, d(x +u(x) —y—U(y))—g 2. a,(x+u(x)— y—u(y))

2x¢y 2x=#y
X (U - U -5 T 0,000+ um -y —u))
XFy

X (Ui(x) = Uiy () = U (y) + . ... (7.143)

We now identify the renormalized elastic constants,

k) = 35 B (0,004 u() — u0))(1 - ) e0R) e R)

x#0
(7.144)

The self-consistent approach is based on taking the thermal expectation
value with the harmonic vibrations,

e—(ﬁ/:,»\';(,:xff,,p>:k_A(-“'qk)k-‘|u'“m[-“ (7_ 145)

where ¢t Y(k) are the same as those in (7.144). We decompose ®(x) into a
Fourier series

1 .
B(x) = — ), e D(q). (7.146)
N
rewrite (7.144) in the form

1 p1 . o i
(MKy= —— 55— &b pla (] —p Ky . Mk ; (AN K (@ ittty = (0D .

(7.147a)

and evaluate the exponent in the usual way, for harmonic modes

(glattn) =~ w0y — oa,Dy(x) (7.147b)

where Dj;(x) is the subtracted correlation function

Dy(x) = (u;(x) 1;(0)) — (u;(0);(0)). (7.148)
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Under the self-consistency assumption, the correlation function
(u;(x)u;(0)) is determined by (7.145),

(u;(x)u;(0)) = BNM Wcﬁ"‘ *e'V(k) s“‘)"(k) (7.149)

Thus (7.147) has to be solved together with

D;i(x —N P Z —s (6™ — 1) eV(K) eV (k). (7.150)

“’(k)k

It 1s easy to include also quantum effects. All one has to do is replace,
plc (k) k? = 1/w'(k)* by the Matsubara sum [recall (6.261), Part ]

1
E W + 0 I(k) = w(f)%(k) coth Bw' V(k). (7.151)

For x =0, D;;j(x) vanishes, by construction. For large x it approaches a
constant rapidly, namely, the quantity

—{u;(0) ;(0)),
which is related to the well-known Waller factor [recall (7.63)] by
2W = q,,{ui(0) 4;(0)). (7.152)

In cubic materials, upon which we shall now focus attention, the
Debye-Waller factor is

2W = Lg} ()
and the limit becomes
q:q; Dy (x) —=2W = 1q*(u’(0)). (7.153)

The approach to this asymptotic value is exponential. In practice, this is
fast enough to permit the approximation,

qiq; Dy (x) = 2W =1q*(u*(0)).
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We thus arrive at the self-consistency equation for the elastic constants

W)=~ B T (@) (e ) gl V() g k)
q.x#0
(7.154)
where (u?(0)) depends again on ¢‘?(k) via (7.149) since
(u2(0)) = —N P 32 (7.155)

“"(k) KV

We can go back to x space by performing the sum over q. The extra
factor e~ @ amounts to replacing the pair potential ®(x) by the
renormalized one

1

(Vorstan)

This has a simple physical interpretation: the renormalized potential is
obtained from the original one by smearing the x variable out over a
radius proportional to the mean square displacement (u*(0)).

In isotropic systems there are only two different sound waves, a
longitudinal wave with an elastic constant along k

dR(x) =

]d3x' o ((x = x’)2/2)/(3/2(u3(0)))(I)(x’)_ (7.156)

_ , -k)?
k)= 5— Riq)(e'4~ — eita—hxy (@
cr(k) Mkqu‘;ﬂ@ (q)(e e e (7.157)

and two degenerate transverse ones with

! wx a4 (@ k)
CT(k)=—M——E§ §0®R(Q)(3q —e'ta ™k )(7—( 7 ) (7.158)
q.x

where we have used the obvious notation
DR(q) = P(q) e IO} (7.159)

Performing the sum over x squeezes q once to ¢ and once ¢ + k where ¢ is
the reciprocal lattice vectors [recall Part I, (6.29)]
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Yiex =N, 8q - c) (7.160)

and we find

2

o (k) = ¢, () <
_é(qu)R(k) + Z (((C+ k)k)hq)R( + k) ( k ) (DR( )))

2
c#0 k

wi(k) = c7 k)— =— Z ( S Ch k) )((I)R(c + k) — ®®(c)). (7.161)

ci(]

The important observation at this point is that the transverse elastic
constant does not contain ¢ =0 in the sum. Thus it begins with the
nearest neighbor in reciprocal space. say ¢,. For small |k| <« the
leading term 1is

amM~$EG%“l”)Nm+m~wmn (7.162)

The longitudinal term, on the other hand, has the leading term

w7 (k) ~ ﬁl&b’e(k). (7.163)

In general, the potentials fall off rapidly in momentum space such that it
is a reasonable first approximation to neglect the higher ¢ vectors.

This observation allows for two immediate conclusions: Since (u?(0))
increases toward larger temperature, the transverse elastic constant shows
a much stronger thermal softening than the longitudinal constant. The
transverse softening, for small k, is approximately [using (7.159})]

CT(k)I T+0 ~ e—(c%/l)(uz(ﬂ))

cr (k)| =0 (7.164)

Here [see (7.50)]

<“ (0)) =3 Z (/mf(

1h)
Wy,

] 1
dwhw (E-l-m) (7.165)
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Let us estimate (u”(0)) from the classical limit of formula (7.57),

l.e.,

kpT |
(uX(0)) = 372~ Ew(m- (7.166)
D

It

Using Eq. (7.28), this can also be written as

ey 1[4V 1 kT ri g L
W) =3 )2( ) LG M g (9

where r, is radius of the sphere available to each atom. Here ¢, are the
three sound velocities. The transverse elastic constants c7(k), on the
left-hand side of (7.164) are themselves (for small k) proportional to the
square of the transverse sound velocities ¢7. Using ||| = 2a/r, X 0.695
(b.c.c.), 2a/ry x 0.676 (f.c.c.) [see Appendix 7.A] we thus arrive at the
nonlinear equation for sound velocities

('%'(T) — e—u,nx%k”vmn‘:,,|/¢-E,(T). (7_ 168)
To lowest order in T
T _
(1) | _ ek —Z— (7.169)
C:F Ir Ch

Before comparing this with experimental data. e.g.. those in Fig. 7.8, we
have to perform an isotropic average a la Voigt [see (7.44)] and allow for
the additional linear softening law due to volume expansion (7.94).

As a very rough approximation let us ignore that and study (7.168)
itself. We also neglect, on the right-hand side of (7.168) the difference
between elastic constants. Then we find the self-consistency equation

2
CT("’T) . e—l),ﬁ?{:-3(k[g'ﬂft1)(1/c%r(T))- (7_ 170)

cr

Setting r = ¢3(T)/c} and v = 1.38(kz T/Mc7) we can rewrite this as

r=—e " (7.171)
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FIG. 7.8.  Experimental softening of clastic constants in Ag (after Grimwall op. cit.).
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This has a solution only as long as t is smaller than the maximum of the
function on the right-hand side, which lies at 7/r = 1 where (t/r)e”" = 1/e
[compare (7.143) and Fig. 7.17 of Part I1], i.e.,

1
ax = = 7.172
rmdx e ( )

At this point, the transverse elastic sound velocity constants have
softened by a factor of 1/e. The self-consistency approximation cannot be
continued beyond this point. The maximal temperature is

T ! Mc3 I
ax — 7 MMC ’
Mk, T1.38e

(7.173)

Let us translate the result to the mean square displacement. Using (7.167)
we find

1<u2(0)>m11( \/kB max \/kB max \/ 3
Smlx ~0.89
\/3 & M éjc,, ~V3 Mc% 1380 08
(7.174)

Since melting occurs at 8, ~ 0.07 (from Table 7.4), in accordance with
Lindemann’s law, we conclude that the self-consistent approximation can
well be used to describe softening of the elastic constants up to this point,

Notice that we can use the more precise determinations of & at the
melting point to calculate the softening of the elastic constants. For this
we rewrite the exponential

PR GEIEQY

as follows

o1 WOV — pmid (7.176)

where 8 is the ratio of V{u;)/3 with respect to the nearest neighbour
distance d. Then we use the fact that the classical regime 8° grows linearly
with temperature,

2 7.177
& amclt Tmelt ( )
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and take 82, from Table 7.4. In b.c.c. and f.c.c. crystals, the smallest
reciprocal lattice vectors are given by

327
lc1 = \E " (7.178)

where d is the nearest neighbour distance {see Appendix 7.A] so that
(7.176)

e 39 28men (T Tmen)

Inserting the classical numbers of Table 7.4 this gives us a softening ratio
for the elastic constants,

c(T) = o~V (b.c.c.), (7.179)
Cr

cr(T) e =029 T a) (f.c.c.). (7.180)
Cr

For an order of magnitude comparison we take the experimental curves
for the softening of the elastic constants of the f.c.c. crystal Ag as shown
in Fig. 7.8. With T}, = 1235K we find the slope

ell) ) _g3-T
Cr ' Tmcl[

Despite the neglect of the contribution due to thermal expansion, (7.94),
this agrees with (7.180). For the b.c.c. metal Ta we use the data of Table
1.2 and find with T,,.,, = 3270K

bl

7)1
Cr Tmclt

also in reasonable agreement with (7.179).
In the literature the breakdown of the self-consistent approximation
has sometimes been associated with the melting transition™. From the

"Sec. for example, H. Fukuyama and P.M. Platzman, Sol. St. Conunun. 15 (1974) 677, and
Phys. Rev. B10 (1974) 3150.
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discussion of the XY model in Sections 7.6, 7.7, Part II however, we
know that this breakdown bears no relation to the phase transition. The
phase transition is not caused by perturbative effects, and cannot
therefore be derived from a partial resummation of infinitely many
diagrams. The XY model has taught us that the physical origin of the
superfluid phase transition is the condensation of vortex lines. Only these
lead to the destruction of the superfluid order.

We must therefore expect that a proper understanding of the melting
transition will be possible only after an analogous treatment of line-like
defects. This will be given in later chapters.

Let us end this chapter with a few comments on the two-dimensional
situation.

7.8. TWO-DIMENSIONAL CRYSTALS

Just as was the case with superfluids, solids too can be studied ex-
perimentally in the reduced dimensionality D =2, at least to a certain
approximation. It is possible to prepare large monoatomic layers of atoms
on grafoil (recall Section 11.1, Part II) and investigate their thermo-
dynamic properties as well as their correlation functions (through X-ray
scattering). The favourite systems are layers of rare gases like Helium,
Xenon, Argon or Krypton.

Such layers are usually not completely uniform since the binding
potential has the periodicity of the substrate and the diameter of the
Xenon atoms is somewhat larger than the lattice spacing of graphite.
Thus the atoms do not properly match with the optimal positions (see
Fig. 7.9). Fortunately, however, the variations in the binding energy are
quite small. For Xenon, for example it is ~37K. Melting of Xenon occurs
at =100 — 152K (for the phase diagram see Fig. 14.5). Hence the
deviations from uniformity should be neglegible.

The Debye theory developed in the beginning of this chapter applies to
such two-dimensional solids with only minor modifications. The Debye
frequencies (7.28) are again equal to 2mc,/ry, where ¢, are the velocities
of sound with polarization 4 and the radius r, associated with each
particle is now equal to (N/V)'?, V being the two-dimensional volume,
i.e., the area occupied by the atoms. Hence

172
1
w(DI’) = 27T(m) X Cp = 2me;,lrg (7180)
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FIG. 7.9. The geometry for the adsorption of Xenon on graphite. The Xe atoms are
slightly larger than the lattice spacing so that the layer is not quite commensurate.

Xenon
substrate Lennard-Jones
spacing diameter

Xenon adsorbed on graphite (001) surface

There are only two polarizations h = L, T whose density of states is
g"(w) = V[127]|(w/ci). With the average sound velocity [recall

(7.29b)]
[2/(:% L)] | (7.181)

The single density of states is g(w) = 2V(1/2m)(w/c?). The average Debye
temperature 1s

®D - ﬁw[)/kB, wn = 27TE/"'() (7182)

and the internal energy becomes
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T 2 an/T 5 1 1 183
= — - 7.
U=4NkgT o, fo dE€ | 5+ ( )

and the specific heat

( T )2 0n/T ; §3

C=4Nk f dée*—F—=dé& 7.184

7 Op 0 ¢ (ef—1)° ¢ ( )

For low temperatures, we use f dég? 61 7= 2{(3) = 2.404 and find
0 € —

that U and C have the limiting behavior

3 2
1 Ty T\
UW4NkB®D(6+2.4O4(®D) ), C?(_)“4Nk37.212(®n> .

(7.185)

The experimental T2 behavior of C for monolarges of *He of various
densities are shown in Fig. 7.10. The Debye temperature @, extracted
from data are plotted in Fig. 7.11 as a function of the molecular areas
a’ = 7rr§. For large temperatures, U and C follow again the Dulong-Petit

law,

U——)T»(“} Ucl = ZNkB T, Cm) Ucl = 2NkB (7186)

Most of the other formulas can be transformed straightforwardly to two
dimensions.

There are, however, a few pecularities due to the Landau-Peierls
argument, mentioned before in the context of superfluidity in two-
dimensional layers, i.e., based on the fact that [(d*k/(27)*)e’™ ™~ X (1/k?)
is divergent. This fact has sometimes been used to argue that two-
dimensional solids cannot exist, but this is not really true. What is true is
that this divergence prevents two-dimensional crystals from having a
proper long-range order with 8-function Bragg reflexes. The deviations
are quantitatively not very significant. Theoretically, however, they are of
great interest. This warrants a special discussion, which we now turn to.

In the continuum approximation, the linear elastic energy is

A
E, = deX[%L(aiuj + a;‘”f)z + E(aiui)z] (7.187)
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FIG. 7.10. The specific heat data at low temperatures for high density *He on grafoil (from
Hering and Vilches, 1973, see J.G. Dash op. cit. in the Notes and References). The
densities in units of 7/A% are 0.078. 0.079, 0.080, 0.082, 0.087, 0.092, for increasing .

1 I T I
a
0.16 —
0.14 o -
0.12 .
Z 010 N
o
0.08 -
0.06 -
0.04 .
0.02 »
0 3 1 i ]
0 1 2 3 3

(temperature)® (K?)

FIG. 7.11. The Debye temperature for layers of solid *He, as extracted from the low T
behavior of the specific heat data, as a function of the molecular area a® = mrj. For
comparison, we show the data points of hep *He on the same length scale a (after M. Bretz
et al., op. cit. in the Notes and References).
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with a partition function”

Z= H [ f du; (x) ] e EalT, (7.188)

This gives the correlation function

dk Ax—x) L A+ p
. Ax' = . —x"y = el =x1) k2 . —
(u;(x)u;(x')) = Gy(x — x') f(zﬁ)ze e\ Ko = ik )

(7.189)

We can now convince ourselves that due to the logarithmic singularity
of the Coulomb Green function [(d*k/(2m)?)e™ *~X)(1/k?), the two-
dimensional solid has indeed no proper long-range order, a fact which
manifests itself in the absence of true 8-function Bragg peaks in scattering
experiments. In order to see this we calculate the dimensionless structure
factor®

$(@ =1 [ e () px)), (7.190)

where p(x) is the local particle density and N the total number. If the
atoms are at their equilibrium positions [recall (1.1)], this is given by

p(x) = Z 89(x — x,). (7.191)

Inserting this into (7.106) gives

2
S(@ =y 5 et = ¥ een (2—”) L 6@q-0) =N 8.,
n.n n <

a C
(7.192)

where ¢ are the reciprocal lattice vectors (2w/a)(c,, ¢, ...) with
¢; = integer. If the atoms are displaced by u;(x), one has instead

"We drop the trivial factor (VkgTa’p/2whi*)*Y [recall (7.67) in three dimensions].
°In terms of S(q). the X-ray differential cross section is

aZ
7 NS(@).

=
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p(x) = 2 8%(X — Xn — ui(x,)) (7.193)

and finds

S(q) — % Z e“l'(xn - X”') <eiQEui(xn) e“’ﬁi“t(&!')) — E equ:. <ei'?|'ur'(xn) e"m:’”i(”)) .
n,n’ n
(7.194)

As long as the displacement field is small and follows the laws of linear
elasticity we can calculate directly [compare (11.92)-(11.96), Part II],

(effh“n(x) e-jqfﬂ.-‘(ﬂ)> e Z_l H fx ——du,- (x) €~EC1/T+ iq,qu,‘(x)Q(x)
X —

% A (%) | om0 i 5 i S
_ Z_ln f ;( ) e (12T (x) G ' (x — XV i(x") + i Do () Q(x)
x | J—= i

— e_‘i’iq;'('nz)gx.x’ Q(x) Gij(x - x"YQ(x’) — e(h(h TGI}(X)’

(7.194")

where we have used the abbreviations Q(x) = 6, x — 6x.0,

G}(X) = G;(X) — G;;(0). (7.195)

In three dimensions, G;;(X) would go to zero for large distances and
(el X gmianl®y 5 1. Inserting this into (7.194) we see that we obtain
S(q) = L¢dg.c so that thermal fluctuations do not destroy the é-function
peaks in the structure function.

In two dimensions, however, G;(X) diverges logarithmically and
(e X =i fa]Is off like a power of |X| instead of becoming constant.
When inserting the power behaviour |X|™"® into (7.194), the 8-functions
widen into cusps around the reciprocal lattice vectors ¢, with the
behaviour

S(@)x Y ——

@ (7.196)

The precise value of 7(q) is found by extracting the long-range
logarithmic term in (7.189). According to (1.125) this is given by

11 _A+3 (8, .
G =, u4w3"f')\+2“1°g(2|"|e ) (7.197)
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so that the subtracted Green function has the finite limit

11 + 3u

Gii(x) = —;—4 6”)\ 2 log[x] (7.198)
givingP
T A+3u
=2 -

Since power behaviors like |X|™7 are typical for critical systems, the
power m is called a critical index.

Experimentally, the power behaviour (7.196) is visible in the intensity
profiles of X-rays scattered on adsorbed layers of atoms as illustrated in
Fig. 7.12 with the data of Heiney et al. See the Notes and References.

The melting transition in two-dimensional systems was first observed in
monolayers of *He by Bretz et al. (1973). The data show sharp peaks in
the specific heat (see Fig. 7.13).

Certainly, it is possible to carry through all the discussions of the
previous sections once more in two dimensions. For brevity, however, we
shall not do this and embark directly in studying the role of defects in the
melting transition. Later, after having improved our understanding of
the three-dimensional transition we shall return and study also two-
dimensional melting in more detail.

APPENDIX 7A. SOME LATTICE PROPERTIES

In a b.c.c. lattice, we use the basis
a
a,=—(—R+§+2), ar=—(R~§+17), a3=éﬂ(i+y—2), (7A.1)
and find the volume per cell

(7A.2)

a’%
v=(a1><az)-a3=5“

PNotice that the combination of clastic constants in the same as in the Debye temperature

O, = g_w_ﬁ(__) e \/ \/:“"(A + 2#)
DT ky \mad® €= ™ A+ 3u
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FIG. 7.12. Diffraction profiles illustrating the power-like peaks (solid lines) in the
structure factor S(Q) rather than the &-like peaks in the Bragg reflexes of 3D solids (after

Heiney et al., op. cit. in the Notes and References).
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so that @ = v'? = @,/2"* and the nearest neighbour distance is d = (ay/2)
V3 = 02 (V3/2%%) = 1.0911 a. With ry = ((3/4m) v)1? = (3/4m)" a we also

have d = 1.76”(].
In an f.c.c. lattice

[} a
a1=§(y+2), a,=—'(7+%),
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FIG. 7.13. The specific heat data of *He films on grafoil as found by Bretz et al. (1973)
(op. cit. in the Notes and References).

5 ¥ L] T ¥

13.27
C atoms/nm?

spec. Heat L9
of “He films

o 2 1 3 6 8 10K

so that v = g}/4 and ¢v'? = a = a,/4"?. The nearest neighbour distance
is d=ay/V2=0v""(4"YV2)=1.1225a ~ 1.81r,. The reciprocal basis of
an f.c.c. (b.c.c.) lattice is a b.c.c. (f.c.c.) lattice with i = 47/a, and
a volume (2m)/v= (2w/a)’ so that a"“=2m/a. Hence the smallest

reciprocal lattice vectors of a b.c.c. lattice have a length di* =
(4Y3V2)a™c = (V32)(2w/d) = 1.1225(2m/a) while those of an f.c.c.
lattice have di® = (V3/2%?)a" = (V3/2)(2w/d) = 1.0911 (2m/a).

APPENDIX 7B. FREQUENCY DISTRIBUTIONS

For a general spectrum wj(k), the frequency distribution may be
calculated as follows:

2w 5
8(@) =77 L 8 - wilk)) (7.B1)

By integrating this over « 1t is obvious that it has the correct
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normalization (7.27). We now observe that the right-hand side can be
rewritten as

N2w
g"(w) =3 Im

Z 3 1 3 ? (7B2)
k

1
N5 —w —ie+ wj(k)

where ¢ is an infinitesimal positive number. This implies that g (w) can
be obtained from the Green function ’(0) at the origin,

1
y=—-) ————- B3
Ui (0) N;m+w&) (7.B3)

by an analytic continuation in the square mass m> 1o
m = —w — it (7.B4)
and taking the imaginary part, i.e.,

N2
¢M(w) = ‘—/—wlm D(0) X (7.B5)

mi=—w—Iir

As an example, take the one-dimensional case where for lattice space
a=1 [see Part I, Eq. (6.184)],

0,(0) = [(m* +2)7 = 4], (7.B6)
so that
_N 2 1

w — . (7.B7)

On a square lattice we can use Eq. (6.134) of Part I,

P2 1
0(0) = ————K|———=1|" :

© m +4m ((1 + m’/4)') (7.B8)

w2

where K(z) is the elliptic integral f dé(1 — z sin® §) 2, and find for a

0
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mode with a lattice spectrum wj = 2(1 — cos k;) + 2(1 — cos k,)

4 16
i K( ) ¥4 — 02) > 16,

O et - o)
- % K (%—“ﬁ) , 0< w4 - w?) <16, (7.B9)

For a three dimensional simple cubic lattice we have to replace w? by
/2

w” — 2(1 — cos k) and do one more integral over f dk/2w. Plots of
—ri2

these functions can be found in the book by Maradudin et al. [see Notes
and References).

Similarly, we can use the Green functions of b.c.c., and f.c.c. lattices in
Part I, Eqgs. (6A.43), (6A.46) to calculate explicitly the associated
frequency distributions.
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CHAPTER EIGHT

FIRST ATTEMPT AT A DISORDER FIELD THEORY OF
DEFECT MELTING

The Lindemann criterion gave us some important information on the
nature of the melting transition: the transition occurs at a temperature
slightly below which the atoms still perform, to a very good appro-
ximation, harmonic fluctuations about their mean positions. The non-
linearities of the interatomic potential are not very important. They
merely provide a shift in the mean position and a softening of the
elastic constants. If these two effects are taken into account, the crystal,
even right below the melting temperature, can be treated practically as an
ideal crystal. Defects are quite rare, due to their high energy, and we can
describe the interactions of defect lines by the methods developed in the
previous chapters.

As we approach the melting temperature, the situation changes
abruptly. All of a sudden, the crystalline order breaks down. In analogy
with the superfluid phase transition we set for ourselves the goal of
describing this breakdown by the condensation of defect lines. In the
following chapters we shall try and follow the historical development
which ultimately led to the lattice models to be described in Chapters
9-13. The disorder field theory which will arise in the course of the
present chapter will not be used later on. The insights gained in this
discussion will put us in a better position to appreciate the properties of
these models.

938
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The practically minded reader is therefore advised to skip this chapter
and turn directly to Chapter 9.

8.1. DISORDER FIELDS OF DISLOCATION LINES

Let us begin by studying fluctuating ensembles of dislocation lines. We
proceed in complete analogy with the vortex lines of Chapter 2, Part II.

The elastic energy of N lines LY, i=1, ..., N with Burgers’ vectors
bi") is given by (3.42):

M
£ 3, §
Blin Sﬁf%: Ly J o

X |:(b(') . dx("))(b(” . dx(”)/R — Z(b(” % b(j)) . (dx(i) % dx(”)/R

+

1_1jb0%xdﬂ“p(b0)xcmﬁhnaﬂnR]. (8.1)
This formula was based on the laws of linear elasticity which are valid for
large distances between the lines.

In the near-zone around each line, nonlinear effects become important.
Just as in the superfluid, these are difficult to calculate. We shall assume
that they can be parametrized approximately by a core energy of the form

N
E(qf ¢m+4f dwtﬂﬂ, (8.2)
i=1 L L9

where el = e/ is the energy per unit length of an edge dislocation (which
has dx L b) and e = e, + ¢_ that of a screw dislocation (which has dx || b,
b=b/|b|). The total partition function to be calculated is

EC()I’C

1 1
) Y- —= (Egtin + Eeor) { - 8.3

As 1n Chapter 2, Part II, we shall proceed in two steps and suppose first
that there is no elastic energy. We shall also assume, for a moment, that
the parameters e’ and e” are equal. Then it is straightforward to write
down a disorder field theory for Z, in analogy with Eq. (2.3) of Part II:
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Z=f@<p D'
1 m?* :
X exp —fd3x Yo Slacesl + Slenl? ) + 52 e Plend? | ¢
b 2 2 b,b’ 4
(8.4)
The mass is given by
el 2D
m? = (? —log2D 2 (8.5)
with ¢! = el -a being the energy per link. The sum over b=1, ..., n

accounts for the fundamental Burgers vectors. We have initially assumed
a quartic short range interaction which is purely phenomenological and
whose precise form is unknown. It has to satisfy an important funda-
mental physical property: when dislocation lines interact with each other,
the Burgers vectors are conserved just like electric charges (recall the
discussion in Section 2.9 on branching defect lines). The corresponding
property of the disorder field theory is that it is invariant under the global
phase rotations,

@6 (x) — """ gy (x). (8.6)

This is why we wrote the interaction immediately in the form %, ,
(gp6/4)|@s|*|@s-|>. The coupling matrix g, is further restricted by cubic
symmetry. This permits only two independent matrix elements and we
can parametrize the energy density as

1 , m2 , n 2 gz n
e) = N | 2loconl + o fep2 | +8H X lenl2) +52 X Jenlt. (8.7)
b 2 2 4 b=1 4b:l

8.2. FLUCTUATION INDUCED FIRST-ORDER TRANSITION

Let us study the partition function associated with this energy. It is useful
to view the complex field ¢, as a special case of a general n - g component
field o withi=1, ... n,a=1, ..., q and a field energy
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(n.q)

2 (n.q) 2
em)= ) [%(Becpf“)2+"n§-(¢,’3’)2]+%((r Lo (ef )2)

(i.a)y=1,1 a)=1.1

g n q 2
I; ( gl(‘Pf‘)z) : (8.8)

This is invariant under O(q) rotations of the indices « and has a symmetry
under the cubic point group in the indices i which count the different
fundamental Burgers vectors.

Theories of this type have been discussed in the literature in great
detail (see the Notes and References). They are used to illustrate the
possibility that fluctuations may induce a full O(n - g) symmetry between
all n- g components of ¢;*. What is more important in the present context
is that these field theories are also examples of a further type of
fluctuation-induced first-order transition, similar to the one we had
encountered previously in Section 3.11 in a superconductor for which the
crucial fluctuation role was played by gauge fields. Let us recapitulate
some of the well-known features of a field with energy (8.8) which could
be relevant for our purposes. For simplicity, we shall first focus attention
upon the simplest prototype of a field with arbitrary » and g =1 at the
mean-field level. Its energy is

e(x)= ), (am,)?- E 5—2 (8.9)
2 4 T

i=1

For m® <0, the fields acquire non-zero expectation values. Their pro-
perties depend on the values of g,, g,. For g, =0, g, > 0, the energy is
invariant under n-dimensional rotations of the components (¢, ..., ¢,),
and the ground state is degenerate with respect to these rotations, with a
field expectation value

o=\ Let=—— (8.10)

For n =2, this ground state is the same as the ordered state in the O(2)
symmetric field theory of superfluid “He (or the XY model). If g, <0,
and g; > —g, the energy loses its isotropy and the ground state can no
longer point along an arbitrary direction in the O(n) field space but must
select one of the three directions along the field axes, say,
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m2

i = @0 = - O 1- (811)
O = PO 1 ¢+ & 1

If g, >0, and g, > —g,/n the expectation value is diagonal in field space,

e _ 1 m”

‘PI.E'\/E \/f_l _g1+g2/n ) (8]2)

In the three cases, the ground state energy is given by the minima of the
potentials which are

2 4
_mt o, 8 4 m
0T O 4T Ty
m’ 5, gitg s_ m’

v | J— + = _
80T T Y T g+ 50)

2 4

m 2_1”g1+g2/nt 4a_ m

) =— - 8.13
lg3>(] 2 4 4 ¢ 4(g] +g2/n) ( )

These ground states exist only as long as g, and g, satisfy the conditions
&1 +g2>0, &1 +g2/n>0 (814)

These define what is called the stability wedge in the coupling constant
plane (see Fig. 8.1). For each point within the wedge, there is a second
order phase transition as m?® passes through zero.*

We shall now convince ourselves that along the boundary of the
stability wedge, and in some neighborhood thereof, fluctuations change
the order of the transition from second to first. For this we calculate the
one-loop effective potential. According to the rules spelled out in Part I,
Section 5.3, this is given by [recall Eq. (I. 5.23)]

n n 2 n
u(cp)_’%z gl(;cbf) +%§1q>§

1 d° 0%e
—~ 1 24+ mHs; + , 8.15
* 2f 2mP " Og[(p M8t e, (8.15)

“Notice that if we were to keep g, >0 fixed and let g, pass through zero, the order
parameter of the system would develop a discontinuity.
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FI1G. 8.1.

943

The stability wedge in the coupling constant plane and the phases associated

with the different regimes at the mean-field level. The axes g» = 0 and g, = 0 correspond to
an O(n) symmetric and a product of # Ising models, respectively and display the corre-

sponding critical behavior.
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where @; is the ground state expectation of the field ¢; [i.e., ®;= (¢;)].
In order to calculate the trace of the logarithm, all we have to do is to

find the n cigenvalues M? of the “mass” matrix,

d’e
Mj=——tfr
70D 09;

and we can write directly

2 =5

i=1

n n 2 n
v (P —m—2¢?+%(2 qa?) +82 % @
D

Explicitly, we have

4 i=1

1w [ d°
+ — 2 2 2
2[_Zlf(zw)l)log(p +m” + M;).

k

(8.16)

(8.17)

(8.18)
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The eigenvalues depend on the state under consideration. Consider
first the case g, < 0 with the “axial” ground state

Then
M = [g1(28;18;1 + 8;) + 3g28; 81 ] D°. (8.20)

This matrix has one eigenvalue, namely 3(g, + g,)®* and n — 1 degen-
erate eigenvalues g, ®>. Hence the effective potential reads

+ 1 d°
@)= Z0r + 82 Lt L[ L og 2+ + 3051+ )0

+ (n = Dlog(p* + m? + g, ®H)]. (8.21)

In the ‘“‘diagonal” state

B
I
Sk

: (8.22)

the matrix M} reads

2

This has one longitudinal eigenvalue 3(g; + g./n) [asociated with the
direction (1, 1, ..., 1)], and n — 1 transverse ones g, + 3g,/n [associated
with the directions (1, —1,0, ...,0), (1,0, —=1,0, ..., 0), ...]. Thus the
effective potential reads

2

m + 9,/n d°p
v(¢)=7¢2+%(b4 f(Z )D[log(m + 3(g; + go/n) d?)

+ (n — Dlog(m? + (g, + 3g./n) d?)]. (8.24)

It is now easy to verify that close to the boundary of the stability
wedge, the fluctuations indeed change the second-order of the phase
transition into a first-order. Along the boundaries g; + g, =0 and
g + g2/n = 0, the potentials (8.21), (8.24) reduce (up to a trivial constant

shift) to
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2 D
m- ., n—1 d”p » 2 5
(P)y=—O] | +m” + g, P°), 8.25
v (P) > P+ (2m)P og(p g:197) (8.25)
m-_, n—1 P 2 2 ) 2)
(D) = —P? + lo +m +—o°), 8.26
v(®) 2 2 (27r)D g(p n ( )

respectively, where in either expression g, and g, are positive quantities.
The momentum space integrals in three dimensions were calculated
before in Part I [Eq. (3.106)]. If A denotes the spherical cut-off in
momentum space, we obtain

m n—1

|
Tt T e

X {(A‘ﬁOgA2 —%AB’ + 3Am2) +3A(m*+ g, %) — mw(m? +g1(I)2)3’2} :
(8.27)

with g, replaced by 2g,/n in the second case, (8.26). This shows that,
apart from a trivial additive shift of the potential, the fluctuations change
the mass to the renormalized value m% = m*[1 + (n — 1)(g,/67°)3A] and
produce an additional term —((n — 1)/2)(1/67)(m* + g, ®*)*2. This latter
term destabilizes the potential. Hence the potential remains truly stable
only inside the stability wedge.

Consider the immediate neighborhood of the lower boundary and set
g1 + g = &. Then the potential (8.21) becomes

2
_M 52 E g ’_1_1_ 3 2__2 3 2
v(P) > P +4<I> +26w2[A log A 3A +3Am]

11
5 33A[0m® + 36®%) + (n = 1)’ + g, B?)]
ar

11 5 5
— 56_7;[(”,1& + 3£¢)2)3/2 + (n _ 1)(m_ + glq)2)3/2]_ (828)

In order to proceed it is useful to include into the potential a further
infinite number of loop diagrams which are trivial to do, namely, those
which change the value of m® inside the terms (m? + 3e®%)*?,
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(m* + g, ®*)*? to the renormalization value m%. This is achieved by
rewriting the original field energy (8.9) as

n

1 m2 ] 2 it m2 _mz n ,
e(x) =), [E(Mf)z +—2@<p?] +%(Z <P,-2) +% Y. o +-“*5“—5 )¢
i=1 i=1 i=1 i=1

(8.29)

and considering the term (m” — mz)Z, ¢; as a mass perturbation. Thus
we calculate the effective potential only for the first three terms and find
the expression (8.25), but with m* replaced by my. Then we add the
mean field part of the mass perturbation {(m” — mz)®> which removes
the terms 1(n — 1)(1/67%)3A (3ed? + (n — 1)g, ®?). Thus, up to a trivial
constant shift, we can write the potential as

2
0(®) =T + 20

11
3 o l0mk + 3602 4 (1 — D(mk + 19D — il (8.30)

We have normalized v(®P) so that it vanishes at zero field, ® = 0.
We are now ready to see the first-order of the transition. We set
m% = 0 and observe that the potential

€ 11
v ((I))mﬁ,:() = —(1)4 N7

T = S G + (n - (@] (8.31)

has a minimum away from the field origin at

1 a
Pron = (362 + (1= 1)) = (8.32)
me £
where v 1S negative:
U (Prin) = L (8.33)
min 1283a i .

Since the field origin is locally stable down to m% = 0, we conclude that
there must be some positive value of mj for which it is energetically
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favorable for @ to jump in a first-order transition from ® =0 to a
non-zero value close to (8.33).

Let us now see whether this conclusion is really trustworthy. For this
we have to make sure that the higher loop corrections remain small
compared with the mean-field and one-loop terms, which are of order
gi/e’. Otherwise they will completely change the result. We verify this
assertion by observing that for finite g,, the mass terms of the @ fluc-
tuations at the new minimum are very large, namely, of the order
3ed? ~ gi/e and g, ®? ~ gl/e*. This turns out to ensure the convergence of
the loop expansion. For example, a two loop diagram like OQO is at least
small of the order g,(e/g})* ~ £*/g]. A similar discussion holds for the
other boundary g, + g»/n of the stability wedge.

Note that for the argument to go through, it is essential to have rwo
coupling constants. For a simple (&/4)¢’ theory, there is only the first
term in (8.32) so that @, is small, of the order £"? and so is the only
mass term 3e®° which is of the order £°. The latter causes the two-loop
diagrams OO to be of order £(1/&*) and convergence is not ensured.

Let us now generalize this result to the case of a n- g component field
¢ with the energy (8.8). The energy is minimal for

OF =5, 8%, (8.34)
or
Y
q)_a — _~ sl )
i \/55 (8.35)
and the potential reads again
7 2
L8t 8 m- e St gln (8.36)
v(P) = 4 b7, v(P) = > M P, (8.37)

respectively, just as before [recall Egs. (8.13)]. Owing to invariance
under O(q) rotations of the indices a, any orthogonal linear combination
of @ can serve the same purpose.

The stability wedge is again given by g, + g, >0 and g, + g/n >0,
respectively and the different phases have the same diagram as in Fig.
8.1.

The mass matrix (8.18) becomes
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(M)t =g, (2<1>i“¢>,ﬁ +5,6% 2((1),“)2) + 8,5, (503 Y (@) + 2<1>,-a<1>,ﬁ) .
.o b4
(8.38)

In the axial ground state (8.34), it takes the specific form
(MH)3P = g,(28,, 8,18 8P' + 5,6°P) + g,6,,8,,(8°P + 28°'8F1).  (8.39)

This has one eigenvalue 3(g, + g») (associated with the eigenvector
818°"), ¢ — 1 eigenvalues g, + g, (associated with 8,6, §,,86%,...),
and (n — 1)g eigenvalues g, (associated with 8;,6%8 68,38%f, ... for
B=1,...,q). Hence the effective potential in the lower part of the
stability wedge reads

@) =202+ E Lt L [ g+ 36, + )0

+(q — Dlog(p® + m* + (g, + g2)®?)
+ (n— Dglog(p® + m* + g, ®%)]. (8.40)

At the mean-field minimum, the total mass term in the second logarithm
vanishes as a manifestation of the Nambu-Goldstone theorem applied to
the O(gq) symmetry.

In the upper part of the stability wedge the mass matrix reads

2
(M?)gP=g, ( 52168 + 5, saﬁ) g25 J(8P+28°18Py. (8.41)

This has a longitudinal eigenvalue 3(g, + g»/n) [associated with the

eigenvector (1, 1, 1, ...)8%'], n — 1 eigenvalues g, + 3g./n [associated
with (1, =1, 0, 0, ...)8%, (1, 0, —1, 0, ...)8*, ...} and n(g—1)
eigenvalues g, + g./n [assocnated with 8;8%, 8 8“3 . forj=1,...,nl.

At the mean field minimum, the total mass terms of the last modes
vanish. The first-order transitions near the boundaries of the stability
wedge follow in the same way as before.

It is possible to show, via renormalization group arguments in 4 — ¢
dimensions, that in fact a first-order transition takes place for the entire
section g, <0, g, >0 and g, <0, g, > 0. For details we refer the reader
to the works quoted in the Notes and References.
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What does the above result imply about the forces between dislocation
lines? Rewriting the interaction energy in (8.7) in the form

n

+ "
78N 10 +8 Y |oullenl (8.42)
4 55 4pb=1

we separate the self-energies of the lines from interaction energies
between lines of different Burgers vectors. Hence the result implies that,
for a small but positive self-energy and arbitrary positive interaction
energy, the transition is of first order. This is in contrast with the disorder
field theory of vortex lines in *He where positive self-energies always
imply a continuous phase transition.

The other first-order transition occurs for negative g;, i.e., at a slightly
attractive interaction energy and a positive self-energy, g, + g» in which
g is close to —ng,, such that g, + g ~ —(n — 1)g; > 0. In the first case,
only dislocation lines of one sort condense, owing to the fact that the
ground state expectation has the form ®, = ®§;,6*'. In the second case,
there is an equal density of all dislocation lines i=1, ..., n, since
®f = (®/Vn)6* for all i,

If we want to interprete the phase transition of the above disorder field
theory as a melting process, we have to assume the second situation to
hold. Dislocation lines are the defects of translational order. The conden-
sation of the lines ¢, destroys the lattice periodicity along the direction b.
In a liquid, there is no translational order. Hence all ¢, fields have to
condense.

In some crystals there exists an even more drastic difference between
the disorder field theories of dislocation lines and those of vortex lines.
Take for example, a hexagonal crystal. The basis vectors are

1 V3
al’ = ay(1, 0, 0), a(2)=ao(§’ 2 ’0), a®=4y(0,0,1), (8.43)

so that there are four fundamental Burgers vectors

b =ay(1, 0, 0), P = au(_%, —\f’ O)’

1 V3
b(3’=ao(—§’ 5 ,o), b = 4,(0, 0, 1). (8.44)
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The first three are of equal length and add up to zero. Since their energies
are equal, each of them may be described by its own disorder field ¢,. In
this case, the invariance (8.6) permits a cubic interaction of the form

o1, @001, + c.0.) (8.45)

This interaction will always cause a first-order transition in which the
three types of dislocation lines all condense at the same time. However,
in most atomic lattices, which are of the b.c.c. or f.c.c. types, this
mechanism is absent and the disorder theory is of the type (8.4) with the
leading interactions being quartic in the fields.

Apart from these special features, the field energy of dislocation lines is
structurally similar to that of vortex lines. In particular, the disordered
phase of the field theory contains long-range Nambu-Goldstone modes
associated with the fluctuations of the phase angles ') = y,b, of the
disorder field ¢,. The gradients of the angles y'*)(x) are proportional to
the current densities of the three fundamental dislocation lines. If we
rewrite the disorder fields in polar coordinates, i.e.,

on(x) = p! (x) e, (8.46)

these currents are

. 1 Eg y 2 -
Joe (X) = E‘Phd( ©p(x) = PU )(X)'d( ’Y(h)(x)- (8.47)

The incorporation of the second piece of the core energy er — ¢!, which
we had omitted for a moment, represents no major difficulty. It merely
requires a few more steps. First we observe that the coupling of the
Burgers vector in (8.2) to the integral over the orbit [ dx‘® is of the same
form as that for the magnetic potential in (2.6), Part 1. Hence the e, term
in (8.2) is equivalent to the minimal replacement

9 — 0 — %e;.E( (8.48)

in the gradient term of the disorder field theory. This leads to two
additional terms in the exponent of (8.4)
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erZ
_ZJ‘d% (__‘Pbat‘Pbbé |‘Pb|2) (8.49)

2T2

The second term represents an additional contribution to the mass of the
¢p, field which is changed to

. 12 gt 2D
m’? = (eT“ eT—z ;—D ~ log ZD) (8.50)

In the mean-field approximation, this disorder field theory has a second
order phase transition at

ef‘2a \/ 26”2 -1
T.== 1+ - i )
. e(D( 2ploe2D ~ 1 (8.51)

At this temperature, dislocation lines proliferate. The thermodynamic
functions — Bf (free energy), u (internal energy), and s (entropy) have the
same temperature dependence as that calculated for vortex lines.

While the resulting disorder theory of dislocation lines has many of the
pleasant properties which are necessary to describe the melting process,
the first-order transition discussed above cannot yet be identified with this
process. First of all, in b.c.c. and f.c.c. lattices, when there is no cubic
term (8.45), the existence and strength of the first-order transition would
depend on a special combination of the coupling constants g;, g». It
would then be difficult to understand why all materials melt with similar
transition entropies, lying between 1.5 and 2.5kp per atom (see Table
7.1).

A further problem is the following: Dislocations are defect lines only of
the discrete translational symmetry of the crystal. When they condense,
only this symmetry can be destroyed. We are faced with the problem of
explaining how the ground state characterized by |¢,| # 0 should also
have lost the directional memory of the crystal. This second observation
is crucial and provides the key for a proper treatment of the melting
transition to be developed later. For the moment, however, let us ignore
all these problems and proceed in complete analogy with the develop-
ment in Part II for the superfluid, namely, with introducing the long-
range elastic stress forces between dislocation lines into the disorder field
theory. Although the resulting field theory will not yet be the correct one,
it will provide some interesting insights into the physical properties of the
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melting transition. In particular we shall run into several discrepancies
between theory and experiment which can be resolved only by the final
correct theory (see Chapters 18, 19).

8.3. INCLUSION OF STRESS AND THE MEISSNER EFFECT

The inclusion of stress forces is quite straightforward knowing the gauge-
ficld representation (4.7) of Blin’s law,

et = f DAG(x) 83544 — 0, Ay) B[A ] Y, e O b huinde ),
{L}
(8.52)
where the contour integrals run over all dislocation lines L. For an
ensemble of lines with Burgers vector b, the elastic energy is obtained by

replacing the derivatives of the associated disorder fields ¢}’ by the
covariant derivative

de @y (X) = Doy (x) = (af’ - %bjAf‘j) @5 (x). (8.53)

In a simple cubic lattice, the fundamental Burgers vectors b} coincide
with the unit vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), apart from the scale
factor a, and the covariant derivatives read

Depi(x) = (a( — i%Ag,:) ®; (no sum over i), (8.54)

where i = 1, 2, 3 labels the three spatial directions.
Let us turn our attention upon this case, for stmplicity. We arrive at the
following partition function for fluctuating dislocation lines under stress,

Z= f DA (%) 8(0;Aq — 3, A;)) D[A] e~ DILx4(GE = 001 + )y

X f D p; D} @ TEEHWDR) + (el + ey ') (8.55)
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As n the case of the vortex lines with superflow, the gauge field extends
the global invariance (8.6), which guarantees the conservation of Burgers
“charges,” to local gauge invariance, i.e.,

@ (x) = "D NN, (x), Ag(x)—= Ay(x) + 9.A(x).  (8.56)
Extremizing the energy with respect to variations d¢;(x) on ¢; we obtain
the field equations for the dislocation fields,

[—(a( - i—;l:A(,-)u +m? + Z 8ji ’@j’|2:| ¢;(x) = 0. (8.57)

The derivation of the field equation for the gauge field is a little more
subtle due to the constraints §(3,A; — d¢A;;). If we ignore these and vary
the exponent formally we find

11 1%

_?Z(E{mn O Enpq Op Aqj — 1+ v ke Ok Empq apAqm) = ag(x), (8.58)

where

_al o a 2
a(j(x):?z_i@jarﬁﬁj_FWA Ay (8.59)

is the dislocation current density. Equations (8.57) — (8.59) are a direct
analogues of Eqs. (3.27), (3.28), (3.29) in Part II. Due to our negiect of
the constraint, however, Eq. (8.58) is not true since in the derivation we
are allowed to vary only the physical components of A, . This implies that
only those parts of the dislocation current appear on the right-hand side
which contain the helicity components (2, 2), (2-2), (1, 0) [recall
(4.124)]. Notice that this situation is different from what happens to the
equation of motion if the constraint is merely a gauge-fixing condition. In
that case one obtains the same result as one would if there were no gauge
fixing due to the fact that the current satisfies the conservation law

This ensures that the three gauge-like components (1/V2)(a® " + o/ 1)
(V) (™D + a0 (IV3)(V2a®? + a™) are absent [recall
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(4.117)]. The same is true on the left-hand side of (8.58) which vanishes
trivially when contracting with d,. This is why neglecting the gauge-fixing
factor ®[A;] in doing the field variations does no harm. For the con-
straint 8(d,4,; — 9, A;;), however, the situation is entirely different, due
to the absence of an analogous property in the dislocation density a;(x)
[recall our remarks regarding (4.123)]. Therefore, the right-hand side of
(8.58) has to be replaced by the projection

ag(x) = (PP + P72+ PUO) o aep (),
which was calculated in (4.128) to be

_ 90, 1 de d;
Of(jj (X) = 6}"‘ - _5-2'" a(’j’ (x) - _2— 8{] - —5‘2“ aii(x)' (861)

The projected @, satisfy the constraints
a,i&(j(x) = a( amt (X), (862)

which make 1t consistent with the left hand-side of Eq. (8.58). In fact,
both sides of Eq. (8.62) vanish by themselves as a consequence of the
simultaneous validity of the conservation law d,a, =0 [recall Eq.
(4.122)].

In order to extract some physical consequences from Egs. (8.57) and
(8.58), we now recall that the analogous equations [(3.27). (3.28) of Part
IT] were solved most conveniently by writing the fields ¢(x) in the polar
form,

¢ (x) = p(x) e, (8.63)

with y(x) = gA (x). and observing that the phase could be removed by a
gauge transformation:

A(x)—= A (x) + . A (x). (8.64)
We can do the same thing here by writing

‘P'(x) — P(‘“(x) e;’(q,,-f),\_,m‘ (8.65)
7
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while changing the field A, to A, + dcA;. This then results in the
equations

>
(—8? + % Y AL +m’ + y gﬂ,p(;')z) P(x) =0 (nosuminj), (8.66)
¢ i

i i 1% =
_?Z(Etmn()m Enpg dpqu - 1—;_];8]."(6 O Empgq apAqm) - a{j(x)’ (867)

&%) =~ Z(zﬂ D4 PR DL paaOy U AL (8.68)

Are these equations in accordance with physical observations? In the
disordered state where all p'/) = p # 0, the current &;(x), in momentum
space, is given by

2
a 2, =2 1.0
2T2P (P( 4 Pl )+ P! ))(j,é"}"Aé'j'-

a(,-

The left-hand side of (8.67), on the other hand, has the momentum-space
helicity form {recall (4.113)]

11 1 —
T Z(P(Z' Tere 2’*??5”“"”) Ay (8:69)

Thus we find the free field equations

1{1 p 1{1 ,1—v da%?
l B ZF A(2 *2) _ I R + A(I,O) —
2(Mp T) (p) = 2(“1) A (p) =0

(8.70)

This shows that there exists a dislocation version of the Meissner effect.
In the phase transition to the disordered state, the gauge field of stress
acquires a finite penetration depth. Thus stress cannot invade into a state
filled with dislocations. If the disordered state is interpretated as a molten
crystal, this result is only partially consistent with experiment. It is true,
and well-known, that the molten state cannot support any shear stress.
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The compressional sound waves, however, do survive the melting process
and can traverse a boundary between the crystalline and the molten
phase.

At first sight it appears as though one could remedy the disagreement
by a slight modification of the theory. For this we note that before
introducing the stress gauge field, the system had three long-range
Nambu-Goldstone bosons associated with the flow of dislocation lines.
After the minimal coupling, d,— D¢ =8, —i(1/T)b;A;, these were
turned into pure gauge degrees of freedom and could be absorbed into a
redefinition of the A,;. This suggests a simple way of retaining a long-
range mode associated with sound waves: We remove the trace of the
field from the outset and postulate that the gauge field satisfies the
constraint

A (x)=0. (8.71)

Then the theory is no longer invariant under local gauge changes of all
three phases of the dislocation fields

Ag(x) = Ag(x) + dc A (x); (8.72)
the A,(x) have to satisfy the transversality condition
d;A;(x) = 0. (8.73)

With these A;(x), the longitudinal combination of the phase fluctuations
can no longer be removed from the field equation (8.57) and it survives as
a long-range mode. This could, in principle, be associated with sound
waves.

Actually, this procedure is less ad hoc than it might, at first, seem. We
should remember that A (x) is not really the fundamental gauge field of
stress. It is merely a convenient gauge field when restricting attention to
dislocation lines only. A crystal can also have disclination lines and these
cannot be coupled locally using the A, (x). For a unified stress gauge
theory of both types of defects it is therefore necessary to introduce the
gauge field X, (x) defined by [recall (5.1)]

(J}f(X) = Ejk¢ gimn ak amen (X) (874)

Hence the A(;(x) is really only an abbreviation for the object
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A (X) = €00 0 X - (8.75)
The proper gauge invariance of the stress coupled to all defects is
Xin(X) = X, (X) + 3¢€p(X) + 8, (X). (8.76)
Under this transformation, the field A, (x) transforms as
A(x)— Ag(x) + acA(x), (8.77)
where

Aj (X) = Sjmn am gn (X) : (878)

This change is indeed purely transverse and A (X) = €, 0,,X¢q(X) 1S
capable of absorbing only the transverse part of the Nambu-Goldstone
modes of the three dislocation fields. Thus the longitudinal combination
of the phases of the disorder field 9;A; does retain its long-range disorder
and we may be led to conclude that A, could describe, in principle, the
sound waves in the molten phase.

We shall see later that this mathematical possibility does not corre-
spond to physical reality. In fact, the phenomenological description of
dislocation lines given in this section is quite unsatisfactory. It 1s unplea-
sant to be faced with a missing constraint 9;a;(x) = d,a;;(x) in the dis-
location current to balance Eq. (8.58). A proper gauge theory of disorder
should not contain any components of «.(x) which are not coupled
elastically. The proper fundamental source of the gauge field X, (x) is
really the total defect tensor 7, (x). It is a symmetric conserved matrix
field which carries only three independent components rather than the six
in a;(x). It will be necessary to develop a disorder field theory for the
statistical ensemble of precisely all independent configurations of the
defect tensors. This will be done later after we have deepended our
understanding of the problem via certain model studies.

What we shall find is that within a time independent theory of defects,
all three physical components of the stress-gauge field X, (x) are indeed
Meissner screened so that, at the equilibrium level, the disordered phase
of a defect system will not be capable of transmitting sound waves. In
fact, this phase will not be a liquid but rather an ideal gas. Only if
dynamical effects, i.e., those of defect motion, are included can this
aspect of the melting transition be properly described. Among the
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dynamical effects there is one which is of special physical importance,
namely, that a defect line, on a short time scale of sound vibrations, can
never climb but only glide. It is this property which ultimately leads to the
survival of the longitudinal sound wave in the liquid state.

It turns out that there is a very simple counting argument which shows
that at the level of classical equilibrum statistical mechanics of stresses
and defects it is impossible to account for the different behaviours of the
longitudinal and transverse sound waves during the melting transition: As
we shall see in detail later, in two dimensions the gauge field of stress has
only a single component [corresponding to Xi3(x)]. This is obviously
incapable of distinguishing the two polarizations of sound waves. Con-
sequently, it cannot describe at the same time the Meissner screening of
the transverse wave and the survival of the longitudinal wave when
entering the liquid phase. The gauge description of time dependent
stresses, on the other hand, does contain an extra vector field and the
above difficulty 1s circumvented.

8.4, OTHER POSSIBLE MECHANISMS TO MAKE A
TRANSITION FIRST ORDER

The subtleties discussed above in obtaining a first-order phase transition
in the theory suggest the search for more effective mechanisms for the
entropy jumps observed in the melting process. Some insight comes from
stress fluctuations via the Coleman-Weinberg mechanism. We had seen in
Section 3.4, Part I1, in the discussion on the ordinary Ginzburg-Landau
theory. that gauge fluctuations can raise the tricritical point of an ordinary
g|¢|" theory from g =0 to a g of the order of e, where ¢ is the charge
coupling of the gauge field. The condition g=e” means that the
Ginzburg-Landau theory corresponds roughly to a type-I superconductor.
By analogy, we can expect the stress-gauge field to extend the first-order
regime in the stability wedge of the dislocation field theory to larger
couplings. It 1s therefore useful to introduce the concept of type-l1 and
type-11 dislocation theories depending on the ratio between the pene-
tration depth A of the stress field into the disordered state and the range
of the size fluctuations &;,. of the disorder field.
Thus we introduce a parameter «,

(8.79)
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Let us estimate its size in terms of the coupling constants. From (8.70) we
read off the length scales of stress in the disordered state,

1

o= papT. (8.80)

According to (8.42), (8.11), (8.12), the size of the disorder parameter is

pZ:—ngzl?(ﬁl), B < B., (8.81)

where g is equal to g, + g» or ng, + g». depending on the phase of the
system. Hence®

L —L”@(E- 1). (8.82)

The size fluctuations of the disorder field, on the other hand. have the
following two length scales.

(i) In the phase for which g>>0, g, > —g,/n, the ground state
df = (®/Vu)(1, 1, ...)8*" has

1 , 5
—S=m"+3 (gl + &) ®?  (one mode),
& h

= —-2m°,

1 , 3g-
= =m"+ (g1 + «-—fi) P2 (n — 1 modes)

- —om?|1 - L)- 8.83
( g1+ g/n ( )

(i1) In the phase for which g, <0, g, > —g,, the ground state ®;*=
®(1. 0,0, ...)8* has

®This has the proper dimension since pa’/T is dimensionless [see (10.4)] and mg, g have
dimensions 1/¢*, 1/¢, respectively (¢ = length).
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2

é=m2+3(gl +82) P> = —2m [one mode],

1

1 2 2 82 2
S=m +gP=—"—m (n—1)-g modes].  (8.84)
& BT T atm [

Hence we can introduce two « parameters, ¢ach of them having the form

I A 81.24
S I I iR LI 8.85
.2 V2§, \/#03/T ( )

g1.» being appropriate combinations of the coupling constants. What do
we know about the size of these parameters? The couplings g para-
metrize the self-energy and the short range steric repulsion between
the dislocation lines; ga is a dimensionless constant. The dimensionless
expression in the denominator, pa’/T, compares the elastic energy per
unit cell with the thermal energy. Its size is roughly known since the

Lindemann number L =22.8Vua’/T [recall Eq. (7.41)] is a number
between 100 and 200 at the melting temperature of most materials. Much
less 1s known about the steric interaction between the lines which is hard
to measure precisely. A deep type-I dislocation field theory with the
ground state &= (®/Va)(1, 1, 1, ...)8* would imply an extremely
weak self-energy compared with the elastic energy ua’/T. It is not easy to
see how this can come about. The steric repulsion is caused by nonlinear
parts of the reduced elastic energy ua’/T. Its order of magnitude seems
to be tied to the elastic constant w as well. Thus we expect k to be rather
of the order of unity and the Coleman-Weinberg mechanism seems to
become a delicate quantitative matter. If this mechanism were really
important in crystal melting, the question would now arise why it was not
active before in the disorder theory of the superfluid phase transition.
Both disorder theories look very similar, apart from the fact that there
are three times as many dislocation lines as vortex lines. As in the case of
crystals, the steric repulsion of vortex lines in superfluid *He is generated
by the nonlinear parts of superflow and there we do know that it is strong
enough to maintain the phase transition at second order. It is hard to
believe that the rather universal entropy jumps observed in a process such
as crystal melting should be the result of some special choices of the
coupling constants. We are therefore led to conclude that the dislocation
field theory constructed up to now misses out on a more essential aspect
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of the melting transition which makes it completely different from the
superfluid transition.

Indeed, let us remember that a little earlier, in Section &§.1, we
obtained a first indication in this direction. There we observed that
dislocation lines are merely the defects of translational crystal symmetry
so that the phase transition discussed so far can only lead to a state in
which this symmetry is violated. Atoms can move freely along the three
crystal directions X, § and Z but this does not imply that they can also
move through space isotropically, as they do in a proper liquid. For this,
also the other symmetry group of crystals, namely, that of discrete
rotations, has to be destroyed. Now we do know that the crystal
possesses a natural set of defects which are capable of destroying this
symmetry: the disclination lines. A superfluid has no such second set of
defect lines. This must then be the crucial difference between the two
systems. At this point we are sure that a proper understanding of the
melting transition must acount for the possibility of forming disclination
lines.

8.5. DISORDER FIELDS FOR DISCLINATION LINES

It is instructive to see qualitatively that the possibility of forming dis-
clination lines can, in principle, drive the transition to first-order via an
avalanche mechanism triggered by the Meissner eftect. The forces
between arbitrary defects were derived in Chapter 5. The defect tensor
n;(x) can be decomposed into disclination and dislocation parts @;(x)
and a;(x) [see (2.60), (2.61)}]:

T]ij(x) = ®ij (X) + %&‘nm am (ajn (X) _ glajn Qe (X))

= ®r’j (X) - zlam(gmif‘ ajt’(x) + (lj) o Eij( am('(x))' (886)

A disclination line along L may be introduced via a d-function distri-
bution [recall (2.44)],

0;(x) = 8,(L) Y, (8.87)

where (); is the Frank vector of the line. The gauge tensor X,,(x) field
couples locally to 7,;(x) [see (5.6)] and thus to ©;(x). For the disclination
line (8.87) this gives an interaction energy
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Eint = Q]§ dx,-X,-j(X). (8.88)
L

This coupling is completely analogous to that for dislocation lines [see
(8.52)]. It is therefore straightforward to set up a disorder field theory for
a grand canonical ensemble of disclination lines. This has the same
structure as that for dislocation lines.

Let A; be the complex disorder fields associated with the fundamental
disclinations whose Frank vector (), is equal to Q e, where e, are the basis
vectors in space. Then in analogy with (8.54), the covariant derivative is

9)
D3 Ai(x) = (a( - iFX”) A (x) (no sum over j), (8.89)
and the partition function of disclinations has the form

7 = f@Af @A; o~ T AUDIDEAL + (mr2) A3, + (1/4).‘1,43’1;‘-|A,-|3IA,~|3}' (8.90)

Just as in the case of dislocations, g parametrizes the steric repulsion
between disclination lines and the mass parameter is

122
5 era exa 2D
= + —log2D ) 8.91
A ( T T22D log ) a’ (8.91)

where e, ey are the two core energies per unit length. The total partition
function of dislocation and disclination lines is [recall (5.25)]

z=f@%@@@49mmmmammgam (8.92)

with an energy

1 1—v
E=—|d%x pe-2 4 pe-2 4 Pt VX
4“ X {’n(x)( 1+ v ){n,(’n' Xen (X)
1 mz g‘.,
e 7 T (Sl + Tk + T gl
J 1]

L m3 8/
+ de3X{Z (§|D?Af‘2 T 7A|Af|2) +Z;: %'AJFMHZ + Eindley, 4,
i.

-
(8.93)
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where E., collects the short-range steric interactions between the two
types of lines. Notice that in terms of the field X,(x), the covariant
derivative of the dislocation field ¢;(x) takes the form

Dy gi(x) = (af — i% € amX(,,) ¢(x)  (nosuminj). (8.94)
Within the present formulation, the size of the core energy of disclination
lines as well as the interaction Ej,[¢;, A;] are hard to assess. In com-
parison with dislocation lines, however, one thing is quite clear: Dis-
clinations cause a long-range distortion of the crystalline order. There-
fore, an individual line carries an enormous amount of elastic energy.
This makes them impossible to be created thermally and mj is very large
compared to m” of the dislocation lines.

At first sight, this property seems to preclude disclinations from playing
any role in the thermodynamics of crystals and hence in the melting
transition so that it appears as though disclinations cannot resolve the
puzzle of the order of the melting transition. This conclusion would,
however, be too hasty since it neglects the Meissner effect in the disorder
fields. Let us see what this implies for the partition function (8.93). At
low temperatures, both types of defects are certainly very rare so that
both field expectations (¢;) and (A;) vanish. The correlation function of
the stress gauge field behaves, in momentum space, like

Xen (D) Xl (B) ocpi (8.95)

In real space, this corresponds to a linear behaviour in R. Since dis-
clinations couple locally to X, (x), this is directly the R behavior of the
elastic interaction energy between disclinations. The coupling to dis-
locations on the other hand, involves the derivatives g, d,,X¢,(X) and
the elastic interaction energy of dislocations is governed by

mp m’ Rmﬁm’
<arer(rr(p) am’Xf’n'(p)> O(&'ppz— é amam'R T 5

m (8.96)

resulting in the Biot-Savart like expression of Blin’s law (3.42).
Consider now the case m? < 0: the dislocation lines are infinitely long.

and the fields ¢; have finite expectation ¢. Then the stress-gauge field
possess an additional energy term in the energy (8.93):
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2T2|(plzfd%xz (Ejmna th)z

- —gialel [ Y a0, (5.97)

This contains two derivatives leading to a momentum space propagation
of the type

<X€’n(p)X£"yr’(p)> x #02“P|2 ’ (898)

The long-distance part of the forces between defects is given by the
small-momentum part of the correlation function. This, in turn, is
governed entirely by the new term (8.97), i.e.,

T2 1 T2 1
Xen X 2 B
( n(P) X (P)) 2“’0'2 2 ,ua2|<p|2R

~

(8.99)

Hence, as a consequence of the Meissner effect, the correlation function
changes from a linear dependence on distance to a Coulomb-like be-
haviour. In other words, in the presence of a “condensate” of dis-
locations, disclinations behave in the same way as dislocations previously
did in an ideal crystal. They acquire a Blin or Biot-Savart like interaction
energy,

Edisel: o zz Zfﬁ f)g dx'-a’x”l’ (8.100)
a |q0| g R

and the ensemble of disclination lines has an effective partition function
of the form

Zdiscl. {E} e—(f/ﬂsolz)E.-<;43L(i)43LcJ)dx“’dx“’1/R (8.101)
L

with ¢ = T%/ua?.

The crucial observation which leads to the possibility of a first-order
transition in the melting process comes from the observation that the
temperature in the Boltzmann factor of this expression is accompanied by
the density of dislocation lines « |¢|*. We know from the study of dis-
locations (or of vortex lines in superfluid *He) that a partition function of
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FIG. 8.2. The mean-field free energy of the subsystem of disclination lines as a function of
the disorder field of dislocation lines. Due to Meissner screening, increasing |¢| has the
same effect as raising the temperature. causing a sccond order transition within the
subsystem,

A — Bf of disclinations

|l

the type (8.101) has a second order transition where the lines {I.} con-
dense. In Z9" these are the disclination lines. Thus the free energy
behaves just as in Eq. (3.127), Part II, 1.e.,

2
_deiscl. — _5(,f0 (Bﬁ — 1) . (8102)

Since the temperature is always accompanied by |¢ 2, the critical value of
B.=1/T, must be explicitly proportional to |¢|*, i.e.,

J¢] const 1
={——1]~ —=1]. 8.103
' (Bc ) (ﬁc|¢|2 T ) (8109

This shows that at a fixed temperature T, an increase in the density of
dislocations |¢|? in the condensate has the same effect upon disclinations
as heating. We can therefore identify a critical value |¢ |* of |¢]*> above
which disclination lines would condense at a fixed temperature 7. Thus,
when viewed as a function of |¢|*, the disclination lines undergo a second
order phase transition. The behavior of the free energy as a function of
|¢|* is shown in Fig. 8.2. [This follows directly from Eqs. (3.127) of Part
I and (8.103)].
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FIG. 8.3, The mcan field behaviour of the disorder free energy of the dislocation lines
alone as a function of the disorder field strength |¢| above and below the transition. The
transition is of second order.

A —Bf of dislocations
m* >0, T<T,

m <0, T>T.

— g

This behavior could indeed be the origin of the first order nature of the
melting transition. Consider the effective potential of the dislocations
alone. As a function of the common field expectation, it has the standard
Landau shape shown in Fig. 8.3,with a second order transition of pro-
liferations at some temperature 7,. Let us now add the free energy of
disclinations of Fig. 8.2, also considered as a function of the dislocation
density |¢|*. This will cause a protrusion of the potential in Fig. 8.3 as
indicated in Fig. 8.4. As the temperature is raised, the dislocation
potential becomes flatter. At a temperature 7, < T, the combined curve
touches the |¢| axis at a point |¢,,| # 0 (see Fig. 8.4). At this temperature,
the disorder parameter jumps from zero to |¢,,|. This implies a first order
phase transition. Notice that this happens before (i.e., at lower tempera-
ture) the second-order condensation of dislocations would have taken
place in the absence of disclinations.

In simple physical terms, the effect of disclinations can be described as
follows: They represent a reservoir of entropy which in a crystal is
unaccessible to thermal fluctuations, due to the high elastic energy. A
virtual increase in dislocation density, however, can open up this
reservoir. At a certain critical density the screening of the clastic forces is
so strong that the elastic energy is weak enough to be outweighed by the
entropy. This leads to the condensation of disclination lines. For a crystal
whose temperature is sufficiently high, i.e., close to the temperature at
which the dislocations themselves would proliferate, fluctuations can
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FIG. 8.4. The combination of the two curves of Figs. 8.1. and 8.2. giving the effective
potential of dislocations plus disclinations as a function of the dislocation density. The
formation of a condensate of disclinations can cause a first order phase transition.
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carry the dislocation field to such a critical density so that the conden-
sation of disclinations takes place spontaneously. Then both types of
defect lines condense jointly and can give rise to the first-order of the
phase transition. Similar mechanisms have been observed in other
physical systems in which the transition is governed by two types of
coupled line ensembles (see Janke and Kleinert (1986), cited in the
Notes and References). We therefore see that the condensation process
involves defect lines related to both types of crystal symmetry. From this
we may conclude that, in the disordered state, not only the translational
order but also the rotational order are distroyed. Thus the disordered
state has the chance of being a proper liquid and the transition can be
identified with the melting process.

There are two objections to this description of the melting transition.
First, the discussion is too qualitative. We have neither specified the sizes
of the steric repulsions nor the core energies of the disclination lines. The
equations had a mean-field character and fluctuations could, in principle,
cause drastic changes in the conclusions. The second objection is of a
more fundamental nature: The partition function (8.92) pretends that
dislocations and disclinations are completely independent line-like
defects. This is certainly not true as was discussed and illustrated in
Section 2.4. An infinite number of dislocation lines with equal spacing
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and equal Burgers vector can be piled up on top of the x-axis (say). If the
spacing is equal to the lattice spacing, the result is a single disclination
line along the x-axis. Thus in a consistent disorder field theory we should
really use only one type of fundamental defect lines, for example, dis-
locations, and obtain the disclinations from superpositions of infinitely
many dislocation fields. Such a description would not be unigue since,
conversely, dislocation lines can be viewed as bound states of neigh-
bouring pairs of disclination and anti-disclination lines. Hence we could
alternatively introduce fundamental disclination fields and generate dis-
location fields from pairs of these. Technically, the latter approach would
be easier to handle than the first since bound states of pairs are more
tractable than infinite superpositions. One could proceed in analogy with
the treatment of Cooper pairs of electrons in a superconductor.
Certainly, the interdependence between the two types of line-like
defects does not completely invalidate the use of the partition function
(8.92). Even if one of the fields is a bound state of the other it is often
possible to introduce it explicitly in a phenomenological description.
After all, the entire low energy treatment of nuclear physics is based on
the concept of nucleon and meson fields even though these are really
bound states of quarks and antiquarks. So, although the partition
function (8.92) is fundamentally incorrect, this does not prevent it from
having a certain phenomenological relevance. Still, the situation is far
from being satisfactory and a more specific approach is desirable. Such a
specific approach will be presented in the following chapters. We shall
construct a lattice model of an ensemble of fundamental defects in which
both dislocations as well as disclinations can appear on the same basis,
generated by one type of fundamental defect variables. What we shatll
find is that the discussion just presented is much too simple-minded. It is
true that the possibility of forming disclination lines is a crucial property
of crystals which distinguishes their disorder theory from that of super-
fluids. However, this possibility does not have to be realized to its full
cxtent. Instead of stacking up dislocations side by side, they may be
spaced two lattice units apart thus forming only a partial disclination. The
fact that the nearest neighbour stack has locally no energy concentrated
on the Volterra sheet implies that the doubly spaced stack still has a
rather moderate energy per unit area. Experimentally, such incompletely
matched quasi Volterra surfaces are observable as a grain boundary
(see Fig. 2.6). Grain boundaries combine a moderate energy with a
tremendous entropy of random surfaces. This more subtle collective
phenomenon is the proper basis of the first order nature of the melting
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process. The crystal does not need to go all the way and form a conden-
sate of independent disclination lines. The proliferation of “incomplete
disclinations™, 1.e. of spaced stacks of dislocation lines which are grain
boundaries, 1s sufficient to drive the transition to first-order and to
destroy both the translational and the rotational symmetry.

Within the above formulated (not quite correct) pure dislocation
description of the melting process, the possibility of forming disclination
lines or grain boundaries may be viewed as the fundamental reason for a
particularly weak steric repulsion between dislocation lines, which helps
to drive the transition to first order. This is in contrast with the strong
steric repulsion between vortex lines in superfluid “He. In both systems
the short distance forces have their origin in the nonlinear regions of the
elastic forces. But only in a crystal do these forces satisfy the extra
constraint of allowing for a nearest neighbor stack up of dislocation lines
without a build-up of stress across the Volterra sheet. This is what brings
the steric repulsion down to such low values that the Ginzburg-Landau
disorder theory lies deep within the type-I regime, where the Coleman-
Weinberg or Halperin-Lubensky-Ma mechanisms can become active. The
situation, however, is hard to formulate quantitatively. This is why we
shall, from now on, have recourse to specific lattice models of defect
melting, which are of the same simplicity as the XY model of super-
fluidity. Starting from such models if will be possible to find a field
theory, in which all stack-up properties of defects are properly respected.
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CHAPTER NINE

LATTICE MODEL OF DEFECT MELTING

9.1. SETTING UP THE MODEL

In Part II we studied superfluid *He and learned that lattice models allow
for a simple way of incorporating vortex lines into a system carrying
long-wavelength excitations. The steps were:

1. Rewrite the gradient energy of the long-wave-length excitations

1
B [ xSy ©.1
in terms of lattice gradients,

Exa Y3 (V). 9.2)

where V;y(x) = y(x +1i) — y(x).
2. Set up the partition function for long-wavelength excitations on the
lattice

7 = H[ ) MJ o (BT (9.3)

. e 2T

971
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3. Account for the periodicity of the variable y(x) in 27 by going to a
periodic Gaussian expression

7= Z H |:Jx %—)—] e—(Bl"/‘z)gx,i(Vﬂ"27"”1]2. (94)

i} x | J—= 27

The integer numbers n;(x) parametrize an ensemble of surfaces across
which the phase variable can jump by multiples of 2.

4. Observe that the partition function is degenerate with respect to
vortex-gauge transformations consisting in deformations of the jumping
surfaces

n;(x) — n;(x) + V,N(x) (9.5)
with a simultaneous shift of the phase variable
y(x) = y(x) + 27N(x). (9.6)

5. Choose a gauge-fixing functional ®[n] in the sum. In the Villain
model we took

(D[n] = 6)13.(% (97)

which specifies the axial gauge n;(x) = 0.

The close analogy between superfluid *“He and crystals in the
description of both the long-wavelength excitations and the defect lines
suggests that a similar procedure can be followed successfully for finding a
lattice model of defect melting.

Let us do this step by step.

1. We take the gradient energy of linear elasticity on a simple cubic
lattice,”

E=ufd3x|:2ufj+§zuﬁ+%(zuﬁ) }» (9.8)

i#] i i

and replace the volume integral [d>x by the lattice sum a’% , the strain
tensor u; = 1(8;u; + 9;u;) by its lattice version [recall (7.12)]

aFor the elastic constants see Eq. (1.49).



9. LATTICE MODEL OF DEFECT MELTING 973

u;(x) = i(Viuj(x) + V;u;(x)). (9.9)

Introducing the same shift in the argument of the u,;(x) term which was

found convenient in Eq. (7.11) this leads to an elastic energy on the
lattice,

E=a#2[ Z(V,u,+Vu,)2+§Z(Vu)2+——(ZVu(x—l))j'

Hﬁ]
(9.10)

2. The partition function of classical elastic fluctuations is then given by
7= H [f du, (x)] o~ (VkaE. (9.11)

We must remember that according to Eqs. (7.67)—(7.70) this is really only
the potential part Z,, o of the full classical partition function which
contains an extra factor Zy, o = (VkgTa’p/2m#?)*Y, due to the kinetic
part of the classical fluctuations. Just as in the XY model we shall omit
this factor, for brevity, it will be included only later when comparing our
results with experimental data.

We are now ready to follow step 3. In the XY model, the phase
variable was defined up to multiples of 277. This was accounted for by
going from the Gaussian energy to a periodic Gaussian form. In a crystal,
there exists a completely analogous ambiguity in the definition of the
displacement field u;(x). For very low temperature, this is not imme-
diately obvious. The atomic positions deviate very little from those of an
ideal crystal. It is therefore suggestive to use these small deviations for
defining the displacement field u;(x). We have discussed before, in
Section 2.3, that this definition can be consistent only for a limited
duration of time. Due to fluctuations, thermal as well as quantum, the
atoms are capable of exchanging positions with their neighbours and
migrating, after a sufficiently long time, through the entire crystal. For
this process of self-diffusion, which proceeds mainly via the support of
vacancies, 1t is known from experiment that the diffusion constant carries,
at higher temperatures, a Boltzmann factor with the vacancy energy
[recall the values in Section 2.1]. The time scale factor is of the order of
~(.2 cm?/sec for Na, Cu, Ag. We had pointed out before that self-
diffusion makes it impossible to specify u,;(x) uniquely since the assign-
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ment of the original position of each atom to the nearest equilibrium
position cannot be made after a long time. Thus, as a matter of principle,
the displacement field is undetermined up to an arbitrary lattice vector.
On a simple cubic lattice, it is impossible to say whether an atom is
displaced by u;(x) or by

u;(x) + aN;(x). (9.12)

Certainly, the field N;(x) has to obey many constraints which ensure that,
after a reassignment of the starting position, no two atoms have come
from the same place. These constraints will be ignored, for simplicity. We
had also seen in Section 2.3 that the multivaledness of «;(x) is completely
analogous to the multivaluedness of the phase variable y(x) in superfluid
*He where y(x) and

y(x) + 27 N(x) (9.13)

were indistinguishable.

This analogy makes it straightforward to cast the elastic partition
function into the appropriate periodic Gaussian form. Guided by (9.4) we
introduce an extra sum over an integer-valued field n;(x) and write

(kg = 1)

plf e

{n;(x)} x.i —x a

X exp{—%u Z [%I;’ (V,'U,' (x) + Vjui (x) — a(”ij + ”ji)(x))2

+ §Z (Viu;(x) — an; (X)) + i(z (Viu;(x — i) —an;(x — '))) ]}
(9.14)

The elastic constants u, &, A and the lattice spacing a may be considered
as weakly temperature dependent quantities. They can either be cal-
culated from the zero-temperature values, according to the methods
outlined in Chapter 7 using the nonlinear terms of the elastic energy, or
they may be taken directly from experiment. For the discussion to come
we shall eliminate the temperature dependence of a by enclosing the
system in a fixed volume V. The case £ =1 corresponds to an isotropic
energy (9.8). The lattice version (9.14) is certainly not isotropic. Still we
shall refer to this case (somewhat awkwardly) as isotropic, for
convenience.
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We now come to step 4 and observe that the partition function is
invariant under the following integer-valued defect gauge transfor-
mations,

1, (X) = 4, (x) + aN;(x), (9.15)
n;i(x) = n;(x) + V,N;(x). (9.16)

The transformation on u,(x) expresses the intrinsic multivaluedness of the
displacement variable; the transformation on n;(x) accounts for the
irrelevance of the jumping (Volterra) surfaces.

There 1s a further defect gauge invariance which did not exist in the
Villain model. It is due to the fact that only the symmetric combination of
n;(x) and n;(x) appears in the energy. The transformation law reads

ui (x) — w;(x) + &My (x)x;, (9.17)
n;(x) = n(X) + g6 My (x), (9.18)

where M, (x) is an arbitrary integer-valued field. This invariance is
associated with the rotational symmetry of the crystal. Its implications
will be studied later.

Step 5 consists in choosing a specific gauge in order to do away with a
trivial infinite overall factor of the partition function, due to gauge
degeneracy. The integer values of n;(x) make the choice a non-trivial
matter which will be dealt with in Section 10.1. Here we only state the
result that we shall use a gauge in which n;(x) is quasi-symmetric with
the symmetrized combination nj;=i(n; + n;) having three vanishing
components

”52 (X) = Oa n§3(x) = Os n‘i_';(X) =0. (919)
By quasi-symmetric we mean that if nj; = 1(n; + n;;) is an integer, then nyj
is chosen to be properly symmetric, i.e., n; = n;. If, on the other hand,
n;; is half-integer, then n;=n; = 1 for i sj.

The non-zero defect gauge fields are taken to satisfy the boundary
conditions

V3n51‘1(xla X2, 0) = Os (9.203)

nil (xl, Xs, O) = O, (920b)
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nis(xy, 0, x3) =0, (9.20c)
and
112 (0, x,, 0) =0, (9.21a)
n53(0, 0, x3) =0, (9.21b)
n53(0, x5, 0) =0, (9.21c)
V.in5:(0, x5, 0) = 0. (9.21d)

The product of Kronecker & which enforces these conditions will
collectively be-denoted by ®[n};] and will constitute our gauge-fixing
functional for the defect sum. We shall now proceed just as in the Villain
model and first exhibit the defects implied by the sum over jump numbers

n; (x).

9.2. DEFECT REPRESENTATION OF LATTICE MODEL

Let us convince ourselves that the lattice partition function (9.14) does
indeed describe what we want, namely a grand canonical ensemble of
crystalline defects including their proper long-range interactions. For this
we shall perform the same duality transformation as in the Villain form of
the XY model. This goes as follows: First we introduce a set of
canonically conjugate variables o; and rewrite Z in the form

| ¢ N2 g, |
Z= (2D§D(1 - D;) xH;’[ A f—_ZTTB:| E (D[”}'j]

{#x)]

 du(x) | , ‘ w
« H i e~ (2B Lic T (x) + 2O L, T5(X) = U2y a6 — D))
X.i

— a i
X e(z‘rr/u')i():t,(,r_r,-,-(V,n, + Vo, = 2wy + N30 (Vo — any)) (9 223)
where
a3
B=—"_, (9.22b)
T(2m)

and the elastic constant y is related to A by {[recall Eq. (1.48) and the
statement after (1.110)]
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2ug’
A= 9.23
— D¢ (9.23)

For the variables o; with i # j this follows by direct quadratic completion.
For i = j we can rewrite the exponent of (9.22) in matrix form as

o~ (12B)5, T (x = DM, (x ~ §) (9.24)
with®
1 - £ _é "é
Y Y Y
& ¢
1 Y v
M, = E’é ¢ _§ o ¢ ) (9.25)
vy Y Y

This has a determinant,

1 12 1
det M = szD (1 — D%) IZ—DTM?:‘ZY-’ (9.26)
with an inverse
2¢ y—(D—-1)¢ '3 3
7] A IR
Y ¢ ¢ y—(D-1§
= 2£5, + 3 (9.27)

so that a quadratic completion indeed reproduces (9.14).
®In the isotropic case where 1/y = v/(1 + v). this matrix is equal to

1

Mij = 2(1 + V) (611(1 + V) - V)
with an inverse
. 2v A
M =25,j+m=28[,+;.
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Notice that the 5,-2]- part of the energy in (9.22) corresponds precisely to
the stress energy of Chapter 1, Eq. (1.49). Indeed, the tensor G is the
lattice version of ia’/(2mkzT) times the physical stress tensor a;.

We now integrate out the u;(x) variables in (9.22). Before doing this it
is useful to complement the six components &; with i <j by three more
elements o; =0, for i>j and form a symmetric matrix o; = o; for
i,j=1, 2, 3. Then the last exponential can be written as

212 By 1 4y (Viuy + ¥yt = 2ary)
A partial integration brings it to the form
e—EﬁiS,_,-f’,-E,,-u,f‘a - Ewin.,.jE,jnfj. (9-28)

Now the integration over u;/a leads to the é-functions
[1s(¥:5,). (9.29)
x.J

These enforce the lattice version of the stress conservation law in the
absence of external body forces.

Just as in the continuum formulation in Chapter 5 [see Eq. (5.1)], this
conservation law is satisfied automatically by introducing a stress gauge
field X¢,(x) and writing, in D = 3 dimensions,

&,—,—(x) = Eikt Ejmn vkvm X/ﬂn (X —€- ll). (930)

This decomposition [which is the stress version of the decomposition in
Part II, Eq. (6.5)] is invariant under stress gauge transformations

X (X) = X (%) + VoA (X) + V,Ae(x)
=X (x) + VoA, (x + €) + V, A (x + n). (9.31)

Inserting (9.30) into (9.28), and performing two partial integrations, we
find

6"21'”'2\.(.";”:(x)ﬁln(x)’ (9-32)

where the symmetric tensor 7¢,(x) is defined by
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ﬁhr (X) = E¢ki Enmj Vk anfj (X + €+ ll). (933)

The coupling of X en(X) to 7¢,(x) is the same, up to a normalization
factor, as the coupling of the stress gauge field X, (x) to the defect tensor
Nen(X) in the continuum formulation (5.6). Thus, 7,(x) may be con-
sidered as the proper lattice version of the defect tensor 7, (x). Indeed, it
satisfies the conservation law
v(’ﬁfﬂ (X) = E¢ki Emnjv('vkvmn?j(x + €+ ﬂ) =0
= Epki Enrnjvf’vk V,.nn?;; (X + n) = (). (934)

As a consequence, the coupling (9.32) is invariant under the stress gauge
transformations (9.31)

2 E,{'” (X) ﬁé’n (X) - ; [X(.‘n (X) ﬁ(‘n (X) + (V( An + Vn Al) 7—7(,’!1 (X)]

x.{.n

= 2; Xen () Tn(®) =2 23 Ay ViTion () = 23 Xen(X) Ten (x).

x.{.n x.{.n

The decomposition (9.33) itself displays defect gauge invariance under
(9.16), according to which

ny;(x) — n;(x) + 1(V,N; + V,N;)(x). (9.35)
When expressing the partition function (9.22) in terms of the stress

gauge field X, (x) we have to watch out to arrive at the correct measure
of integration. The simplest gauge 1s the axial gauge where

X5 (x) = 0. (9.36)
Then the stress tensor has the following explicit decomposition,

T (x) = ViXoa (X, X2 — 2, x3),
Tr(X) = v.%?n (X1 — 2, x2, x3),

733(x) = ViXo, (0

-
-
ra
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T(x) = —ViXpp(xn — 1, 6o — 1, x3),

T23(x) = v.%(vl)_(lz(xl —Lx—1,x) - szn(«"l — 2, X2, X3)),

a13(x) = =V (Vi X (x1, X2 — 2, x3) — VX pp(x — 1, x5 — 1, x3)). (9.38)
We now see that the mtegrals over o, G and o, can be exchanged
freely with integrals over X1, X, X;; since the only functional deter-

minants which appear are products of det V5, which are all unity. The

integrations over o3, 03, 033, on the other hand, are eliminated by the
o-functions (9.29),

8(Via1 + V20, + V353)8(Vi 512 + VaTar + V3531)
X 8(V a3+ Vb2 + V3033), (9.39)

where the functional determinants are again all trivial (due to det V5 = 1).
Hence (9.22) can be written in D = 3 dimensions as

z=|1 1—3§) v yrsuererd || f dX 11 (%) dXo (X) dX (x)}
863 y (ZWB)?N 11 22 12
X E 6V,7ugexp[ 232{2524—_

(53,000} i<i 285

- _1" (Z a'jj(x - i))h} — 2mi E Y{,,(X) ﬁ('i(x)] . (940)

27 x.{.n

Since the integrand is manifestly stress gauge invariant, it 1s possible to go
from the gauge fixing X5;(x) = 0 to any other gauge, for instance to the
transverse gauge,

ViX,(x) = 0. (9.41)

The proper normalization is found by the methods developed in Part 11,
Chapter 3 and applied to lattice gauge theories in Part 1I, Chapter 6 [see
Eq. (6.51)f in Part II]. We take the integration measure in (9.40) and
rewrite it as follows:

11 f Xy (0 X )% (0) = 11 [ a0 @u[%,].  (0.42)

X, i<
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where ®,[X;] is the axial gauge-fixing functional

@, [x;] = [18(x5) (9.43)

and perform the integral over all gauge transformed versions of X,
Xz/]\ —Z—XU + VIA] + V,‘Ai:

1 [ dAi(x) 806, + VA, + V,A). (9.44)

The é-functions involving A; and A, eliminate directly A;, A, with only a
trivial determinant det V3 = 1. The third 8-function involving X33 leads to
det(2V5) ! = 27" so that the gauge integration of (9.43) gives

IT | dA. )@, (X2 =277 (9.45)

If we now pass over to the transverse gauge we can convince ourselves
that the same normalization is achieved by the measure

Cd%, (0 DK, (9.46)

X i<jJ —=

where ®,[X;] is the transverse gauge-fixing functional [analogous to
{(6.56) of Part II]

@, [X;] = det (V- v)* | ] 8(V;x;). (9.47)
X.J
In order to see this we write down the integral over ®,[X}] as follows:

I da®®[X;+ VA + VA

X,! = 1 x,]

= det (-V-v)°[ ] F dA,;(x)

__ vV.V. _ V.V,
X, + V-V 6, — 2= | A+ 2V-V LA, ).
x ga(v,xl, +9v (3,, V.V) A+ 2V A,) (9.48)
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In the d-functions, the two transverse components of A; [those which
satisty V;A; = 0] carry a factor V-V, the longitudinal component a factor
2V-V. This leads to the functional determinants det(—V-V)~2
det (—2V-V)~! = det(—V-V) 7227V 5o that the integral (9.48) gives indeed
27" and ®,[X,] has the same normalization as @, [X;].

Notice that it is possible to express n; in terms of the defect gauge

fields nf-}, via the incompatibility relation (9.33), and perform the defect

sum E &%, .0 by summing over the defect gauge field nj;. This sum re-
() "

quires, of course, its own gauge-fixing functional ®g4.¢[n};]. It will be

specified in detail in Chapter 11. The partition function (9.40) then

involves a path integral over stress gauge fields and a sum over defect

gauge fields, both with some gauge-fixing functional,
Z= f@){ij E Dyee[n;]exp {as in (9.40)}. (9.49)
{m;}

In this form, the partition function describes a double gauge theory of
stresses and defects. Let us perform the integral over the stress gauge
field, first in the case of two dimensions. There, the decomposition (9.30)
reduces to

(_r,-j(x) = Eik Sjt-‘vkvg;(?{). (9503.)
The components of &,;(x) are given by
Fi(x) = ViX(x), T2(x) =ViX(x), Fi2(x) = —V,V,X(x). (9.50b)

We can then easily change the measure of integration from

el Vo 9.5
11;[ . \/W]rf[ [8(V:7)] (9.51)

to

T;FEFH le)?(x) (9.52)

since the &-functions are 8(V,&,, + V,05;)8(V,512 + V,82,) and can be
used to eliminate, for instance, &,(x), T»:(x), with the trivial Jacobian
detV52=1. After this d&,(x) can be turned into dX(x) with another
trivial Jacobian det V3 = 1. Thus the partition function (9.22) becomes for
D=2
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~ i - _é: N2 l x
z_[4§2(1 2},” VI ___QWB)BN]:[U—}X(X)]

X E CD[nf,-] e~ 20 e {T12 (%) + (128)(351(0) + T (x)) = (129)@0 (x = 1) + Fnlx — 2))%)
{’:’i;(x)}
X eZm'E,ﬁ(x)Y(x) (9 5%)

where

N(x) = ex; €6 Vi Ve (x) (9.54)

is the two-dimensional defect density analogous to 7;(x) of (9.33).
We now insert the decomposition (9.50) and see that the elastic energy
becomes explicitly

—5113 ) i(x){vlvl 0,9, 4 é[(vlvl)z AU %,(V-V)z}f(x).
(9.55)

In the last term, a few manipulations were necessary to arrive at the form
(V- V)% First we employed summation by parts

2, (V3X(x — 1) + VIX(x — 2))(VIX(x — 1) + VX (x — 2))

=Y, (X(x — DV3AWX(x — 1) + X(x — 2) V2V2X(x — 2)
+2X(x — 1) V%V%Y(x - 2)). (9.56)
Then we rewrote the last term as
2), VIX(x - DVEX(x —2) =2 ), ¥, V, X(x) V, V., X(x)

=2), X(x)V,V, ¥, ¥, X(x).

Using finally translational invariance we obtain, indeed, T X(x)
(V-V)2 X (x).



984 11I. GAUGE FIELDS IN SOLIDS

Integrating out the X(x) field gives®

. 1-2&y \V 1 = o2 -1 _ = ~172
Z= (\/25(1_‘5/)/)) \/mszet[(V V) +21—§/7V1V1V2V2J

% Z BT = EYNS, AN G = X))

{n(x)}

1 A\ _ . A —112
zwdet[(ZSC,'-f-#)(V'V) +4(§-— 1)(§+ ;)V,Vlvzvz]

XY, e BATEIE NN ARG = X)) (9.57)

{n(x)}

where G(x) 1s the lattice Green function®

! . 1 :
G(x) = = Y o™ s
N5 — ) E—-1 = — (2m)”
(K i )_ 2 KI K| K2 K}
1 — &y
1
X .
(2—2cosk +2—2cosks)*+2(£— 1) (1 +v) (2—2cosk,)(2 — 2 cosk)
(9.58)
where we have used the anisotropic Poisson ratio
A 3
(9.59)

Y = = .
(D— DA+ 28 y-¢
In the isotropic limit § =1 the partition function becomes simply

1 1 1
Z = N \vi
(V2ZaB/iw)™ (VuQu + 1)V det(-V - V)
v E o~ BT+ I AN Gix = x)FR) (9.60)

{n(x)}

where now

‘We have used the D = 2 identity
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G(x) = va(x) = @e"‘ " K)z

— dzk k-x 1 . (9 61)
T 2m2° (2 2cosk, + 2 — 2c0sk,)? '

Inserting B = pa’/(kyT(2w)?) and going to momentum variables, the
prefactor becomes the two-dimensional version of the partition function
(7.72).

1 1
\/azul_( ‘K \/az(Zp, + MK K

me_cl = H( v 27TkB T)z (962)
k

Hence we expect the prefactor in the £ # 1 partition function (9.57) to be
the proper anisotropic version of this. Indeed, if we take the fluctuation
energy of the elastic waves

o B s+ (E = D+ V20 5 (x = €))) (9.63)

and write it in momentum space as

=B Nkt KV [K R, + K- Ké,; + 208 — DK KRS, + (A KK g (K)
e , : (9.64)

Then the 2 X 2 determinant of the fluctuation matrix is

_ _ — A AN =
KK, +K-K+2(¢6- K, K, + =K, K, (1+—)K1K2
M M
det
A — — . _ A —
(1+—)K2K. K-Ko+K-K+2(6— VKK, + 2 KoK,
n B
_ AN L
I
A = o
w—(l—i-—) K K K->-K-
U

:(2 A)(K K) +4(&—1)(§+A)K|K1E2K2
M H

=201 —v) '[(K-KY +2(6 - D(1 +v)K K, K> K> ]. (9.65)
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Comparison with (9.57) confirms our expectation: the integral over the
u;(k) fluctuations is indeed the same as the prefactor in (9.57).

Thus, due to the Gaussian form of the model, the partition function
factorizes into a pure phonon part Z.,, o, the prefactor in (9.57), and a
pure defect part,

chf _ Z e~341r32£((§+ MY 2E+ Mu e () G~ x')(x) (966)

Ly = Z e BT T VAN T-9) ) (9.67)

For the calculation of the Green function we may write it as

G(x) d’k kox ! 9.68
- > e — — — .
(277')" (K'K)2+£K1K|K2K2 ( )
with the anisotropy parameter
E+ Alp
—4(&— 1) =2 )
e= 4=y (9.69)
and factonze
1 1 1

(K'K)2+€E|Kl KQKQZGEIKI +BK2K2ﬁK]K] +aK3K2

with

Then we introduce a subtraction and define

d’k 1

Gr x) = 5 ik-x_l . - e - .
() (277)—(6 )(K'K)h‘l‘EKlKlKng

For large distances this diverges as
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. _x_zf %k K K
= ) e ® K+ R K KoK

_EE 1 dzk (QE1K1+BK2K2)+(QHB)
4da+p) 2m)? (aK K+ BK:K;) (e < p)

X2 d’k 1 .
4a+B) 27 aK, K, + BK,K,

Thus if we introduce the logarithmically divergent quantity

, (0)_f d’k K-K 2 [ d% 1
‘ B (27T)2(I_('K)2+8K1K]K2K2—a""‘B (277)20‘,[?1]([‘*‘61?2[(2

we arrive at the finite twice subtracted anisotropic potential between
disclinations,

2

G'(x) = G'(x) + "IL (0)

2 2 o 1
@k (e"”‘——l—i—x—K-K)

- (27T)2 4 (K'K)2+EK]K1 E2K2
d’x x> _ 1
f(27r)2 (cosklxlcoskzxz 1+ A K )(K-K)2+ K KKK,
(9.70)

The Green function (9.68) itself is finite only after introducing a small
regulator mass m. In the limit /n— 0, it contains the same two types of
divergences as it would in the continuum since they are caused by the
k— 0 limit of the integrand and for long distances all lattice gradients
can be replaced by ordinary gradients. It is useful to remove these
divergencies from G(x) by defining G"(x) as follows

G(X) = Gdiv (X) + G”(x)a (971)

where, for £ =0, the divergent part is given by

1 1
5+ — |x|*log m. (9.72)

(.. =
Tdin (X) A2 87

If we insert the above into (9.66) we see that there can be a finite limit
only if
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2
Y H(x) A(x) = (Z ﬁ(X)) =0, (9.73)

x,x'

Y Ix — x'Pa(x) 7(x') = 0. (9.74)

X, x’
The first condition enforces defect neutrality, 1.e.,

Y, 7(x) = 0. (9.75)

X

The second can be rewritten as
- 2
2Ex2ﬁ(X)Zﬁ(X’)—2(ZXﬁ(X)) =0.
Using charge neutrality this reduces to

Y x7(x) =0, (9.76)

i.e., in addition to charge neutrality there must also be dipole neutrality.

Notice that once the defects satisfy these two conditions, the Green’s
function G"(x) can be exchanged by any other one which differs from it
by an arbitrary constant plus a quadratic term

AG(x) = const. + ¢; x;x;. (9.77)
Such an additional piece never contributes to the sum since

2 LA AGK = x)7(x) = 0.

As a particular finite Green function we may therefore take the
previously introduced subtracted expression (9.70) whose values will be
given later in Table 11.2.

In three dimensions, the analogous derivation of the defect represen-
tatton is much more tedious. One thing is immediately obvious: the
partition function will certainly factorize in the same way as in two
dimensions [see Eq. (9.57)],

L= Zpot.cl chf- (978)
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where the classical part can be obtained by simply integrating out the
u;(k) fluctuations of the harmonic energy (9.11). Thus Z, o will be the
generalization of the isotropic expression (7.72),

Zpot.cl = l_[ (\/ 217'/(3 3 1 1 ) (979)

K r (VauK-K)? Va*2u + VKK

to the anisotropic case. To be able to find this, all we have to do is
replace the isotropic fluctuation determinant

Hdet(,u,(K-Ka,, + KK;) + 3[?,-1(,-) = [Tk -K?[[ew+ HK-K
k k k
(9.80)

by the full one. Writing (9.10) out in matrix from gives
_ El _ — — A_ =
E= ap Eui(X) VV&,J,‘*‘V,V]‘*‘Z(%_ 1)VIV18U+;VIV] H‘,'(X) (9.81)

so that the full determinant becomes

k

— — — A —
H;ﬁdet(K-KSij + KK, +2(6 - 1)K.K,8; + —K,-K,-).
M
(9.82)

This can easily be calculated after bringing it to the form
HIL(K K 4 2(£ = 1)K, K, ) e moslss + (4 Mk RIR K+ 26 - DEK) (9.83)
k.i

and expanding the logarithm in a power series,

=) %(—(1 +£))ntrM”, (9.84)

where M denotes the matrix

" K-K+2(6- D)KK,

(9.85)

This is a projection matrix up to a factor
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K. K
M2 = _ bl S— M,=cM,, 9.86
i (Z(:K-K+2(§a1)1<f1<() j = €M (9-86)

where the factor ¢ is just the trace of M, 1.e.,
trM" =tr{c" "M)=",

The sum (9.84) can now be performed with the result

o1+ (142

Thus we obtain, for anisotropic materials in D = 3 dimensions,

, "( 2kaT>NH 1
¢l pot m k’\/]_(K+2(§—1)K,KI

«T1 ! -
k A KK,
L+{1+=-]L= —
\/+( +M)EK-K+2(§—1)KJ@ (9.87)

Inserting D = 2, this formula is seen to reproduce correctly the two-
dimensional prefactor in (9.57).

In order to calculate the infinite products in (9.57) (9.87) numerically
we write them in two dimensions as

1 1 d*k A = -
exp —Elogzwz (27T)210g AA>+ 1+;L (K KA+ Ky KA 200

(9.88a)

with
A=~ DK K, + Ky Ko, A=K K+ (26— DHK:K,
and in three dimensions as

cxp{_ilog‘“ —EJ(ZW)3 log{I:A‘AZA?'—F (1 +;> ,_kaZMK,K,-A,-Ak}/Z} *

(9.88b)
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with
A= Q- DK.K + KK+ KKe (i, j, k= cycl),

and approximate the momentum integral by a sum

In three dimensions, the integral is so smooth that we obtain a reasonable
accuracy for the rather small value N = 3. In two dimensions, the integral
is not as well behaved at the origin in momentum space and we have to
take at least N = 10 to obtain satisfactory accuracy (except for very small
¢ for which N has to be taken much larger than that). In order to display
the result we write the second exponential in (9.88a.b) as

Tl (9.89)

and give € as a function of ¢ for A =0 in Table 9.1. We also plot
¢ — log(2D) for various ¢ and A in Fig. 9.1.

As a check of our accuracy we set £ = 1, A = (0 in which case we must
recover the free field trace logs

TABLE 9.1, Logarithm of the fluctuation determinants in 2 = 2 and D = 3 dimensions for
, . L[ ﬁ A i KK 1 -
amsotropic lattice £ = —J log [( A,)(l + (1 + —) —)/u} where A=K K+
D) (2m? i=1 M= A_f‘
2(6 - 1)K,K,. For A =1, £=1 this reduces to [(dk/(27)"”) logK - K.

—
—

=]

i
)
I
59)
fre
|I
Il
I
R

A,
73

= I
= >
b
= >
T >

A
73

= I

0.2 0.2060  0.6560  0.8834
0.4 0.5980  0.9241 1.1187
0.6 0.8411] 1.1076 1.2803
0.8 1.0214  1.2506 1.4071
1LO 1.1662 1.3690  1.5128
1.2 1.2880 1.4707 1.6042
1.4 1.3934  1.5602 1.6850
1.6 1.4866 Lo 1.7577

0399 1 0.2 1.0352 1.2668 1.3998 1.4942
2582 1 0.4 [.2708  1.4585 1.5774 1.6647
A083 | 0.6 1.4351 1.5990  1.7083 1.7904
5261 ) 0.8 1.5649 1.7124 1.8143 1.8923
6244 1.0 1.6734 1.8085 1.9044 1.9788
094 1 1.2 1.7672 1.8925 1.9833 0546
JTR48 1.4 1.8503 1.9672  2.0536 1222
K527 1. 1.9249 2.0349  2.1174 835

_.._._,_.....,__.._..__.
g

[ S N
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FIG. 9.1, The logarithm of the fluctuation determinants ¢ — log(2D) as defined in (9.88),
(9.89) [¢ is the anisotropic version of [(d”k/(2m)P)log(K-K)] as a function of
£=1(cy; — ¢2)f2cyy for various values of A/u = ¢3/c4y4.

| 1 | | I

2(¢) — log(2D)

-0.5

anisotr. version of

/ —
V-V
/ tr log — (_V)
2D

-1.0

3

dPk _ 1.1664 D=2,
t= f(zw)D log(K - K) = {1.6734 D=3,

calculated in Part I, Chapter 6. Our approximate sums give, instead
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1.1662 and 1.6734 and are in good agreement with these numbers.

Let us now come to the harder part, the calculation of the defect factor
Z 4ot in (9.78). For this we take the gauge ¥3, = 0 and insert (9.37), (9.38)
into the stress exponent (9.22) which takes the momentum-space form

1 - _ _ 1 _ _ _ 1 )
_Zg‘g |:(U%2+U%3+U§1)+2_§(U%1+U%2+0‘:233)—2—7(2€: Uee) ]

_ _i Y1000 My 10X, 00 + 2mi ) 7] (k) X, (1), (9.90)
where X; denotes the components
X(x—=2-1-2), Xpn(x—2-2-1), Xpp(x—-1-2)

and 7, the components

Mi(x—2:1-2), Aok —2-2-1), 2h(x—1-2).
The matrix elements of M, are
My =K KKK + 515;[(1?21(2)2 + (K3 K3)°] = %/(Esz + K3 K3)?,
My 2= KK K;3K;3 + 2%[(]?11(1)2 + (K3 K3)*] - ;_y(KlKl + K3 K3)?,

_ — 1 1\ - —
M12.12=K'KK3K3+2(E_;) K\ K, K, K5,

1 = — ) - — — _
M11.22=Z:K1K1K2K2_§;(K1K1 + K3 K3)(K2 K> + K5K3),

S 1_ 1 — —
My =-K K, (K3K3 +EK2K2 “;(Ksz + K3K3)) ,
A 1— 1 _— _
My 2= —K K| K3K3 + EKIK] - ;(K1K1 + K3K3) ). (9.91)

This matrix can be made real by writing, in My 12, My 15,
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Kl K2 — e—fklf?. e—ik;/ZI Kl K2|

and absorbing the phase into the Fourier transform of X ,(k) i.e., by
defining

—X—lz(k) = e-ik]/'Z e_iszzylz(k). (992)

The remaining real matrix has the same form as its continuum limit,
except that the k, are replaced everywhere by K, = 2sink,/2. If M;'(k)
denotes the inverse matrix, we find

— = — (477 B12) T (KIM (k) 7y (k
Zat = ), 87, o€ “TEDIHMM T W), (9.93)
{ﬁlj(x)}

The wiggles on top of n; record extra phases carried by 7;,(k), 722(k),
2712(k), which arise from (9.92) together with the shifts in the arguments
of Xe, (X) to Xe,(x — € — n),

(k) = e * "% q(Kk),
Maa(k) = e " "2 7,5(k),
ﬁiZ(k) = e—i(kl/2+k2/2)—ik1—ik2 ﬁ]Z(k) (994)

In order to simplity the expression (9.93) it should be realized that if
we extend the defect matrix (9.94) to the full 3 X 3 form, defining also

ﬁlB(k) — e—i(k,lz + k3/2) = ik — ik 1—]13(1() ’
;)23(1() = e ilka/2 + kaf2) — ik ~ ik 7_723(1()’
33(k) = etk 74 (K), (9.95)

then the new defect matrix satisfies the conservation law

“Recall that the defects were coupled as I 7, (x) X, (x) = .7, (x— € —n)X¢,(x— € —n)
and it is X, (x — € — n) which appears in (9.90),
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This is readily secen by writing these equations down explicitly, for
example, for j =1,
(efk1/2 _ e—iku’z) e'ZU\'] — ik ﬁl] _+_ (efk3/2 _ e—ﬂ(zfz) e—i(k1f2+ ka/2) — iky — iks 1—]12

4 (el-k},':)_ _ e—jk“f‘Z) e—i(k|/2+k3/2) e—ikl — ik ﬁ?l
- e—(3/2)ik1—ik3[(1 — e—ikl) o+ (1 - e—fkg) T + (1 — e—iks) ﬁ31], (9.97)

and the bracket on the right-hand side vanishes due to

This implies that the exponent in (9.93) has exactly the same matrix
elements as the continuum expression for 7;;(k), except that &; is replaced
everywhere by K,. We can therefore use a well-known result® for the
defect energy in the continuum and obtain

47 _ —
Zaet= Q4 89.,.0€Xp {_('TB) Y. [E |7, |2(aR2 + bK?)
{1,(x)} k i
+ 20712 (dK? + eK3) + 2|723/*(dK? + eK3) + 2|1%31|7(dK* + eK3)

2T
;ﬁu, cR? [ (- (9.99)

where A is the determinant of the matrix (9.82)

_|_

A=(K?+2(6— DKDH(K® + 26 - N KK + 2(¢6 - 1) KF)

A K?
s [” (1 +;);K2+2(§v 1)1‘6%]
- (2g+f) KO + 4(é 1)(§+

[R9]

)(K%E%+ K3K3+ K3K)K

T I

A =5 o =
+ 4(£ - 1)2(2§ +1+3 ,1) KiK3K3, (9.100)

and
*This result is due to E. Kroner, Zeitschr. Phys. 141 (1955) 386, who calculates

An = (JWtA)[akz + bki)my + kz’ht], X2 = (,uJ/A)(dkz + f'k%) Tz, - --

For a derivation of (9.98) from (9.93) see Appendix 9A.
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a:2§(2§+§), b=4(g—1)(2g2+(3g—1)5), c=2§§’
M M H
5 A A
d=2[2§ +(2§—1)—], e=*4(§1)(§+—). (9.101)
I M

For the individual |%,,[?, the wiggles can be dropped, since they amount
only to a phase. The only term for which the wiggles have a non-trivial
effect is |Z, 7,|*. Inserting the proper shift in the arguments, this reads in
x-space

Dlf(x =21 - 2) + fin(x —1-2-2) + T(x ~1-2-3). (9.102)
Shifting all the arguments by 1 + 2, this becomes simply
2
) (Z; Tee(X — e)) , (9.103)

in complete analogy with the shift of the argument in the stress energy
(Z;0;:(x —1))? in (9.21). Thus we can render the defect partition function
on a cubic lattice in the form

47 _ . ,
Lger= {E()} 56,5,’(,().0 CXp {_ 3 P E [Z 0 (x)(aG + bG,)(x —x") n;;(x')
7,(X x.x' |«

+2 Y #;(0dG + G (x — x') T, (x')

i.j. k = cyclic

+ Zf; Nee(x — €) cG(x — x’); mf{'(x’—f')} , (9.104)

where G, G; are the correlation functions

&k .. KK k. KK,

o'y — ik(x —x") ’ ) —x'Y = kiix —x"y 1 I,
Glx = x) Qm)y© A Gilx —x') Qn) ¢ A
(9.105)

with
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(2§+ )(K K)® + 4(£ - 1)(§+ )(K K, K:>K> + 2 cyclic term)

A — — —
+4(¢— 1)2(2g + 1+ 3M) K,K,K,K,K:Ks. (9.106)

In the isotropic limit,

A —
A= (2 + )(K K)’ (9.107)
M
and
A A
a=d=2(2+~), c=2-, b=e=0. (9.108)
[ 0
Writing
¢ ~ 21 v
24 % Y
L

the exponent in (9.104) reduces properly to
— ’ 14 — — ' ' '
4B ) (m,~(X) M)+ 7 e (x = O L e(x = € )) va(x — X')
| (9.109)
with

d"k L1

as it should.
The exponent contains the same infrared divergence already found in

the continuum case. It can be finite only if the defect density satisfies
[recall (5.40)]

Y fien(x) = 0. | (9.111)



098 III. GAUGE FIELDS IN SOLIDS

For such neutral “defect gases” we can rewrite (9.109) in the form

—4mB ) (ﬁ,-f(x) )+ 75 L e = €) X e - f')) vi(x = x'),

(9.112)
where v4(x) is the subtracted potential
d’k 1 "
i(x) = = (e™*—1). 9.113
U4(X) (271_)3 (K . K)., (e ) ( )

This potential may be calculated using the methods of Part 1 [Eq.
(6.122)]. It is simply

d [ dk 1
om*) 2m)* K-K + m?

B Rt
—n:O n (m2 + 2D)n+2

(eik-x _ 1)

vg(x) = —

=

(9.114)

m=10

The nearest-neighbor value is found directly from [compare (6.127), Part

1]

D
) £k —ZZcosk,-+2D .
' 1 _ i=1 = —_— _
va(l) 2D (277)2 (2D - 2¥ cos k;)* 2DU(0) 0.0212 (D =3)

(9.115)

The other values are given in Table 9.3.
For large |x|, v4(x) tends to the continuum limit which was calculated in
(1.88),

v4(x) — —|x|/87r. (9.114")

It is gratifying to see that even at |x| =1, the asymptotic formula is
correct up to 11%, —|x|/87 being equal to —0.03979.
The value v4(1) can be used to express the sum in (9.110) in the form
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L en (2= X') Tien (X)
= Uﬁ’t(l) ; 'ﬁén(x) ’T]fn (X’) + ;’ ﬁt‘n (X)(U,&(X - X’) - U’(l)) Flfn (X’)).
(9.115")

Due to the defect neutrality (9.109), the first term can also be rewritten as
—v4(1)E,7¢,(x)?. This has the form of a core energy. The second sum
begins now with the next nearest neighbors, a fact which will be denoted
by a double prime. Hence we arrive at the following partition function

Z = Zpot.cl { E)} 86!;11}‘() exp {4'”2[3 VA(I)
TM(X

x ) [n%,, () + (2; mec(x - e)) ] — 4B Z”(ﬁ,-,-(x) i ()

XEX

+ ] i v; Nee(x — €) ; Nee (X' — f)) va(x — X’)} ’ (9.116)

where

vh(x) = vi(x) — vi(1). (9.117)

The sum over 7;(x) represents a grand canonical ensemble of crystal
defects.

Note that due to the conservation law V; 7;:(x) = 0, all defect configura-
tions restricted to a finite region in space automatically satisfy defect
neutrality equation (9.111). But not only that! As we can see directly
from the representation %;(X) = ¢ €jmnViVm Nen (X + i+ ), upon partial
integration on the lattice, also the defect moments I, x,1;(x) are neutral,
as is true for two dimensions.

9.3. AN XY TYPE MODEL OF DEFECT MELTING

In Part II we saw that the properties of the phase transition of a model
involving a periodic Gaussian are closely related to those in models of the
XY type. In these, the periodicity of the fluctuating variable y(x) is
accounted for by an energy of the cosine form in the lattice gradients. It is
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quite straightforward to construct such an XY type model for the present
case.

We proceed in two steps: First we take the displacement field u;(x) and
split it into a variable &, (x) which is restricted to run only over a unit cell,
plus a lattice vector aN;(x) where N;(x) is an integer-valued field, i.e., we
write

u;(x) = &;(x) + aN;(x). (9.118)

We then absorb the integer-valued field N;(x) into the gauge field by a
defect gauge transformation

3 (x) — nji(x) + 31V, N;(x) + V;N;(x)). (9.119)

The exponential in the partition function (9.14) is invariant under
this change. The important consequence of this transformation is
that with N;(x) running through all integers, the new jump numbers
mi(x) + 3(V.N; + V,N,)(x) no longer satisfy the gauge condition but
become unconstrained variables. The diagonal elements nj;(x) cover all
integers while the off diagonal elements take all integral and half-integral
values precisely once. Hence we can rewrite the partition function as

Z_ ¥ HU di, (x)} p{_B(zaw)z(z Y (94 0 2

{5} =i X, i<

+§E(Vuz—an” +—Z(E(Vu an?,‘)(x—i))z)}‘

(9.120)

This unrestricted sum puts us in the position to take the energy in the
cosine form by using the Villain approximation

eﬁonsvu . RV(B) Z e_(ﬁ'.”l)("uflﬂn):! (9121)

where

Ry(B) = Li(B)V2mBy,  By(B) = —1/(2log(1,(B)/[«(B))). (9.122)

In the present case, we want to use (9.121) in the opposite direction.
Given By, we have to calculate 8. Since we want to keep the notation 8
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for the periodic Gaussian model, it is useful to define the inverse trans-
formation of (9.52) and write

Z o (BT = 2mm)’ Ry (B)ePr entu, (9.123)

n

where By 1 is the solution of
B = —1/(ZlogH(By ) 1y(By 1)) (9.124)

and R, (B) is the function
Ry (B) = U(I|(By )V2mB). (9.125)

If A =0 we can apply this directly to (9.120) and find a cosine energy
for each sum over nj;, i<j and nj;:

Z =~ Ry-(B)" Ry-1(2£8)°N Y, 1 [ f _ il (x)]

{n;} x.i a

% eﬁy-- 15y o cos[(2afa)(V,ik; + 6;3,)] + (2E8) -1 Sx_,-cos[(Zvr/a)V,r.?,]- (9 126)

If A# 0, the approximation is not immediately applicable since the
diagonal numbers n;; no longer appear in a single complete square. An
obvious way out suggests itself via the introduction of an auxiliary
integration. We can rewrite the i = pieces of the energy as

exp{— @m [fZ(w,—an,,h—;Z(Z(w—an,,)(x—-))”

X

- di(x) ] _ ) .
— "/D _ Bl (Vi — d(x + 1) — an) yI u(x)]
H[ —= Val(B2m)a?) T
(9.127)

Indeed, the exponent can be completed quadratically to give

-2 [eE(v, - a0 (Z(v - an?f)(x—i))

+(D§—y>2(ﬁ(x)+ D§Z(Vu anm(x—i))]. (9.128)
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Now if D& — y> 0, the integration over @i can be performed and pro-
duces the correct encrgy in (9.127) [recall that according to (9.23),
E/(y — D& = A2p].

The application of the inverse Villain approximation to (9.127) is now
straightforward. In this way we find

Z =Ry (BPV Ry (2¢8) 0@ - 0N T ] { f ! dvf(x)]

X, i —d 27T

U o \flf—v] exp {Bw 2s cos(V,% + V)

X, i<J

+ (26B)y-1 Y, cos(Viy;(x) — 8(x + 1)) = By L, 6(x)2}’ (9.129)

where we have rescaled the fi;, @ variables and defined angle-like
variables y; = 2n/a) i;,6 = 2m/a) ii.

The main problem with this derivation is that for most materials,
vy — D& is a positive quantity. This means that D& — v is negative and the
integration over & is impossible. At first sight it appears as though we
could simply rotate the contour of integration to run along the imaginary
axis. This, however, poses another problem, namely, that cos(V;y, — )
diverges.

It is still possible to find a cosine version of the melting model, for
y— DE>0, albeit with a little more effort and at the expense of
D - (D — 1)/2 auxiliary fields in D dimensions (yj2. Y23, 13 in three
dimensions, y> in two dimensions). For this purpose it is preferable to
start out with the conjugate form (9.22) of the partition function,

I S W PR A N T odog(x) .
Z_(‘/E)DN[fD(l DY)] 111[ x Vm] {ng;x)} el

X H [j dL'(l‘l] o~ (2BE0 75 + (128535 = 270k~ Y]
—

X.{ a

X e(nla)if‘,,‘,ﬁ'u-(v,-u,- + Vin, - 2(m‘,\,)- (9 130)

The troublesome feature is the negative sign of the (Z;5,(x — i) term.
We therefore reorganize the parts involving o

o~ (V2B)5((1128 = DIy} 5373 — (129) Doyl = D) = T (x = D) (9.131)
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Using the identity y = Dék’'/A = Dé + 267w/ [see Eqgs. (1.130), (9.23)]
the coefficient before the first sum 1s w/Dx’ = é(u/A)(1/y). Hence both
quadratic pieces appear with a positive energy and this is what we want.
We then introduce D(D — 1)/2 auxiliary angular variables vy; with
y; = —v; as well as three auxiliary fields with A; = —A;; and write the
exponent (9.131) as

e o
d 3 v ) A\
H [f dA,](x) f 7" o~ U2BNERYN ST+ (1298, 3))
X, i<{J - X, i<J

X € <y = S F X = ')71(") (9132)
The integrations over y;(x) ensure the identity
Ai(x) =,(x—1i) — a;(x— ). (9.133)

so that (9.132) is the same as (9.131). We now split the integrals over vy;
into sums over integers €; times 2 plus integrals over the restricted
interval (—a, 7] and obtain

1 [ s NI2 = da;(x)
? _(\/E)DN[ED(l Dw)] H,[ vzwﬁ]ﬂ,U dA”(x)]
s 7Td“}’i(l'i)] [ i d'y,-j(x):|
¢ if
X{n:,z(;)} L ]{%)}EUW 27 111 f‘” o “”Z(;‘”

X o V2B i + (YD T + (1129) S 185

X @ Txrs Ty (Voyy + Viys = dmm) + 8@ (Vi = Sy (x+ 0 = 2086 = 2mm) + Y By (v — 2l

(9.134)

Then, we integrate out the stress fields @;, A, and arrive at

=__1__ i 1_D§ le___l__ o) _7& DN\/FUQ)D(D—[)N
VPP EmPY NP ) VAT

dy;(x) (" dy;i(x) _
§ \n%:m (D[n’j]H [f 2m ]xn;[fw 21 ]exp{ g

[ E (Viy,+ Vv 27711,,)2 AZ(V Yi— E Vij (X +1) = 27L; €, —2mn; )

L R §x1

+2y 2 (- 2w€,.,-)2]} - (9.135)

xii<j
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We may cross check this expression by going to low temperatures for

which the jump numbers nj;, €;; are frozen out and the last two terms in
the exponent become

By Y ke - 2
-3 &u; (V,% ;%,(xﬂ)) B X Y

X, 1<
YA [ 1 5 )
=—=B—15 Z (Viv)~ - Z %‘j(x +i)(Viy, — Vf‘}’j)
|2 x.i<]
8l X +E X (9.136)
2x_1' i Ax.f<j

We now write out the quadratic y, terms explicitly,

%E (Z %‘,‘)— = ¥+ ) Yij Yik- (9.137)

Ji i<j i j*k

In the vector space of vy, with i <j, they take the quadratic form

YMy=) ), Vi Mgk Ve s (9.138)

1<j k<{

where in two dimensions

y My = (1 +¢ j{‘) v (9.139)

and in three dimensions

T ,LL “ bl Yy
y'My = (l + f;)(ﬂz + v33 + ¥13) + (YiaYi3 — Yi2¥a: T+ YiaYas)

pE  2pué 2ué -
u A A A
= - Yy 773, —_— 1 -+ — —_ o}
§A(w_ Y23, Y13) Tt R Y23
A A A

- — 1+_
2ué 2ué pé [\
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The matrix M has determinant

det M = (1 +§’X") =L

> f { b=2, (9.140)
> or _ .
detM=E§+§’_’“ g—;&f D=3,
A2 7A A 4¢
and inverse
_ A 2¢
M= == (D=2
At+ép vy ( )
A S S
2ug 2ué 2ug
-1 _ 2A L 1 L “_/\_
3N+ 2€u 2pg 2ué  2ué
A A A
2ué  2pé 2pé (9.141)
A A A
2ué 2ué 2ué
2¢ A A A
== — 1+ — — D =3).
Y 2pné 2ué 2ué ( )
A A A

We can now complete the square and integrate out the ;s with the result

1 1
D(D—-1)N/2 12
( [——1 | By;\) (=N (det M)
Eu
X e POMED TN AT = ) Sk Ton (= 1) = Ty — DIMde (Vime(x = k) = Doy (x = €))

(9.142)

Inserting (9.140) we obtain in two dimensions

o~ BOMED) S (Fim) + BV Ee(Tiy — Vaya)’

= @ BONENUD L (Vi) + BVZA2A(Tin) + (V2y2)) = (i + Voya)] (9.143)
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and in three dimensions

exp{ B?E; (V, 1)2

+ B3 Z [(1 + —)((Vm(x — 1) — Vaya(x — 2)) + (23) + (31))
A

i Ez [(Viya(x — 1) = V292(x — 2))(Vayalx — 2) — Vays(x — 3))

- (Vn’l(x - 1) - Vz?z(x - 2))(V171(X - 1) - V373(x - 3))

= (Voy2(x —2) — Vays(x - NVinkx-1)- Viys(x — 3))]}
=eXP{ ™ 2§(V, ¥,

+B5 Z [(1 + r) (3 Y (Vim)? - (E Viyi(x — i))2

3

2
‘5?&(35,3 (Vi) - (E v,-«/i(x—i)) ]}

= exp{ 2 YTy + B E (3 % (Viy) - (Z Voy(x - i)) }

g 2 X, [
(9.144)
In D dimensions, the exponential obviously becomes
o~ B T (Vi) + BA2R) S DY (Vi) = (S¥amlx = 10)°], (9.145)

Using yA/é = DA+ 2&u and adding the first term in (9.135) (for ;1,»]:0)
this gives the correct elastic energy

Y y,+V,y,)2+2§E(v,yz)2+§;Z(Ew x—n)) (9.146)
X, i<j X

Also the pre-factors cancel properly by rewriting [(1/€°)(1 — D&y)]™? as
[2(/A)(LEP D) (1),

It is now straightforward to take the partition function (9.135) to a
cosine form using the inverse Villain approximation (9.123) so that
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1 NI2 DN
Z;""ZV—l = [ZE D—> 1] Y_A
AE Ty V2&u

, vA\ PN 7
X Ry-(BYPPTIINR,, 35 Ry (2By) PP~ V2N

LRSI

A
Xexp{Bv. Z; cos(V; 'y,+V,y,)+( ;N)v
X, 1 <J 1

x Zcos(v Yi— Z%,(X+l))+(237)vn D cosy,,}
n (9.147)

The relationship with the original partition function (9.120) is best
exhibited by expanding the exponentials into Bessel functions using the
formula (4.15), Part 1I. Then

|t 1 e YA o D(D—-1)N/2
e

7 YA DN
RV”(B)(D(D_ NN RV--I (B g_‘u_) Rv' |(2‘8_),)({_)([)4)/2)N

xHUd—”——)] 1 Uw]{ Y, e

2 X.i<j 2m 7 (X). A, (%) %, £ <
I<j f<,' }
ByA
X HL, ( ( HIA (@2By)y )
,U. Vv X i<
X eu/z)}:\ T Yy V) N T v (x D = S ,E,f(x)y,,(x). (9' 148)

Integrating out the angular variables gives the conservation law V,; i0; =0
and the identity A = g;(x —i) — o;(x — i) and Z,- becomes the sum

zue B senn Il i lln ((£2) )

{o,(x X. 1<) f}.t

x 11 Is xmiy o xmi(2BY)v-) (9.149)

X, i<j

apart from the above normalization factor.
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In the limit of low temperatures, we can use the approximation /;(B)/
Io(B) ~ ™7™ and see that (9.149) reduces correctly to (9.130), rewritten
with the use of (9.131) [to get the same expression we have to sum in
(9.130) over all nj;, which makes ; integer, and integrate out the u;(x)
variables, which enforces the conservatlon law V3, = 0].

APPENDIX 9A. DERIVATION OF DEFECT ENERGY (9.109)
FROM STRESS ENERGY (9.90)

First we observe that, after the phase changes (9.92)-(9.95), the

determinant of the matrix M; , in (9.91) is (writing &; instead of K;. for
brevity)

M| = AKS/[4E3(2& + 3], (9.A1)

where A is the fluctuation determinant of the displacement field, (9.100).
Inverting the matrix M and removing a common factor,

_ 11
M l=—4—

kqAM’”l, (9.A2)

we find for the matrix M' ™"
M, =4 (2§+ ) kzkzk2
M
+ 4§(§ + )(k" + K3k + K3k + kK + KTk + kD)
In
+ 8¢2 (§+ ) k3 3(k3 + k),
2u
' = (2§ + P«) kik3k3

+4§(§+ )(k°+k2k4+k4k + kiki + kik3 + kS)
M
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2 3/\ 252 2
+ 8&° (§ + ——) k3k3(k3 + k3),
2p
M2 = 28K3(k3 + k3 + k1) + 4¢ (E + i) (k3k3 + k3k3 + kik3 + kik3)
Iz

2 3 24212
+ 8¢° (§ + —A) kikaks
2p

/\ 2 R o) REI
+ S KAKD — 2U3KE + K — 263K + 2kiks + kD),
7
b1 2,212 2 2 2 2 3A A o002
Tl = 48KTK3(— k3 + k3 + k) + 8| &) E+ 5 ) + 5 [ kikaks
21 21
A 2 2 2 :
+ 22 E(KS + 203K + k3K + 2Kk + 2K3K3 + kikS + 2k1k3),
®
i1 3,2 2 4 2,2 4 2 3AN 3, 42
M'[N\a = 4k ksks + A€k ky(k3 + kiks + k7) + 8¢ §+2_ kkaks
L

/\ b) > 2
F2 5k kok3(—K3 + K3+ K3)
M

£ 28 ke k(3K + IS — 3K + 263A3 + 2K1).
7

\ 3A 5
Mo = 4EkTkok3 + 487k ko(K3 + K3 + kTk3) + 8 (f * ’)_) kiksks
~ M
A 3 > 2 2
+2=k kok3(—k3 + ks + k7)
1

A 2 2 3 7
+ 25 gk ko (3K 4 K3k — 3k3k3 + 2 + 2k3ktk3), (9.A3)
7

The defect energy is then given by 47°8 times the quadratic form

1 l

E=3a1 k—yﬁ ‘' (9.A4)
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where 1y = 1y, 72 = np, N3 = 2112.
The expression

|
ZWZFM ]_]lnj (9A5)
gives, of course, the three non-zero components X, = (Xi1. X2, X)») of the

stress gauge field in momentum space. The energy takes a more
symmetric form if we use the defect conservation law (9.96),

M2 = —(nuki + mk3 — N23k3)/ 2k k7,
T3 = —(mlk‘? - ”'722k2 Thzk )2koks,
s = —(n kT — okd + n23k3)/2k k3, (9.A6)

to express 7y, in terms of the diagonal componenets 7;,, 1,2, 133. It then
acquires manifest cubic symmetry

1
E =2 XimAl (9.A7)

keij

where

Al = {2gk%(k§ + K3+ k) + 4¢ (g+ ) (k3k3 + Kk3k35 + ki + k1k3)
i3
+ 8EkTk3k3 + (M p)ki(kd + 263K3 + k3 — 2k3k% — 203k3 + k)

+ 12(Ap)é(€ — 3 k%k%kf%} /(k%k%),

AlY = {(2§+ )( k4+k“+k4)+4(§ + gw—“)kzkz}/

+ 2MR)ERE + K2 + k). (9.A8)

The other matrix elements follow from cubic symmetry. Alternatively, we
may express all defect configurations in terms of the three off-diagonal
components 7, = n;; (i, j, k cyclic),
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N = —(ma2ka + miaks)ky, moo = —(niak( + Masks)ka,
M3 = —(i3ky + nasko)lks. (9.A9)
Then the energy reads

¥ A2
2Ak”n, Ain;, (9.A10)

with the matrix elements

AfY = {46 (6 + #) (KS + kS + kiks + k%k“z‘)} /(k%k%)

A PESEY S
+8(§+Z)kl+8§ (§+2‘u+ )(k2+k2)

AR = 2(M ) E(KS + 2K3K3 + K33 + 2h3k3 + 2h33 + k3 + 2k H3) (K ko)

N , 1 34,
+ d&k ko(k5 + kDK + 8 (5‘ — &+ —ig— — ig + A kk>.
2 2w w2,
(9.A11)

It 1s now easy to verify that (9.A3) and Kroner’s expression (9.99) are
identical. We merely have to express 71,3, 73, M3 In terms of 5y, 727,
M3 via (9.A6) and recover (9.A7). Alternatively, of course, we can insert
(9.A9) into (9.A3) and recover (9.A10).

With the existence of powerful algebraic computer-software there is no
problem, in principle, to calculate the defect energy in the continuum
limit for any for the 9 classes of elastic matrices ¢, specified in Appendix
IA. The expressions are much lengthier than those for the cubic case, so
we refrain from writing them down.

Let us only mention that, in general, the 3 X3 matrix M in the
continuum form of the stress energy [defined as similar to (9.90)]

1 _ 1
G:;Uijcijkl((rkf :EXIMUX.I’ (QAIZ)

and the 3 X 3 matrix of the strain energy D;, Eq. (1.92),

1
= E” D (9.A13)
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have determinants related by
M| = | D] (k5/|c]), (9.A14)

where |c| is the determinant of the 6 X 6 matrix c¢. Thus the elastic Green
function G; and the defect energy can be derived from the same
fundamental scalar Green function G = 1/|D|. The first gets multiplied by
the cofactors (|D|D~') (denoted by M, in Eq. (1.94), but not to be
confused with the matrix M,; under consideration here) the second by

%(IMIM“L (9.A15)

where |M|M~! is the cofactor of the matrix M.
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CHAPTER TEN

DEFECT GAUGE FIELDS

In the last chapter we focused attention mostly upon the gauge structure
of stresses, since it leads to a simple defect representation of the melting
model. Initially, however, when constructing the model for linear
elasticity plus jump numbers n;, it was the defect gauge fields which
played a primary role. The partition function (9.14) was invariant under
the defect gauge transformations (9.15)-(9.18) and required a gauge-
fixing functional ® which removed the gauge degeneracy. We stated that
it was always possible to choose a gauge in which n;; is quasi-symmetric
and in which the symmetrized jump numbers nj; = (n; + n;;)/2 have three
components #5,, n33, m3 vanishing identically with the non-zero
components satisfying the boundary conditions (9.20), (9.21). With ®[r}]
denoting the Kronecker & enforcing these conditions, the partition
function reads [note the differences with (9.14)]

-l [

\”fI

2m\7| 1
X exp{—ﬁ(—;—’-) I:E Z (Viw; + Viu; — 2anj) + 52 (Viu;, — any)?

X, f

%Z(E(V u; — any; ) }} (10.1)

l}

1013
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It 1s worthwhile studying the defect gauge properties of this partition
function in detail.

10.1. GAUGE FIXING

In this section we shall first convince ourselves that our gauge choice is
always possible. Due to the integer values of the fields, this is a non-
trivial matter.

The first part of the gauge choice, namely, the quasi-symmetric
property is trivial since the transformation (9.18), n; — n; + €4 M,, can
be used to change n;, n; for i #j by adding and qubtrdctmg the same
integer number from n;; and n;;, respectively. If n}; = 3(n; + ny;) is integer
so is the difference nf; = 3(n; — n;), which can be reduced to zero. Other-
wise nj IS half-mteger and we can make the transformation
ng— ng + ejx My and reduce nf to +1/2 for i = j. This defines what we
have called the quasi-symmetric gauge. In it, the symmetrized jump
numbers #;; for i #j and [ = j run precisely through all half-integer and
integer values, respectively.

We now turn to the further defect gauge invariance (9.16)

nji(x) — nj(x) + 3(V,N,(x) + V;N:(x)). (10.1")
This will be used to bring #j; to the gauge
ma(x) =0, mis(x) =0, n3(x) = 0. (10.2)

Suppose nj;(x) did not satisfy these conditions. Then we can always
perform the transformation to a new set of jump numbers n}(x) via

my(x) = i (x) + L(V;N:(x) + V;N;(x)) (10.3)
which do. The integer transformation functions N;(x) are determined
uniquely when we specify the boundary conditions (9.20), (9.21) for
Y (x):

V;n‘”(xl, X2, 0) 0, n“(xl, X, 0) ., II‘I%(JC[, 0, X3) = U, (10.43,b,C)

n39(0, x5, 0) =0, (10.5a)

35300, 0, x3) =0, 530, x5, 0) =0, V1550, x5, 0) = 0. (10.5b,c,d)
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In two dimensions, the analogous conditions are
nHB(x) = 0, 3% (x) = 0. (10.6a,b)
with the non-zero component satisfying
ni(x,, 0) =0, Voni(x,, 0) = (10.7a.b)
We will first consider this simpler case of two dimensions. Since the
remainder of this section deals exclusively with n};(x), n’”(x) we shall,
from now on, omit the superscripts s. Inserting (10.6a,b) into (10.3), we
find the difference equations

nax(x) = VoNy(x), nia(x) = 3(ViNx(x) + VoN (x)). (10.8)

When solving these it is useful to introduce the inverse of the difference
operators as the following specific sum, valid for x, = 1

X1
( f)(x) Y f(xis X2, x3), (10.9)

xp=0

with a similar expression for V5!, Vi''. For x, < 1 this sum is defined via

( )(x) Z] s x, x5) - E ). (10.10)

Thus the operation ((1/V,)f)(x) satisfies the boundary condition

(_Vl_f)(o, Xa, X3) = (). (1011)

For brevity, we shall often omit the parenthesis and write V;'f(0, x,
x3) with the tacit understanding that x; = 0 is taken after the operation
vl

Using this notation, we can write the most general solutions of (10.8) as

Na(X) = o ) + fox,) (10.12)
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and

Ni(x) = “‘;:(2’112 — ViN) + filxy)

| v,
—Zv_jnw—_v_gnﬂ(x)_x2V1f2(xl)+fl(xl)a (10.13)

where fi(x,). f>(x;) are two arbitrary integer-valued functions of x;.
Taking this N,, we can now calculate the non-zero component

np(x) = nt(x) + VN,

P

Vi )
—V,nn x-Vifo(x) + Vi filxy).  (10.14)

I
1>

Vv
=n\(x) + 2=
ny(x) v,

We now make use of the boundary condition (10.7a) and find [by (10.11}}
filxa) = n,l(x 0) + ¢, (10.15)

where ¢, is an arbitrary integer number. If we. on the other hand,
differentiate (10.14) with respect to x> and set x, = 0 afterwards we find

Vz”ll(xl. U) = Vgn(l]](.\‘h U) + 2V1”]2(X1, ()) — V%f:(xl). (1()16)

Now we invoke the second boundary condition (10.5b) and determine f:
l

fz(xl) = _F(VZHH - ZVIHD)(X], ()) + ¢y + Xy, (1()17)
1

where ¢s. r» are integers. In this way we arrive at the two integer
functions

1
Ni(x) = np(x) nw(x) +X1v (Vony — 2V in)(x. 0)

H X C X,
VI 11 1 2

N?(X) 1 nm(x) 2 (Vznll - 2V11112)(x1. U) + > + XL (1()18)
2 I
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The constants c|, ¢; and » cannot be determined further in principle, since
they do not change n; at all under the transformation (10.3).

Notice that these constants have a simple physical meaning. The
constants ¢; and c¢; amount to an integer-valued translation, u,(x)—
u;(x) + ¢, while the constant r is the integer-valued version of an
infinitesimal rotation of the entire crystal u;(x) — u;(x) + re;x;.

Let us now generalize this procedure to three dimensions. Here the
conditions (10.2) amount to the following difference equations:

ny(x) = VoNo(x),  nss(x) = VaN3(x), ny3(x) = %(VlN_z + ViN)(x).
(10.19)

They are solved by

Na(x) = Inu(x)+fz(xl ). No(x) = —nw(x)+f2(x1,x;)

1

2—n3(x) — %N;(x) + filx1, x2)

Ni(x) = v,

“z—nlz(x) Vannm XV Sl x2) + filxxa), (10.20)

where f;, f> and f; are arbitrary integer functions of their arguments. For
the discussion to come it will be useful to denote the determined parts of
N; by N; and write

N2 3(x) = N 5(x) + fo.a(x1, x3.2),
Ni(x) = Ni(x) — 53V fa(xy, x3) + filxy, x2). (10.21)

The 1nitial conditions (10.4a—c) lead to the following difference equations
for fi:

Ving(xy, x3, 0) = V V3N (xy, x2, 0) = V2 fa(xy, x2),  (10.22a)
nyxy, x2, 0) = Vlﬁl(xl» x2, )+ Vifilxy, x2), (10.22b)

maxy, 0, x3) =4(V,N> + VoND(xy, 0, x3)‘+ Vifalxy, x3) +1V5f1(xy, 0).
(10.22¢)
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The first and second can be solved by

Nl(xl X, 0) + C;(X?) + d';(X‘))xl,
(10.23a)

V vV,
f3(xy, x3) = nll(xlv X2, 0) + = v
1

fl(xluXZ)_ ﬂll(xl»x% 0) — N (X, X2, 0) + ¢1(x2) —fl(X1~X2)+C|(x2)-
(10.23b)

With these we find from (10.22¢),

falxy, x;)— [2”17(«’(1 0, X’,)_V’>N (x1, 0, x3)]

—~ Vsa
— Na(xy, 0, X3) — V_-fl(xn, x2) — ci(0)x; + c2(x3)
1

Efz(xh x3) - ("1(0))51 + cz(x3), (1().23(:)

where we have denoted the simple lattice derivative by a prime, for
brevity.

In order to determine the functions ¢,(x,), ¢>(x3), ¢3(x>) and d5(x,) we
now turn to the initial conditions (10.5) which read

n(0, xa, 0) 2%(V1N2+V2N1) +%(V1f2+vzf1) —1ci(0) +3ci(xy),
(10.24a)

)’I‘J;(O U Xz) = I(V';Ng + VZN?) + (V'}f} + ng?) + 7C;(0) + 7C2(X3),
(10.24b)

nzg(o, Xa, O) (V') N"; + Vqu) + 3 (sz’; + V;fz) + 2l C‘J,(Xz) + %’Cé(o),
(10.24c¢)

Vinas(0, x2, 0) = 5V, V, N5 + V,ViNy) + %(Vlvzf:f. + V1V3J?2) + 3d5(xy).
(10.24d)

From the first equation we find



1. DEFECT GAUGE FIELDS 1019

1 v, ~ -
e1(x2) = 2520, x2. 0) — V—‘Nz(o, X, 0) = N\(0, x5, 0)

— 5V F1(0, 0) = £i(0, x2) + ¢} (0) x, + g,
= &1(x3) + 1 (0) x> + g4, (10.25)

where ¢;j(0) = —ry and g, remain arbitrary integer constants of integra-
tion. The second equation gives

1 _ Vs - ~
c2(x3) = 2V—'123(U~ 0, x3) — V__NS(O, 0, x3) — N5(0, 0, x3)
3

3
— x3V5f3(0, 0) = /(0. x3) — c3(0) x5 + g
= C3(x3) = c3(0)x3 + go, (10.26a)

with ¢3(0) = r, g, being arbitrary integers.
The third equation leads to

02) = 20, 52, 0) = N0, 12, )~ R0, 22, 0)
_]?3(()’ X5) — x2V3f2(0, 0) — ¢3(0) x> + ga.
Inserting (10.26a) evaluated at x; = 0, the second line becomes
—C2(0) x5 + ¢3(0) x5 + g,
and we may write
c3(x2) = E3(x2) + ¢5(0) xy + g, (10.26b)

where

1 ~ Vi ~
&3(x2) = 25330, x2. 0) = N3(0. 22, 0) = 5 M0, 3. 0)

= £3(0, x2) = x:V315(0, 0) — &5(0).x2. (10.27)

There is only one constant of integration, g;.
Finally the fourth equation (10.5d) is solved by
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1 ~ ViVy o _
da(x2) = 2= 1m23(0, X2, 0) — ViN5(0, x5, 0) - é 3N2(0, x2, 0)
2 2

- Vlﬁ%(ov Xy) = szlv?,]?z(()s 0)—r,
= as(xz) - . (10.28)

where r, 1s a constant of integration.
In this way we have determined all N;(x) uniquely, up to the following
arbitrary integers,

AN,=rix;—rixa+g AN;=rix—rxtgs, ANi=rnx;—rx+g.
(10.29)

These are integer-valued versions of translations plus infinitesimal
rotations of the crystal as a whole. It 1s not possible to fix them any

further since they do not contribute to the defect gauge transformations
(10.3).

10.2.  PHYSICAL CONTENT OF INTEGER-VALUED DEFECT
GAUGE INVARIANCE

Previously, in the XY model, we saw that defect gauge invariance had a
simple physical interpretation. It implied that the partition function does
not depend on the way in which the jumping surfaces of the vortex lines
are chosen. The same situation holds in the present case of defect lines.
In order to see this. let us recall once more the classical theory of
plasticity, which 1s formulated in the continuum. In the lmit of zero
lattice spacing, the jJump numbers #;; go over into what is generally called
the plastic part of the strain tensor u (apart from an overall factor: see
Section 2.9). The exponent in the partition function (10.1) becomes the
lattice version of the elastic energy in the presence of plastic deformations

2 /\ h -
E.= dex [,u(u,, —ulb) + 5(14” — u’,’()*] . (10.30)

Note that as long as we are not interested 1n the statistical mechaniecs of
the defects ensemble, but only in the elastic properties of a fixed given
plastic deformation, then these properties can all be extracted from the
partition function:
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7 = J‘@ui(x) o~ (T fdPxlutuy = ufy + 20, — ufiy') (10.31)

Following the same procedure which lead us to (9.22) from (9.14) this
can be brought into canonical form,

7 = f@ui(x)f@oij (x) e—(l/T)IciD.r{(IMM)(Uf’,—(Vf(l+v))07’.')+iﬂfj(H.,-”f}), (10.32)

where o is the fluctuating stress field. The plastic strain acts as an
external source to the stress field. Minimizing the exponent we find the
Euler-Lagrange equations

8,»0',-1 = 0, (1033)

with

1
Ui = 7 (26 (uy — u‘é’-) + A8 (uee — ufe)]. (10.34)

Inserting the second into the first gives
~[1(Vou; + 8;3,1) + A0, 0, u¢] = —(uojul; + Aa;ule).  (10.35)
Thus the plastic strains have the same effect upon u,(x) as a volume force
fP(x) = —Quoull + Ao,uby). (10.36)

Using the expression (1.90) for the Green function we can solve (10.35)
and obtain

v

1—2v

3;Gy(x — x")ule (x')]

u;(x) = prde'[ak Gy(x — xuj(x') +
(10.37)

With  the explicit expression, G (x —x') = (1/87u)(8;V°R — (1/
2(1 = v))d;8;R), this becomes
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1
L (x) = gdex’

1
X (2V2a,Rug(x') — ok Rufi(x) + lvaa,-Ruy, (x')) .
-V -V
(10.38)

If we wish to use this formula to calculate the displacement field of a
defect line we must choose uj appropriately. From the discussion in
Section 2.8 we know that u{ describes the discontinuity across some
cutting surface S whose boundary is the defect line. The multivalued
gradient d;u; has the property

§ dx,-a,—uf- = b] + Ejkf QkX(,
B

when encircling the boundary line of §. This corresponds to the non-
integrable *‘plastic”” part of u; having the form [compare Eqs. (2.60)—
(2.62)]

duf = 6;(S)(b; + e ixy). (10.39)

For the strain tensor this amounts to
ul = 18 (SYb; + e Qpxye) + (i)).

Inserting this expression into (10.38) and restricting it to a pure dis-
location line (2, = 0) we find Eq. (3.13) which was derived in Chapter 3
via Volterra’s cutting procedure. Formula (3.13) was valid only for x
values which did not lie on the cutting surface. It is possible to change the
position of the surface as long as the boundary line is anchored on the
same dislocation lines. If the surface S is changed to §’, the difference of
S and §' forms a closed surface. For a pure dislocation line the difference
between the two plastic gradients is

a,’u;)’ - a,'l/i][') - [8,(5”) - 6,(5‘)] b.,,' = SE(S’ - S)b]

But the §, function on the right-hand side can be rewritten as the gradient
of the volume V enclosed by §" — S so that

8,'Llf’ — (')I'Mp - —6,8(‘/)1)}
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[recall Eq. (8.20), Part 11]. Thus we see that under changes of the cutting
surface of a dislocation line the plastic gradients undergo a gauge
transformation

lelf) — Gfuf - a,S(V) b, (1040&)
Correspondingly, the plastic strains transform like
Wl — ul — H8;8(V)b, + 3;8(V)b;).

The energy (10.30) is invariant under this transformation if we simul-
taneously change the displacement field u;(x) by the trivial Volterra
operation

U (x) = 1,(x) — 8(V) b, (10.40b)

[recall Eq. (2.60)]. This was the way we demonstrated that in the
continuum the defect gauge invariance is a manifestation of the
irrelevance of the position of the Volterra surface. As long as the
boundary line stays fixed, it does not matter where the cutting surface is
placed.

Let us now come back and consider the discrete case of a cubic crystal.
For this case the S8-function over a volume can be represented by an
integer field N(x). The trivial Volterra operation for a dislocation
(10.40b) is given by

u; (x) — w;(x) — Ny (x) bga),

where b,(a) for a =1, 2, 3 denotes the three fundamental Burgers vectors
(1,0, 0), (0, 1, 0), or (0, 0, 1), respectively, 1.e.,

biY = 8,
The higher Burgers vectors with 26 3p'* are obtained by choosing
N.(x} =2, 3, ... over the volume V in question. If the crystal contains

dislocations of any strength and of both orientations for each fundamental
Burgers vector, the Volterra operation becomes

1 (x) = 16:(%) — 23 Na (%) b1, (10.41)
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where N, (x) can be any integer number 0, +1, *2, ...
We now take the energy (10.30) and rewrite it as a lattice sum,

2
Eq=a'), {‘;" Y (V4 Vo= 2+ [2 (Vue(x— &) —uly (x - 6))] } -
X 1.} g
(10.42)

This is invariant under (10.41) if the plastic quantities undergo simul-
taneously the following changes:

ub(x) — u,’j(x) - %(Z VN, (x) b}a) + (l]))
= u,[;(x) + %(E Hiq (X) b](-a) + (lj)) ) (10.43)

The integer vector fields n,,(x) = —V,N,(x) are, of course, the lattice
versions of the §;(S)-functions which are singular on the surfaces S, of
V.

The plastic ficld of a defect is obtained by allowing the surfaces to have
a boundary in which case all the vectors n,;(x) become independent
[rather than being the three components of the gradient of the field
N'(x)]. Therefore, the general dislocation configuration is represented
by the integer plastic tensor

ull(x) = % Y (o, b + (if)). (10.44)

Using the explicit form of the fundamental Burgers' vectors b =85, we
find that

u(x) = 11 (x) + 5(x)) (10.45)
or, for the plastic part of the lattice gradient itself,
Voul (x) = n;;(x). (10.46)
These are precisely the jump numbers introduced previously.

Note that in the presence of defects the impossibility of assigning a
unique rest position to the atoms, from where to measure the displace-
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ment fields u;(x), becomes quite obvious: If we consider the specific edge
defect shown in Fig. 2.10, we see that the two choices of a Volterra
surface § and §’ correspond to two natural assignments of original lattice
positions where the displaced atom has come from. When shifting S to §’,
which means that the plastic strain tensor undergoes a defect gauge
transformation of the type (10.43), this assignment shifts «; (x) by a lattice
vector (1, 0, 0). As a consequence, the displacement field is transformed
by an integer field

u(x) — u(x) — N(x).

This is precisely a trivial Volterra operation of the type (10.41) which
accompanies a defect-gauge transformation (10.43), thereby keeping the
elastic energy invariant.

The observable quantities in the presence of defects are not the strains
themselves but only the differences of the total strain and the plastic
strain, i.e., the proper elastic strains

el —

)
urj = uij - u{j .

These are defect gauge invariant quantities. The physically observable
stress is proportional to this quantity, i.e.,

h -
Ug' * = 2uluy; — “5) + A8 (tee — Ul

[compare (10.34)] and, as such, it is defect gauge invariant as well.

10.3. INTERACTION ENERGY BETWEEN DEFECT LINES
FROM THE DEFECT GAUGE FIELD

In Part II, Chapter 8, we saw that the defect gauge field allows for an
alternative simple derivation of the interaction energy between vortex
lines. The same thing is true for crystalline defect lines. For simplicity, we
shall consider only defects in the continuum limit and use as a starting
point the partition function of elasticity in the presence of an arbitrary
plastic deformation (10.31),
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f@u (x) e IIT)Id x[pla; — “p) + A2 weyy — u,,) ] (10‘47)
Working out the exponent gives
w—fd3 {—u (x)(— ,U,VZSU — (A + @) 3;0,) 1;(x) — 2p1;(x) 8, ufl(x)
2 4 A b
— Au(x) 0;ufy (x) + pull” + 2u"’ } (10.48)

Going to the defect gauge® d,ulf = 0, the first coupling to the plastic strain
vanishes. After a quadratic completion, the Boltzmann factor for the
defect-gauge field becomes

e VDY [dixtuad” + (W2 a7 — (A1) [d i dx sl (0 G fx = XYyl (X)) . (10_49)
where
1 1 1
Gu - ) - 26!'_ iYj + iYj
(x —x') f(zw)se (q4)[“(q i — 4:4)) A+ 2ad q,]
(10.50)

1s the elastic Green function. This satisfies

d;Gi(x —x') = d;yv(x —x'), (10.51)

1
A+ 2un

where o(x —x’) is the Coulomb Green function [(d’q/(2m)%)es *—*)
(1/q7), so that

9;0; Gip(x — x') = —9;0; Gy (x - x') =

e (10.52)

and (10.49) simplifies to
°For integer-valued defect-gauge fields, this is an illegal gauge. Recall the discussion in the

superfluid case (Section 8.4, Part II). For the derivation of the defect energy, however, this
does not matter. The argument given there also holds here.



10. DEFECT GAUGE FIELDS

e-uwﬂd&mﬁ3+unmﬁ—(ﬁﬂu+2mmﬁ)::eﬁmTﬂmwf+(Mu+zmyﬁ[

Using the Poisson ratio v = A/(2A + 2u) we can also write

A _
A+2u 1-—v

It remains to express ui> and 47 in terms of the defect tensor
Nii (X) = Eike Ejpmn O O Ul (X).
With the identity (2.53) we get
N = —Vull + (V28; — d,0; uls + (0,05 ul; + (1)) — 8,0, 9 Uk
Nee = Vz“f)(‘ — i deufe.
In the transverse gauge, o, uke = 0, we have directly
Nee = Vz“‘f‘(*,

so that

fd3x uis = fd3xn((-(x) %ZTM(X)-
Furthermore, since

My = —Viul + (V26, — 0;0;) ule,
we see that

fd3x n5(x) = dex(Vzugvzuﬁ + 29, 0;uf V'uf)

and find, in the transverse gauge,

[ et = [@en,00gim,

1027

(10.53)

(10.54)

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

(10.60)



1028 [11. GAUGE FIELDS IN SOLIDS

This brings the Boltzmann factor (10.53) to the correct form [recall
(5.31), (9.109)]:

o~ WD [dx[m (T 00) + (AL = e (OUT e (0] (10.61)

It should be pointed out that the present type of derivation is the most
convenient one when working with crystals of arbitrary symmetry. The
partition function (10.47) is then

Z — J‘@u(x) e—(l/T)jtiJ,r(IIZ)r,,kf(u,—, - uf;)(ukf - uf,) (10 62)
) U; .

and (10.48) becomes

1 1 1
_?J‘d%x{_Eui(x)(_C.-jk(jaja{)u!\(x)_ui(x)aicr‘jkful!z{ (x)"‘é‘ug(x)c{fkf“if(x)} :
(10.63)

A quadratic completion in u;(x) brings this to the form

1 1
—-T-{ f d’x [5 Wl Cjkc ke

1, :
- deX d3xl ‘2'1/{‘;\-( (X) Ck(,'ja]‘a;' G,‘," (x - x’)C,"j'k'('ui—'(" (X')} ’ (1064)

where G,(x —x’) is the elastic Green function which solves the
differential equation

_Cijk( (9,'8( Gkn (X — x’) = 5,‘,, 3(3)(7{ - x’). (1065)

If D(9) is the determinant of the matrix My, = —c;x¢9;9¢ and Dy, (9) are
the cofactors, Gy, (x — x") is given by

Gin(x — x') = Dy, (8) D™ 1(a). (10.66)

From (10.64) and (10.66) and the general closed form expressions for Gy,
given by Every (1980) (cited in Chapter 1) it is, at least in principle,
straightforward to find the long-range forces between defects in any
crystal.
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10.4, THE DEFECT MODEL AS AN APPROXIMATION TO A
FIRST-PRINCIPLE N-BODY PARTITION FUNCTION

Up to now, the construction of the defect model of melting was based
completely upon analogy with the XY model of superfluidity. It 1s
instructive to see under what approximations this model can be derived
from the fundamental partition function of N atoms. Assuming only pair
potentials for simplicity, this reads

dx, ... d -
Zgo = [ B N e, (10.67)

In this formula, the positions of all N particles are counted from one
common origin. In the crystalline state at low temperature, the partition
function becomes

Zpot me @ D Tary Plx — 3’)’ (1068)

where x and y are the lattice positions.

Upon heating the crystal, the atoms begin fluctuating around these lattice
positions. As long as the temperature is low enough it 1s economical to
describe the ensemble of positions not be using the common origin but by
specifying the displacements of each atom from its zero temperature rest
position, 1.e.,

x' = x + u(x).

Then the partition function can be written as

ZPDt = % Z H [ f du,—(x)] e—(B/Z)Sm‘I’(K -y k) —uy) (10.69)

X, X, f

If, in this formula, the displacement field is chosen so as to correspond
to a permutation of all atoms, then the integrand is invariant. The N!
possibilities of doing this are cancelled by the prefactor 1/N!

For the purpose of introducing defects it is essential to realize that the
choice of the ideal crystal positions x as reference positions was a matter
of convenience. We could have, instead, used an arbitrary distorted
crystal. Among all these possibilities, an important role is played by a
reference crystal whose position vectors differ from those of an ideal
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FIG. 10.1. (a) A possible alternative to an ideal crystal of reference positions for the
displacement field. It differs from the ideal crystal by a shift of an entire section by a lattice
vector. This is a trivial Volterra operation x — x + aN(x). (b) In constrast, this shows a
reference frame with defects.

crystal by special regular deformations. They consist in a shift of an entire
section by a lattice vector. Such a shift may be written as

X — X + aN(x). (10.70)

An example is shown in Fig. 10.1, where a small cube has been displaced
upwards by one lattice spacing. We recognize a trivial Volterra operation
of the type (10.41). This operation has created a layer of missing atoms at
the bottom and a double layer of atoms at the top. Obviously, we might
just as well use these shifted positions to define the displacement field
u(x). For low temperature, the pair potential between the atoms will
spread the double layers on top apart, due to the repulsive cores and
remove the large distance across the empty layer on the bottom. The
lowest energy state in the partition function will again be given by the
equilibrium positions of a perfect crystal within the displacement field
which is

u;(x) = —aN;(x). (10.71)

There is no physical content in this change of the crystalline reference
frame by a trivial Volterra operation.

The situation changes drastically if we permit, among the reference
frames, crystals in which there are isolated layers of double or missing
atoms without a near-lying counterpart. When turning on the pair
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interaction, double layers will spread apart and gaps will be closed. But if
the counterparts are absent or lie too far, it is impossible for the crystal to
return to the perfect state. Thus the crystal will contain defects. If we are
to include this possibility in the statistical mechanics of the system, we
have to sum in the partition function (10.69), over all such crystalline
reference frames which contain defects:

YA — l Z H [ f du,— (X)] e—(BIZ)flma_v‘D(x -y +u(x}— u(y))_ (10_72)

pot —
N' ' {X} X, — 0
with defects
The characteristic feature of the “defect frames” is that the difference
vectors (x — y); can no longer be brought to an ideal crystal by simply
adding two integer fields

a[Ni(x) = N;(y)].
In particular, for nearest neighbors, it is not sufficient to add
a[N;(x + j) — N;(x)] = aV,;N;(x), (10.73)

l.e., to add a lattice gradient of an integer field. Instead, the difference
between points in the defect and in the ideal frame is given by

y
Xi— yi|dcf. =X~ yilidcal +a Z nji(x) (1074)

and the result depends on the path chosen for calculating the sum on the
right-hand side. The numbers n;,(x) are, of course, the jump numbers
introduced before into the model.

It is now straightforward to see to what approximation the model
emerges from the full partition function (10.72). Consider first the ideal
reference crystal. Assuming the displacement field to be small we can
expand the energy as follows:

1

2L a—y) 43 T ab(x - us) - w(y))
X¥y XFy
#3 L 00,00 = ) (x) = w0 ~ @) + ... (1075)

XFy
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For a very smooth displacement field, the second and third terms are
written as

1
5 U ad(x = y)(x = y), Vui(y)
x¥y
+3 L 0000 - ¥~ 0 = ) TV y). (1076

Since the reference crystal represents the equilibrium positions, the linear
term must be absent,

Y} 6:®(x)x; = 0. (10.77)

x#0

Further, since a smooth uniform rotation V,u;, =1¢,, w; cannot change
the energy, the constants

1
C[\—,'(‘}'EE Z?&:oaiajcb(X)XkX( (1078)

must be symmetric in &/ and € and we can tdentify them with the usual
elastic constants ¢y, introduced in Chapter 1.
For central forces,

D(x) = ¢(x?), (10.79)
one has
9, P(x) = 2xfl/1'(x2)~
3:0,D(x) = 28, ¢/ (x7) + 4x,x, " (x), (10.80)
and
Critj = E [50'%0'("2) + 2xixj¢f"(x2)]xkxf . (10.81)

x#0
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The equilibrium condition reads

Y, 0,0(x)x; =2 ) ' () xx; =0, (10.82)

x#0 x#0

so that the first term in (10.81) vanishes and the symmetry is manifest,
Chitj = 2 ): P'(x%) XiX;XiXe (10.83)
X

For a defect frame, the lattice gradients V,u;(x) in the equilibrium
positions are no longer zero. Instead, they prefer to be as close as
possible to the jump numbers g (x). Only then will the equilibrium
positions locally resemble that of a proper crystal. Thus an expansion of
the energy has to be performed in powers of (Viu; — any;) rather than
V. u;. Far away from the defect line, the elastic energy will be practically
the same as that for an ideal crystal. Obviously, the approximation of the
Villain form of our model of defect melting, (10.1), consists in assuming
that this approximation holds throughout the crystal.

NOTES

The integer valued defect-gauge fields were first discussed in the references quoted at the
end of the previous chapter.



CHAPTER ELEVEN

THERMODYNAMICS OF THE MELTING MODEL

In the following two chapters we are going to analyze the thermal
properties of the lattice model of defect melting in a way similar to that
employed in the Villain model of the superfluid phase transition. For this
we shall first expand the partition function Z of (9.40) into a high
temperature series.

11.1. HIGH TEMPERATURE EXPANSION

We will proceed in two steps. First we sum over all defect tensors 7;;(x)
which satisfy the defect conservation law

,7,(x) = 0. (11.1)

We shall do so by letting 1,,(x), 7:(x) run independently through all
integers and 7,,(x) through all half-integers while adjusting the remaining
components in a unique way so as to satisfy (11.1). This is achieved by
choosing

1034
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_ _ | = _
N3 = M3 = —v—(Vﬂm + Vama1), (11.2)
3

_ _ 1 = _ = _
N3 = M3 = _"V_(Vl T2 + V) 70s), (11.3)
3
and
N2 +2V\Vam).  (11.4)

It is understood that the boundaries in each equation are treated in the
same way as previously in the equation

Vil + V506, (11.5)
which was discussed in Part II [discussion following Eq. (6.40)].
Using the stress gauge X;; = 0, the defect coupling is

ezm"ix(’_(uﬁn + Xaa 70 + 2X)28)0)

Therefore, the sum over the independent numbers 7, ;. 72,, 7> forces the

gauge fields X (x), X2(x), X;2(x) to become integer and the partition
function turns into the sum

3 1 B é le__!_
“ ‘[(25)3(1 3»/)] B

XY et U (12053 - (VS - O)) (11.6a)
X Xaz X}

This sum over all integer stress-gauge fields X, (x), X5u(x), X;2(x)
produces precisely all integer-stress fields @; which satisfy the divergence
condition V,;d;;(x) = 0. Thus we can rewrite the sum also as
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=Y 5%, 0- (11.6b)

In two dimensions, the summation over the defect tensors 7,,(x) reduces
to the single sum over 7(x) in (9.57) leading to the partition function

_| 1 LYt
‘= [(2;’)2 (1 2 y)] VaaB)

1 1
X{EZ(:)}EXP{—EEE[&% +2—§(&%1+6%2)—%’(6’“(x — D) +on(x— 2))2]} ’
(11.7a)

rather than (11.6). The sum over the integer stress-gauge field X(x) can
again be replaced by a sum over conserved integer stress fields

Y. =) 855,00 (11.7b)
® 5y

The high-temperature expansion in now obtained by finding successively
larger and larger &,;(x) configurations which satisfy V,a;(x) = 0.

The physical interpretation of this expansion is quite clear. In the hot
crystal, 8 is so small that no &;; configurations can contribute. The crystal
is completely stress free. For lower temperatures, clusters of atoms form
by fluctuations which are locally capable of supporting stress. For
decreasing temperature, these regions become larger. At the melting
temperature, stress is allowed to spread over the entire crystal.

We shall study this process now in detail and consider first the case
of two dimensions. At very high temperatures, where all &,(x) con-
figurations are frozen out, Z has the limit®

o ) = O
"7 e? v/ | (V2uBy u (V2uB)*N
(11.8)

In order to find the stress configurations which form at lower tempera-
tures we may resort to two graphical methods. The first proceeds in close

“Recall that A = 2u¢/(y — DE) so that (1 — Dély) = #[DA/(2u) + £].
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analogy with the superfluid case. We take advantage of the conditions
V,5,; = 0 and represent the components

bz('])E&ils b§2)£5'f2s (11-9)

as two sets of closed non-self-backtracking random loops. In order to
guarantee the symmetry of the stress tensor they have to satisfy the
condition

b = pi?. (11.10)

If we draw b,('), bt? as oriented solid and dotted lines, respectively, this

amounts to the rule that whenever there is a solid line { or | it has to be
joined by a dotted line ---->--- or ---<--- | in the form

*._,“. or ln-o-- (11.11)

The lines —»—, —— and v, ; , on the other hand, are unconstrained.

The smallest possible configuration which complies with these rules is

4

(11.12)

If the lower left corner is taken to be the origin, the corresponding o
values are given by

6’11(0)= 1, 6’11(2)= —'2, 6’11(22)2 1,
6'22(0) = 1’ &22(1) = “._2, 622(2 ’ 1) - 1:

712(0) = ~1, T1x(1) =1, g12(2) =1, op(1+2)=-1
(11.13)
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Inserting this into (11.7), the Boltzmann factor becomes

o204+ (261 + 4+ 1+ 1+ 4+ 1) = (1129)20] — o= (UB)2 + 3/E = 51y) (11.14)

The number associated with the third term (7;(x — 1) + &xn(x — 2))%/2y
is somewhat tedious to extract because of the shift in the arguments. But
if we observe the identity

Y (@1(x — 1) + Fx(x — 2))° = ). (V-VX)2 = Y. (201: + 1) + 732)
X X X
(11.15)
and compare the right-hand side with the first two terms in the exponent
of (11.7) we see that there is a simple way of finding it: It has to be such
that for £=1, y =1 the exponent vanishes.

Graphically, the Boltzmann factor is found as follows: We simply count
the numbers n(s-----) = n(]), n(=—), n(;) of lines

s = l =013 = 07

= 6’22 (1116)

in a diagram. If i denotes their multiplicity, we form

A:Zn(. ..... )'i2=2n(l)'i2,

B= ) n(s—) i+ Y n(i) &,

C=2A+ B, (11.17)

and obtain the Boltzmann factor

o~ (4B)(A + (B26) = (C127) (11.18)

In the above graph (11.12), for example, we have
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)=2-1+1:2, n(i)=2-1+1-2,
(11.19)

n(e-eey =n(})=4-1. n(e
where the second factor in each product is the multiplicity i. Hence

A=4-1, B=2-1+41-442-14+1-4=12, C=2A+ B=20,(11.20)
and the Boltzmann factor is then
e—(l/B)(2+3/§—5fy) (1121)

as in (11.14).
By superimposing two fundamental graphs side by side we obtain

PRI (TS (11.22)

and count

n(ey=n(|)=4-1, n(e—)=4-1+2-2, n(i)=4-1, (11.23)

so that
A=4-1, B=4-1+4-14+2-4=16, C=2A+B=24, (11.24)
and the Boltzmann factor becomes
g~ (P2 + 4iE =6 (11.25)

Obviously, this graphical method quickly becomes very complicated.
Fortunately it is possible to develop a more economical procedure based
on the stress gauge field X(x). This has the advantage that for whatever
choice of X(x), the stress tensor &; = ;£ V,V,X(x) is automatically
traceless and symmetric. In fact, the complicated configuration (11.13) is
the result of the simple choice
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X(x) = 8x.0. (11.26)
This follows directly from the explicit equations
&]](X) = V%X/(X) = /?(X) - 2)_((!( - 2) + ?(X —-2- 2),
F2o(x) = ViX(x) = X(x) — 2X(x — 1) + X(x — 2- 1),
F12(x) = =V, VoX(x) = =X(x) + X(x — 1) + X(x — 2) — X(x — 1 — 2).

The field configuration (11.26) can be represented graphically by a single

point at the origin

The calculation of the stress energy is also straightforward. All we have to
do is to use the explicit gradient form given in (9.55),

e~ V2ZBTXNT V19292 + (129191 + (7252 - (120)(F-9)}xx) (11.27)

We rewrite it as

o~ (HBIEXOO{ TV — (Uy)) + [(T1¥:) + (TaF2) N ((178) = D) X(x) (11.28)

The lattice Laplacian of X(x) is found directly from the following rule: Go
around each lattice site and count the occupancies of all nearest
neighbors. Then subtract four times the occupancy of the point itself, and
square this number. For the operators (V,V,)? and (V,V,)* we follow the
same procedure in the 1 or 2 directions only, subtracting only twice the
occupancy of the point itself. For the diagram (11.27), we find the
Laplacians

1

(V-V)? 1%1 =20

1

(V]VI)Z 1—04—.—1 = 6
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(V2Va)?

I
=)

A

—_———

(11.29)

This gives a Boltzmann factor

} o e WIS - (1)) + 3((18) - 1)) (11,30)

in agreement with (11.14). The superposition (11.22) corresponds to the

X graph
H (11.31)

Its sum over Laplacians is easily found,

1 1
11

CADEE T—i} I =4

(V.V,)? %4 %4 =12, (11.32)

so that the Boltzmann factor is

% - e~ WBNGU = (1Y) + 4((1/6) = 1)} (1133)

The X graphs have the further advantage that it is easy to see how many
of them go on the lattice. The graph (11.30) can obviously occur 2N times
(N times for each sign of the “charge’ of X). The other graph (11.31) has,
in addition, two directions so that it can occur 4N times.
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Let us now organize the graphs according to the order they have in an
isotropic y = > system. Then —}— goes like e~ ¥ and will be said to be of
order 5 while—4—¢4-goes like ¢ and is of order 6. A graph of the same
order is seen to be

—
—< ——
(11.34)
for which the lattice Laplacians have the values
(V-V)° =24
(V.Vy)° =8
|
(V,V,)° 7! =8
o o 1
L (11.35)
and the Boltzmann factor is
o LBHOL = (1)) + 40018y — 1)} (11.36)

Since the number of graphs is again 2N, the partition function up to order
6 is

1 E .-N’/: 1 B , e B : . ; ~ .
Z= 5 1 ,_2; —_Il ,+_2N(, (l-ﬁ).?(l (Liv)) + 3((1/8) 1y
[(zf)-( v)] (V2ug)*N !

+ 6Ne VB0 = e =iy (11.37)
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FIG. I1.1a-b.  Graphical expansion of the D = 2 melting model (Villain type) according to
integer stress gauge-field configurations. The lowest graphs of order S and 6 are given in the
text [Eqs. (11.30), (11.33), (11.36)]. The first column counts the number of configurations
on the lattice, the third and second to the last column the numbers # in the Boltzmann
factors e~ (VAL = (1Y | p=(UB#VE = 1) respectively. The number in the third column is
also the order of the graph.
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(continued)

FIG. 11.1
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TABLE 11.1. Summary of Fig. ll.la-c. exponents in the partition function Z =1+
NE e MBI = (Uy) + mll& = DI and in the partition function Z =1+ NS 1Y(B) (288"
[(286)"" which will be needed later in Section 13.4 [Eq. (13.89)].

# Graph ] m ", ", - t
2N . 5 3 4 1 2 12
AN oo 6 4 1 8 2 16
ON ot 6 4 4 16 0 20
N |ees 7 5 4 20 0 24
AN 7.5 5.5 3 10 3 20
SN | ee 8 5 6 12 2 22
IN fesss 8 6 1 24 0 28
N |ses 8 6 4 24 0 28
6N aie 8.5 5.5 6 18 l 26
8N ‘:. 9 6 6 24 0 30
AN 9 7 4 12 3 24
AN cees 9 7 3 28 0 32
AN [3sss 9 7 4 28 0 32
16N ces 9.5 6.5 6 14 3 26
16N cece 9.5 6.5 6 22 l 30
16N 5:: 9.5 6.5 6 22 I 30
IN 10 6 8 24 0 32
8N oo’ 10 6 8 16 2 28
16N sese 10 7 6 20 2 30
16N " . 10 7 6 28 0 34
16N : 10 7 6 28 0 34
AN cesent 10 8 4 32 0 36
AN |eseee 10 8 4 32 0 36
Teve
2N sess 10 8 4 32 0 36
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The contribution of all diagrams up to order 10 are listed in Fig. 11.la—c
and summarized in Table 11.1.

If e(n, m) stands for exp[—(1/B8){n(1 — (1/y)) + m((1/£) — 1)}] the free
energy can be written as

1 1 3
—Bf = Elogli(zg)z(l — 2%)] — 510g(27'rﬁ) + 2e(5, 3) + 6e(6. 4)

+ 4e(7, 5) + 4e(7.5, 5.5) + 8e(8. 5) + 6e(8. 6)
+ 16e(8.5, 5.5) + 8e(9., 6) + 12¢(9, 7) + 48¢(9.5, 6.5)
+ 12¢(10, 6) + 48e(10, 7) + 10e(10, 8) + . .. (11.38)

To this order, there is also one disconnected graph in Z

) o o (o}
—I4N [+] - o] o (¢}
o] (o] o
N - 9
adding to —Bf a term
—BfI= = —18e(10, 6). (11.39)
The free energy as a function of 8 is plotted for £=0.2, 04, ..., 1.2 in

Fig. 12.2.

Let us now turn to the case of three dimensions. The very high
temperature limit of Z is given by [see (11.6)]

1 'f N2 1 3A —N/2 1
Zy= =1 —3= A AN ? s —
[(zg)-(l . y)] 2ng)™ {(2@(”2@)] )™
(11.40)

with a free energy density

—Bfy = —3log(2=B) — %log((2§)3(1 + %ﬁ)) : (11.41)
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In order to construct the lowest stress diagrams in three dimensions, it

is convenient to go into the stress gauge X3 (x) = 0. Then the stresses

5-:'," = Eiky E‘jmnvkvnziin(x —{ - l'l) arc given by

an(x) = ViXaa(x), 72(x) = ViX[i(x),  7p2(x) = —ViX a(x),

733(x) = ViXaa(x) + VaX; (x) — 2V, VX 5(x).

Fr3(x) = V.V, x12(x) = VaVoX(i(x). 713(x) = = ViV Xaoa(x) + V3V, 0(x).
(11.42)

where we have set X,,(x) =X, (x — € ~n), for brevity. The lowest
contribution is obtained by choosing one element X, to be non-zero.
Taking, for example, X;,(x) = 8, ¢ we find from

T1i(X) = X22(X) = 2X2a(x — 3) + Xaa(x — 2- 3),

033(X) = Xoa(x) — 2Xoa(x — 1) + Xzz.(x —-2-1),

T13(X) = ~Xn(X) + Xoa(x — 1) + Xpo(x = 3) = Xpo(x — 1= 3),  (11.43)

the following non-vanishing elements

a0 =1, 0,(3)=-2, 7,(2-3)=1,
a33(0) =1, Faa(1) = -2, G(2-1)=1.
Fa0)=—1. ds(1)=1, 7:3)=1. Fpl+3)=-1. (11.44)

This can be pictured by the same diagram (11.13) in the 13 plane as in the
two-dimensional case.

Since this diagram can appear in each of the three lattice planes with
two orientations, the partition function has the lowest defect contribution

Zl =7y N- 66—(”.3)(3 + (36 — (5/v)

= Zy+ N - e~ (VB2 + (/) = (S/awic + ) (11.45)
An independent low-order diagram is obtained by taking
Xlz(X)za,‘_o. (1146)

Then the equations
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T33(X) = =2X12(x) + 2X12(x — 1) + 2X5(x — 2) — 2X5(x — 1 — 2),
T1a(X) = —X12(%) + 2X2(x — 3) — Xa(x — 2+ 3),

T23(x) = X12(x) — Xio(x — 1) — X)2(x — 3) + Xpo(x — 1 — 3),

Fi3(x) = Xi2(0) = Xa(x = 2) = Xpp(x = ) + X o(x —2—3),  (11.47)

give the following non-zero elements

F3(0) = =2, Fu() =2, 633(2)=2. Fu(1+2)= -2,

72000 = 1, 7,(3)=2, F,(2-3)=—1

F3(0) =1, Foa(1)=—1, 723)=—1. F,(1+3)=1,

G0 =1. F32) =1, F33)=—1, F32+3)=1. (11.48)

The energy (1/28)[Ey.<; 5 + (128) Ly ;55 — (129) 5 (B (x — €))7]
associated with these numbers is

1 1 1
2—3'( 4+2—§16—516). (11.49)

This is much larger than (11.45) so that the contribution of this
configuration is negligible compared with the previous one.

It is also possible to find in three dimensions a high temperature
expansion based on the integer-valued stress gauge fields X,;(x), X5(x),
X2(x). The counting becomes, however, much more difficult than in two
dimensions since the existence of a gauge symmetry implies that large
pile-ups of graphs are equivalent to a very simple graph in another gauge
and can therefore have a very low energy. Fortunately, the higher graphs
become rapidly unimportant which shows that fluctuations in the three
dimensional defect system are very small. As a consequence we shall be
able to reproduce the Monte Carlo data very well using only the lowest
stress graph and may dispense with the difficult task of developing the
high temperature series any further.

11.2. LOW TEMPERATURE EXPANSION

Let us now consider the opposite extreme of low temperatures. For
T'— 0, The partition function has the classical limit [see (9.87)]
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2k T \PY 1
Zp()l.cl = ( 11 ) H

ua i VK-K +2(6 - DKK,

i 1 . (11.50)
. =
\/1+(1+§)Z __ KK
n) T K-K+2(6- KK,

In the isotropic case, this can be calculated right away yielding

DN
7 B ( 2wk T ) —1_ —(02) [ (dPki(2m Py iog K- K
pot.cl — ¢

ua’ (2 + AMu)™?
_ 1 1 o= (D2
(V2ZmB)PN (2 + Au)N? ’ (11.51)
with
d[)k .
{ = (Z—ﬂ_)“[’jlogK'K (11.52)

being known from (6.206a), Part I (€ = 1.16625 for D =2, £ = 1.67339
for D = 3). This amounts to a free energy

D 1 A 1.16625 D=2
- = —— — = -] -1, * (11
Bfo > log(27B) 2log(2 + H) {51.67339 for {D _3 (11.53)
To this we have to add the contribution of the defect sum

Zger = E e AU+ VYL e R(xhix = ¥) T (11.54)
{n(x)}

in two dimensions and

Zdef Z 5 (%).0 S T (), () + (/0] o)) M (X) e (X0 s(x = %7} (1 1 55)
1] Iq ~ )
{”if(x)}

in three dimensions. where v4(x) is the lattice Green function (9.61):
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dk . 1
@m"”"  (K-K)’

p(x) = (11.56)

Its values in two and three dimensions are given in Appendix 11A.

Let us calculate the first few terms in these sums.

In two dimensions, the lowest contribution which satisfies the defect
and defect-moment neutrality [recall (9.75), (9.76)] is

ﬁ(x)zﬁx.ﬂ_ax.l_‘Sx.2+6x_l+2- (1157)
This 1s a quadrupole of neighboring disclinations which can be pictured as
7T (11.58)

It has a stress energy
— 1 o "y — i
V(FE) =35 X aesx—x) ()

X.X

1
= S[404(0) = 204(1, 0) = 2640, 1) + 204(L. 1)
+ 21,’4(1, 1) - 21’4(0, 1)
201, 0)]. (11.59)

The expression 1s made explicitly finite by performing the two sub-
tractions explained in Appendix 11A giving

(%) = v4(x) — v4(0) + $x°0,(0), (11.60)

where v,(x) is the lattice Coulomb potential [(d*k/(2m)*)e™ *(1/K - K).
Then V has the same form as in (11.59), except that all the potentials
v4(x) are replaced by the finite subtracted vj(x). Notice that replacement
is valid due to the properties of this £, 7(x) and E,x7(x). The subtracted
potentials have v4(0) = 0, v4(1, 0) = 0, by construction, so that we arrive
at

v(;i) = 204(1, 1). (11.61)
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Using the numbers quoted in Table 11A.1 we find

I
-+ = —
V(+_)-28W_-00ﬂ577. (11.62)

The next higher contribution is due to the configuration
N(X) = 80— 02— O 21t 82142, (11.63)

corresponding to the diagram

7T (11.64)
It has a stress energy
_. 1 .
v(+.i)::§(4v40)—-2u40,1)-—2v42,0)+—2u42,1)
+ 2042, 1) = 2042, 0)
— 2040, 1))
=2074(2, 1) = 204(2. 0)
3 11 2 1
=2 =2l-=-—=]=-===0.136619. 11.65
2417 2(4 477) T 2 ( )
The second next contribution comes from
n(x):‘Sx‘(lwax.ﬁl+6x.2“6x.l+2* (1166)
represented by
_1T (11.67)

Its energy is
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S
V(1T )=§(4v4(0)—2v4(1, 0) + 20,00, 1) = 204(1. 1)
*21'4(1, 1)+2l’4(2, 1)
—20,(1. 0))
3201
=i D) =201 ) = - S = = 015915, (11.68)

Notice that the similar configuration =77 is ruled out by moment
neutrality X, xn(x).

Counting the associated number of configurations gives a fourth
contribution

—@® - (11.69)
with a double charge in the middle. Tts energy

V(~®—) = 4604(0) — 4r4(1, 0) + 20,2, 0)
— d4,4(1, 0))
=32, 0),

can be expressed in terms of the other three,

V(-@-)=V(3Z) —%v(;ﬁ) +V(TTT)= _517—7+%=().17u4.

(11.70)
The defect partition function is

Z4 ;= P+ N(’)e'*ﬂﬂzﬁ(l+1)(]€4ﬁ] + 4(,—-sﬁ-‘;f(| A (2 — 1)
e hasl

_+ _.L.+

+ - +-—

+ 8()7&7"/5(1 =2 + 4(,—xn3(1 ~ CHHE) = (1) + ) (11‘71)
1T —P -

which leads to a free energy due to defects,
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_ded_ — D BUT 028 4 g, BU+u) T @ ,=B(1+ 1) 12560 L 4 o= B(E +v) 13454
(11.72)

This has to be added to (11.53) to arrive at the total free energy. In the
anisotropic case, the expression (11.51) has to be replaced by

1 1
(V2mB)"N (V2)¥

Zhul.cl = _(“/2)“’ (1173)

where € is the anisotropic generalization of the integral [(d”k/
(27)”)log K - K which was introduced in (9.89). Its values are listed in
Table 9.1 as a function of € and A, and plotted in Fig. 9.1. The defect sum
takes the form

Zger = 9, e BT i), (11.74)

i

where V(i) are the anisotropic versions of the potentials of the lowest
defect configurations (11.58), (11.64), (11.67), (11.69). Their values
depend only on the combination of the elastic constants
e=2(&— 1)1 +v) =4~ D€+ (M))/(26+ Alw). They are listed in
Table 11.2, for e = —=1.6, —=1.2, ..., 1.3, 1.6. From these we obtain the
energy of the smallest defect configurations as shown in Table 11.3.

Let us now turn to three dimensions. In order to find the leading
contribution to the defect sum (11.55). we shall construct elementary
configurations of the conserved defect tensor 7,,(x). This can be done in
analogy with the elementary stress configurations in the high temperature
expansion. We express n,(x) in terms of the defect gauge field n;(x),
N3(X) = €50 €,V kYol (X 1+ j). and choose a gauge (say) n,, =0,
na; = 0, 13 =0 so that we have explicitly

X)) = =2V Vanas(x + 2+ 1),
n22(x) = v'%”ll(v’( +2-2),
TT}_?,_'{(X) = V%HH(.\' + 2- 3) — 2VIV2”12(X + 2 3).

T“j(X) = —V§I]ll(x + 1+ 2) + VIV311:_;(X + 1+ 2).

5

ﬁj_}(X) = VIV}HIQ(X + 2+ 3) — Vjv_;”“(x + 2+ 3) - Vlflz_‘;(x + 2+ 3).

T]]_;(X) = v[VQHJ_:(X + 1+ 3) + ng_gﬂlz(x + 1+ 3) (1 175)
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TABLE I1.2.

III. GAUGE FIELDS IN SOLIDS

dimensional dischinations on a square lattice

vy

X)

(x)’

for various values of ¢ =2(£ - 1)(l +v)=—1.6, ..., 1.6 (corresponding to the parameter
of anisotropy £=0.2, 0.4, (0.6, 0.8, 1.0, 1.2, 1.4 at A = 0).

&k [ 2
= (e"“‘—z+3‘~K-K

4

1

)(f(-K)2

+ EKlezsz

Numerical values of the anisotropic twice subtracted potential between two-

X

-
3

-1.6

-1.2

—0.8

—0.4

0.9

0.4

0.8

1.2

1.6

0
0
0

— <

o R B e W) LD ) L B R R B N e e s — — — O

o NN N W = Ol N — O

h = O D e

th ON

oM

0.0000
0.0000
0.2258
0.7506
1.6133
2.8419
4.4589
0.0605
0.3266
0.8743
1.7522
2.9924
4.0188
0.6531
1.2537
21732
3.4467
5.1007
1.9148
2.8609
4.2139
5.9106
3.9277
5.3088
7.0588
6.7506
8.5597

0.0000
0.0000
0.2073
(0.6893
1.4831
2.6140
4.1031
0.0534
0.2970
0.8007
1.6085
2.7503
4.2482
0.5941
1.1448
1.9904
3.1626
4.6858
1.7489
2.6447
3.8613
54231
3.5939
4.8620
6.4714
6.1836
7.8452

0.0000
0.0000
0.1926
0.6409
1.3793
2.4322
3.8180
0.0479
0.2737
.7421
1.4940
2.5571
3.9522
(.5474
1.0583
1.8448
2.9360
4.3546
1.6171
2.4488
3.5803
5.0341
3.3283
4.5061
6.0031
5.7319
7.2756

0.0000
0.0000
0.1805
0.6010
1.2940
2.2827
3.5854
0.0434
0.2546
0.6940
1.4000
2.3987
3.7088
0.5093
0.9876
1.7254
2.7500
4.0825
1.5093
2.2883
3.3499
4.7149
3.1107
4.2144
5.6188
5.3615
6.8085

0.0000
0.0000
0.1704
0.5676
1.2225
2.1572
3.3801
0.0398
0.2387
0.6539
1.3211
2.2651
3.5044
0.4775
0.9284
1.6254
2.5939
3.8546
1.4192
2.1539
3.1566
4.4470
2.9285
3.9699
5.2665
5.0510
6.4167

0.0000
0.0000
0.1618
0.5394
1.1614
2.0499
3.2212
0.0367
0.2252
0.6196
1.2537
2.1512
3.3296
0.4504
(0.8780
1.5400
2.4606
3.6586
1.3424
2.0394
2.9917
4.2181
27731
3.7612
5.0212
4.7861
6.0822

0.0000
0.0060
0.1544
0.5143
1.1084
1.9569
3.0755
0.0342
(.2136
0.5893
1.1954
2.0524
3.1779
0.4271
(0.8345
1.4661
2.3451
3.4892
1.2760
1.9403
2.8489
4.0197
2.6387
3.5806
4.7828
4.5568
5.7926

0.0000
(.0000
0.1478
0.4927
1.0619
1.8752
2.9476
0.0319
0.2034
0.5635
1.1441
1.9656
3.0447
0.4069
0.7964
1.4014
2.2437
3.3405
1.2179
1.8535
2.7237
3.8457
2.5209
3.4224
4.5738
4,3558
5.5386

0.0000
0.0000
0.1421
0.4734
1.0207
1.8027
2.8341
0.0300
0.1945
0.5409
1.0987
1.8888
2.9265
(0.3890
0.7628
1.3441
2.1539
3.2087
1.1666
1.7767
2.6129
3.6915
2.4167
3.2823
4.3886
4.1778
5.3137

The numbers #,; run

integers.

through all integers and n,>, n,; through all half-

The configuration with lowest energy 1s generated by

na(x) = %Bx,2-3+1+2-

For it, the non-zero elements are

(11.76)
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TABLE 11.3.  Elastic encrgics of the lowest defect configurations on a square lattice.
¢ £ = 0) v(;t) V(:L:i) v(;if) V(-® )
—-1.6 0.20 0. 121098 0.201573 (0.205469 0.225780
-1.2 0.40 0.106819 0.179546 0.190227 0.207273
0.8 0.60 (.095735 0.162234 0.177941 0.192559
-0.4 0.80 0.086860 0.148223 0.167764 0.180512
0.0 1.00 0.079578 0.136623 0.159155 0.170422
0.4 1.20 0.073487 0.126841 0.151748 0.161815
0.8 1.40 (.068311 0.118468 0.145288 0.154365
1.2 1.60 (0.063853 0.111210 0.139588 0.147835
1.6 1.80 .059970 0.104853 0.134510 0.142054
N33(0) = —1, 733(1) =1, n(2) =1, 733(1 +2) = —1,
ﬁlZ(O) = _%3 ﬁ12(3) = 1’ ﬁ12(2 ) 3) = -3,
723(0) =1, (1) = -1, = —3, 7u(l+3)
- _ — 1
30) =3,  73(2) = -3, =1 [.2+3)=L L7

This corresponds to the stress configuration (11.48), except for a factor

on each element.
The elastic energy associated with this defect is given by

Vi

zx.x'

+ Maa(x) Naa(x’) +

1
2

vV

1—v

N33(X) U%%(X')}

e _{2-%[61~4(0) —4r,(1, 0) + 2042, 0)
—4r4(1, 0)]

1
+2020[40y(0) = 2041 0) = 204(1, 0) + 2041 1)

+ 204(1, 1) — 2u4(1, 0)
_2U4(1, 0)]

-1 Z ra(x — x'){zﬁlz(x) T2(X") + 2%3(x) 713(x") + 2753(x) 723(x")

I p—
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-+

]
T [404(0) = 2041, 0) = 204(1, 0) + 204(1. 1)
+20,(1, 1) = 204(1, 0)

= 2v,4(1, 0)] ¢ (11.78)

Performing the subtraction to vi(x) = r4(x) — v4(0) and further to

vi(x) = vi(x) + (x*/6)v,(0), and using the numbers quoted in Appendix
1TA, we find

1 1
v, =Z(—24v:1(1,0) +8u4(1,1) +205(2, 0)) e (—41’4(1,0) +204(1, 1))

1 2 1 2
= — (8" (2, 0)) + Wl 1) =—+——0.021.
4(81,4(1, 1) + 2v4(2, 0)) 1_vz,4( ) P 1_vOO
(11.79)
Another fundamental #n;;(x) configuration is
n”(x) = 8x,2-2+2-3- (1180)

For this we find the defect tensor

n22(0) =1, 1(3)=-2, 71p(2-3)=1,
733(0) =1, 733(2) = -2, m(2-2) =1,

n23(0) = =3, 7n2) =31, 7:3)=i 7:x2+3)=-1 (11.81)

This can be pictured by the same diagram (11.12) as the matrix elements
(11.43) of 7;;(x) except that the off-diagonal dual elements carry only half
the weights. Its energy is considerably larger than (11.79):

1
V,= > Z va(x — X'){2ﬁ23(x) N23(X") + M20(X) T2a(X") + N33(X) 33(x")

'
X. X

1%

+ 1—_;(7)22 + n33)(x) (2 + ”'?33)("’)}



1. THERMODYNAMICS OF THE MELTING MODEL 1057

[
- —{2&[414(0) —2uy(1, 0) = 20,0, 1) + 204(1, 1)

2 + 2041, 1) = 2e5(1. 0)
— 2r4(1, 0)]
+ 2[60,(0) — 4e4(1, 0) + 204(2, 0)
—4r,(1, O]

+ i[mm(o) —4ey(0, 1) + 40,(0, 2) — dry(2. 1) + 2042, 2)
C8,(0. 1) + 8ea(1. 1) = 442, 1)
~ 8ey(1, 0) + de,4(2, 0)

— doy(1, O)]}

= %1, 1) + 2v7(2, 0)

+ 1—4 z ; [4vi(1, 1) + 4252, 0) — 4042, 1) +v4(2. 2)]

1%

=0.183 +

X (.176 (11.82)

-V

and can therefore be neglected.

Note that due to the factor i X half-integer values of the off-diagonal
7;(x) terms, the importance of the two lowest defect graphs is the reverse
of the corresponding stress graphs in the high-temperature expansions,
Taking only the lowest contributions, we arrive at a partition function

Zaee =1+ N 812+ @ =v-002D) 4 , (11.83)
with a free energy

_decf — 6€—Hﬁ':[3((1/12)+(2/(l —en-ozn 4o (1 1.84)

APPENDIX 11A. CALCULATION OF THE GREEN FUNCTION
vy = 1/(V-V)?

For D = 2, two subtractions are required. We first define

vi(x) = v4(x) — v4(0) (11A.T)
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so that the quadratic divergence is gone. Then we remove the remaining
logarithmic divergence by forming

2 2
ch(x) = vi(x) + — 12(0) fé”; EE ( L g 41( K) (11A.2)
where
d’k 1

is the usual unsubtracted and thus divergent lattice Coulomb potential at
the origin. This particular subtraction has the advantage that the potential
vi(x) satisfies the difference equation

—V-Voi(x) = v5(x) — 02(0) = v5(x). (11A.4)

On a square lattice this implies
—4(ui(1) — v4(0)) = 03(0) = 0 (11A.5)

so that

vy(1) = 0. (11A.6)
As explained in Chapter 6, Part I [after Eq. (6.192)], the difference
equation permits us to calculate all values of vj(x) knowing only those
along a particular radial direction, for which we shall use the diagonal one

x = (n, n), plus the values of vi(x) from Table 6.6, Part I. Along the
diagonal, the once subtracted potential can be written [using (1.6.190)] as

d
vi(n, n) = =200, 1)

m=0

B f’”dpf cos(2np) — 1
T om2 4 0 T m*

—cospcosqg+—|m=0

4
7dp f"dq cos(2pn) — 1
o mJy ™ (1 —cosp cosq)2
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1 {7d 1 ' i
= him — p(cos(?.pn) — 1) AL |
ems0 16y sSin p 71l —cospcosq|,
d 1
+ | M ] (11A.7)
. m™1—cospcosqg

The partial integration in ¢ is necessary since the small g part of the
integrand is quite singular in p and easy to miss. In fact for small ¢ we can
write

m

COSp sing
1 -~ cosp cosg

2e
. = (:ospp2 L2 T osp 2mé(p), (11A.8)

so that the partially integrated piece contributes to vj(n, n) the quadratic
term

8

The second piece can now be integrated in g with no subtlety [using
(1.6.191)], and we find

2 1 T

n dp
— —1
8 16 (cos(2pn) )sm *p

va(n, n) =
The second subtraction (x*/4)v,(0) brings this to

2
., n 1 ["dp 5 e 2 N3

) =—+— | —(cos =1+ 2n% p. :
vi(n, n) 3 16, (cos(2pn) — 1+ 2n°sin“p)/sin’p.  (11A.9)

We now use the well-known formula

@) o Qny(@ny = 2

cos(2pn)=1— T 4! sin'p
_ @n’(@ny? —6%2)((2n)2 D inp + |
2 2_ ce —_ —
PR CL) i CL) 3 L () S Ty PRV

(2n)! P
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and the integrals

A Qon 2
W n2evty, = 2 < 11A.11
f(, o P vy g ( )

to find

vy(n, n)=

7 L[eeni-2) | enen -4)2
87r+87r 4! 6! 3

(2n)*((2n)*> ~ #)((2n)° = 6%) 8
i 8! 15

_ 2n)((2n)? — 4H((2n)’ — 6°)(2n)” — 87) 16 N

10!, 35
. +”E_( ),(211) ((2n)*—4%) - ((2n)*=(2¢+2)%) Qo
8 (<o (2¢+4)! Q2E+1)!
(11A.12)
The lowest values are
| |
(1, 1) = — = 0.039789.
S
1 16(16 — 4) 3
M2, 2)=—|4+—-—) = =. 5,
vi(2. 2) BTT( 4! ) 2 47746
1 36(36 —4)  36(36 — 4)(36 — 16) 2\ 107
3,3 =—|9+ — =
vi3. 3) w( 24 720 3) T oan - 14D,
46 4443
" 4 4 -, N
vi(4, 4) - 4(5,5) = R0 (11A.13)

The off-diagonal values can now be obtained from the difference
equation (11A.4). For example

040, 0) + v4(2, 0) + o5(1, 1) + vj(—1, 1) — 4e(1, 0) = —e}(1, 0) = L.
(11A.14)
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Hence

I
4

042, 0) = (11A.15)

1.
47
Another example is

| 1
o4, 0Y + 242, 1)+ 050, 1) + o452, —=1) — 4e(1, 1) = —vi(1, 1) = -

m

(11A.16)

and hence

3
2 ) = (11A.17)

The results are shown in Table 11A.1. Numerically, they can be fitted
rather well by the asymptotic form

|
vi(x) = 8—x2 log|x| + A|x]* + Blog|x| + C, (11A.18)
T
with
1
A= (y=1+10g(2V2) = 0.02455, y=0.577216649 ...,
T

1
B=——=—0.01989,
l6m

1 {1
C= 1_677(6 — oy 10g(2\/§)) ~ —0.0289, (11A.19)

with an error of only 0.5% for n = 2 (see Table 11A.2a). More compactly
we may write

1
pi(x) = é1;|x}2 log(|x|2V2e?™ ") — mlog(|x|2\/§e”‘ 1%y, (11A.20)
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TABLE 11A.1. Exact values of the defect potential on a square lattice:

vi(x) = J'ﬂ[ dez (ejk'x -1+ X—ZKK)

(27) 4 (R-K)
4443
5 2807
5.0509
46 873
4 Sm T0mr
2.9285 3.9698
107 w167
3 27 07 1207
1.419 2.1539 3.1566
3 35 3,1 o1
2 o 12 1t s 2= Son
0.4775 0.9285 1.6254 2.5939
1 3 1 29 23 99 1301
1 . in 2" %n 6t T2t 8a
0.0398 0.2387 0.06539 1.3211 2.2651
11 9 3,105
0 0 0 4 47 2 27 13 T 82 6
0.1704 0.5676 1.2022 21572
2 0 1 2 3 4 5
X

TABLE 11A.2a. Comparison of vin, n) and the
values from the asymptotic formula (11A.19).

] viln, n) Eq. (11A.20) error
1 0.039789 0.04088 3%
2 (.477465 0.4777 0.05%
3 1.41913 1.4192 0.005%
4 2.92845 2.92849 0.001%
5 5.05089 5.05099 0.0002%
10 25.9092 25.9092

20 125.931 125.931
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‘The calculation of this asymptotic form is somewhat tedious. Starting
out with (11A.9), we rewrite the second term as follows:

e (sinzpn ,) 1
dp\ ——=— —n" |-
47 ), sin~p sin p
TN (1 ! 1) ](1 I 1)
= —— dp|sinpn| s+ —— -] —n || -+——-
4 ) i p- simmp  p- p sinp p
_ 1 2 dp _(sinzf)n B nz)l N (Sinzfm B nz)( .1 B 1)
4 )y i P P 2 smmp p
L ( 1 1) 1 ]
+smppl S — S|
sin“p  p~/sinp

/2 - 2 N AN 1
=_‘_1“_ dp{(sm,pnn‘)—*n“(_———)
4 Jq P P simp p

+ sin“pn [L 1]} (11A.21)

sin’p p?

In this way the integrand is separated into three pieces, no one piece
having a singularity at p = 0.
The first of these three pieces is now evaluated further as follows:

/2 s a2 1
I = f dp (sm an B nz) 1
0 4 P

1 sin’pn| ™ 2 sinpn cospn  n
P 0 0 P 14
2 ,m on 1 /2 f"’z (cos(an) 1)
=—=3s8IN"Zn+—+ n| ——sin(2pn + n dp| ——— — -
T 2 2 [ 2p (2pn) 0 0 P p P
1 3 s 2pn) — 1
= (- (=) +2n? + nzf dp ) — 1. (11A.22)
T 2 0 p

The last integral can be rescaled to f dp(cosp — 1)/p so that I, can
0

be expressed in terms of the well-known cosine integral
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: st—1
Ci(z) = v + log z +f dz% (11A.23)

0

as
] 3, 3,
L=—7{-(=))+ En" + n°(Ci(nm) — y — log(mn)) (11A.24)
>

Decomposing Ci(z) into auxiliary functions”
Ci(z)=f(z)sinz —g(z)cosz (11A.25)

with

=+ 1

x —-t x t—Zt
f(z):f /— g(z)zf di——-  (11A.26)
0 (

we find the asymptotic behaviour

x

\ i 3!
e (=1 )= —(—)"((m)2 Tyt )
(11A.27)

Ci(mwn) = —(—)”f

and

> 1 1 ,
I =n‘(§—y—log(mi)) —~5+O(—2). (11A.28)
T

1
The second piece in (11A.21) gives directly

q /2 1 1 , P p w2 .
L=-n| dpl——=)=-n{logtanf —log2} =n’log>-
> nf() p(smp » n™] logtan ogz ) n Iog4

(11A.29)

PSee M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions (Dover, New
York, 1965) formula 5.29.
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The third piece, finally, can be evaluated exactly, after a power series
expansion of the square brackets, using

1 1 p 7

—=—++ T+ Y+ O0(p),
sinp p 63607 Tis0P TOW)
1 1 « a o’ 1
- =—+- > + + = + ... 11A.30
sin“p  p* 6peT- (180 72)190‘*4 ( )

Introducing the quantity

r():l_l_a*a_{_a_“_k
alp Sinap pa 6p(t*-2_ 180 7 P e

we find

1 (™ cos(2pn) — 1 lj”/z
L=-—| d — | dp(coszpn) ~ 1
3 2]{) P 2 2/, p(cos(Zpn) )r3(p)

/2

———>l(y + log(wn) — Ci(mn)) + %f dpri(p)+ ...

n—x 0

1

R
=3 (v + log(mn)) + 5+ 0(%) (11A.31)

where the number R is found by integrating of r,(p) and setting «— 3:

R= % [% — é— — log(7r/4)] = ().2401.
Collecting the three asymptotic forms of /;, I, and /5 into (11A.21) and
adding n*/87 in (11A.9) we find, indeed, the asymptotic expression
(11A.18) [recall that n = |x|/V2 on the digonal]. Note that the term A
could have been found right away from the identity —V-Vui(x) = v5(x)
and the asymptotic form of ¢5(x) [see (6.196), Part I], which shows that
1 + 87A = log(2V2e ).

For completeness, let us also calculate the corresponding twice
subtracted potential for a triangular lattice:

1
(K-K)*
(11A.32)

X2 de(i) el ) Xz_..
lfﬂ(x) = l*i(x) + ZPZ(O) - (27T)2 elk xt _ 1 + 3K . K
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where [see Eqgs. (6A.104), 16A.60) in Part I]

, dzk(l) Gy, i) l
l’4(X) :f(z )2( e - 1)(KK)2

and
K-K=4-1(cosk” + cosk® + cos(k'" + £®)).  (11A.33)
Analytically, it is easy to find the asymptotic behavior along the line
(x'", ¥y = (n, n), (11A.34)

e., for the Cartesian coordinates

(X],Xg):”(l,O)+n(—%,\/7_)zﬂ(§,*\/‘—§), (11A.35)

when x = n".
The substitution (6A.61) in Part 1 leads, for the once subtracted
potential, to the integral

= "d 2pn) — 1
vin, n)—f dpf q ___costepn) - (11A.36)
0 0 —3(2cosp cosq + cos(2p))]°

We now use the identity

9

5 d
bsin’p + — — 1
) P z a 1

1 d Cosp cos g . _a
bdg\a— bcosp cosgq —(a—bcospcosq)z ba—bcospcosg

(11A.37)

with b =8/3, a =4 — (4/3)cos(2p), to write (e — 0)

), 1
o 7 [4—=%(2cosp cosq + cos(2p))]
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1 1 1 cosp sing 4
~ 8sin®p(1 + Lsin’p) | w4 ~ {(2cosp cosg + cos(2p)) .
N "dq [ + sin’p _
. T 4 —3(2cosp cosq + cos(2p))
(11A.38)

The partially integrated piece, i.e., the first term on the right-hand side,
can again be written as a é-function, just as in (11A.8),

V3 cosp  2g V3
8 pl4 3 V3 g osp2malp). (11A.39)

After doing the ¢ integral we arrive at

V3w 1 [7d
vi(n, n) = TL?—W + 1_6 ;p[cos(an) ~ 1]
{)
L l4sinp 1 (11A.40)

X -3 | .9
SINp 1+ 38in7p V] + Lsinp

We are now ready to perform the second subtraction. Using Eq.
(I.6A.62),

V3 (*7dp 1 1

00, 0y =~ | 4P __ : (11A.41)
0. 0) 8 Jo 2m@[sinp| V1 + Lsin®p

the addition of (n/2)v5(0, 0) gives
., V3|nt 1 (Tdp , . 1 1
vyln., m) :T{S—7T+E . ;[cos(an) ~ 1+ 2n?sin’p] sinp (1 + 1sinZp) "2

1 ("dp 1 2/3

+— | —[cos(2np) — 1 :
16, [cos(2np) ]sinp Q +%sin2p)3/2} (11A.42)

With the aid of the general integral formula
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dp sin**'p 1 1 1 1 z
f( =~ B(u, 3) Floag+tu=—p5+u, *

,;(1+zsin2p)" T (1+2)* 2 1 +z
(11A.43)
where F' is the hypergeometric function and
Be. y) = FEOTQ).
F(x+y)
3
we have for u =1, p=§
f dp___sinp 13 (11A.44)
o T (1 + _%Slrl“p)‘ m?2

and can rewrite (11A.42) as

V3|1 Tdp 3 . 5 1 1+ Sinzp
y S S e -1+ ' '
vi(n, n) A lﬁf() - [cos(Znp) — 1 + Zn”sinp] sin3p (1+ _%Sinzp)m
(11A.45)

The expression in curly brackets can be treated in the same manner as
that for the square lattice case, Eq. (11A.9), and we find, evaluating the
integrals via (11A.43) and the hypergeometric functions as explained in
Part I, Appendix 6A [in the context of v5(x)] the values shown in Table
11A.2 a [Kleinert (1988)]. In the limit of large n, we regroup the curly
brackets as

1 ”/zd (sinzpn B nz) 1 1+sin’p

1 - o~
372 _27‘7(11 + 1>+ 1),

4w ), sin’p sinp (1 + tsin’p)
(11A.46)
with
/2 -2
[l:f dp(Slnzpn_nz)l,
0 P P
/2
12:—.'12[ dp( 1 ——1-)’
0 s«smp  p
_ 1 72
I; = _Ef dp [cos(2np) — 1} (11A.47)
0

where I, I, differ from the previous integrals defined in Eq. (11A.21) by
the factor
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1 1 + sin“p

s (1 + %sinzp)m‘ (11A.48)

The limiting form of /; is known from (11A.28), i.e.,

23 1 1
I, —n (—— Y — log(‘n'n)) -—+ O(—;). (11A.49)
2 T n-

The ntegral 1> is calculated by rewriting it as follows:
f”lz dp 1 + sin"p 11
0 (1 +4isin’p)Zsinp p
/2 soo—1 .
sin p 1 2 sin p
- d 5 -t 3 ) 3
J‘(, P [(1 +Lsin’p)!? p o 3(1+ %sm‘p)‘”-]

/2 T | 2 s 2u—1
: sin"#"'p S Zf sin
= ] d 3 5 = IS + — d .
#]E}l f() r [(1 + Lsin?p)!” P ] 37, P(l + LsinZp)At 072

)

(11A.50)
Using formula (11A.43), this may be cast as
|1 B(w, !t 1 {=\**| 21B@1,) ™
e e = +-= =—log—=+ ="
ilir}>[2(l + H# 2,(1,(2) ] 32(1+ 9 63T 2
(11A.51)
Hence
I— —n?| ~log——+ 1 (11A.52)
: 52V3 2/ |

In the last integral we observe that for small p, the expression within
square brackets in (11A.47) has the expansion

1 {1 1 63
[ssin3p p3]_p 15p+315p + ... (11A.53)

We may therefore write
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_ 1 {7 . 1
I,= _Ef dp[cos(2np) — 1](}; + 73) , (11A.54)
(

)

with [S() =VI1+ %Sinsz

e e Ly W S 11A5
T osinpsy @ 3sin® Yps§Te po 3pe 2 (11A.55)
Proceeding as in (11A.31) this gives the limit
g’ (11A.56)

-~ 1
13—>§(7+ cos(mn)) +

where

_ 7/2 2 1
R =f dpFy =~ +log2V3/m) — == 01337, (11A.57)
( T

)

this number being obtained by integration of 7, using (11A.43).
Collecting all terms we arrive at

3

Al

vl =7 a2

to | )

o]

l 1
— nz(—log%-ki) + §(y+ log(mn)) +
31 5 >
V3 — x| log|x| + A|x|* + Blog|x| + C} + ...,
2 |8

(11A.58)

with

A=—

1
g [y — 1+ log(2V3)] = 0.0326135,
a

1
B=———=—-0.0198944,
167

—_—

11 R
= | —_= —— | = —0.0329. 11A.59
C [wz ~(y+ log m) 2] 0.0329.  ( )
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We may therefore write more compactly
vi(x) = —— |i|xizlog(|xIZ\/§e7 y — —]0g(|x[ 2V3e? " "f’)] (11A.60)

The |x|* term could have been found directly from the asymptotic
behavior (1.6A.70) of the Coulomb potential on the triangular lattice,
using the identity

—V-Voi(x) = vi(x) — —m—log(|x|2\/_e7) (11A.61)

In Table 11A.2b we have listed the values of v4(x) obtained by num-
erically integrating the original formula (11A.32). Except for (x{!), 1) =
(0, 0) and (1, 0), where vj(x) vanishes, it is possible to use the asymptotic
formula (11A.58) with |x| = Vx(D2 + x®2 — (@) The error is smaller
than 3% at (x, y) = (1, 1), smaller than 0.5% at (x, y) = (2, 0), and
decreases so rapidly for larger distances that all other values on Table
11A.2 can be taken directly from the asymptotic formula.

In three dimensions, only one subtraction is necessary to render v4(x)
finite. We therefore calculate

' _ d°k 1 ikox
vi(x) = f G R D

= fxds e sl (28)1,.(25) I, (25) — [3(25)). (11A.62)

A further subtraction of —(x*6)r,(0) makes the integration even more
regular but does not change the interaction energy (due to the moment
neutrality of the defect tensor 7;):

2
vi(x) = (X)+_L7(0) [(2 ¥ K K)z(e""‘—l+%l_(-l()

— foxds e i:s(lxl(2s)1x2(2s)1x3(2s) — I3(2s)) + xgzl(f’(Zs)] :
(11A.63)

In order to estimate the asymptotic behavior we rewrite the integral as
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TABLE 11A.2b.  Exact values of the twice subtracted Green function r3(x) on a triangular
lattice, Eq. (11A.32), at x = x'"(1, 0) + x'(=1/2, V3/2).

o

— 184444478 1/280V 3 + 9684783/8

—6743261619/56 V37 + 88518015/4
9174464 1/80V37 — 421497/2
6448242303/560V3m — 8464491/4

775145807
9.82176526
7.63159749
9.57518348

(h (2)
X —x ri(x)
0 2 —9/8V3m + 3/8 0.16825166
0 3 —135/4V37 + 27/4 0.54754992
0 4 — 1179237 + 21972 1.16387204
0 5 ~37485/4\ 37 + 6897/4 2.03636292
0 6 —1156545/8V3m + 212571/8 3.18011018
0 7 —21924693/10V37 + 805857/2 4.60752827
I 1 9/16V3m 0.10337416
1 2 99/16V37 — 3/4 (0.38711584
I 3 855/8V3m — 75/4 0.89109189
I 4 15057/8V37 — 1377/4 1.63996576
l 5 197727/16V3 7 ~ 22857/4 2.65160690
1 6 7882317/16V 37 — 181065/2 3.94010363
| 7 151976727/20V 37 — 2792961/2 5.51711215
2 2 —63/8V3m + 9/4 0.80276164
2 3 —2943/16V37 + 141/4 1.44664709
2 4 —34587/8V 37 + 6375/8 2.34114558
2 5 —6360993/80V3 7 + 14616 3.50314801
2 6 —53935857/40V37 + Y91233/4 1.94613801
2 7 —12213532197/560V37 + 8016291/2 6.68132708
3 3 10773/16V37 — 243/2 2.23887896
3 3 314793/40V 37 — 1443 3.28730813
3 5 1721637/10V37 — 31635 4.60751757
3 6 352958985/112V3 7 — 579150 6.21228942
3 7 30357003429/560V3 7 — 39849237/4 8. 11239650
4 4 —57249/2\ 37 + 5265 1.49534433
4 5 —85404951/280V3 7 + 56061 5.97940668
4
4
5
5
5

-~ oD

R N e R (e SR B |

68991690141/280V37 — 18112905974
—2468615697/56V 37 + 3240526514
—2628329362353/6160V3 7 + 313652421/4

185200539543/1 12V 37 — 303888105

11.81990484
11.69376245
14.11630181
16.71953008
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(x) = Ak L e
0= | e

’ d—%k d%k 1 k-x
_ |:f 1T(277-)3‘ B J‘k’<.\3mj| (kz)z (e™™*—1)

T 4k 1 1 .
i le (277)3 [(K : K)Z N (kz)z](" 1). (11A.64)

For A — x, the first integral was calculated in (1.88) and gave

I
87 (11A.65)

The second and third integrals are regular at the origin so that the limit
|x| — = gives the additional constant

C=¢;+ ¢

_[J”d:‘kf"‘ d-*k]Lfﬂd-*k[ 1 1]
- L 2m)t S (k) Qe (KK (k)]
(11A.66)

The first integral lies outside the cubic region |k;| < 7. We may approximate

this region with a sphere whose volume is (2#)%, i.e., of radius &, =
(672) "

dk 1 47 (dk 1 1
C o= — = — =——=(0.013. 11A.67
: fjk ok w297k, ( )

More accurately, we may do the integral outside the sphere |k| =
exactly obtaining

1 _
ct = —=0.0161,

2

and subtract the numerical integral over the volume between the sphere
and the cube |k;| = 7, for which we find

c?) = 0.0027.
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TABLE 11A.3. Numerical values of the twice subtracted potential between three-
dimensional disclinations and comparison with the asymptotic form (11A.71).

X X X3 v4(x) 04(X).as X X R vi(x) 24(X).s
0 0 0 0.000 ~0.011 1 2 3 0.431 0.430
0 0 1 0.000 ~0.009 ] 2 1 0.692 0.691
0 0 2 0.082 0.078 | 2 5 1.035 1.035
0 0 3 0.251 0.249 1 3 3 0.616 0.616
0 0 4 0.505 0.504 1 3 3 0.882 0.881
0 0 5 0.844 0.843 1 3 5 [.228 1.228
0 1 1 0.021 0.017 | 4 4 1.151 1.150
0 1 2 0.113 0.111 1 4 5 1.500 1.500
0 1 3 0.286 0.284 1 5 5 1.853 1.853
0 1 4 0.542 0.541 2 2 2 0.357 0.357
0 1 3 0.882 0.881 2 2 3 0.542 0.541
0 2 2 0.215 0.213 2 2 4 0.805 0.805
0 2 3 0.394 0.393 2 2 5 1.151 1.150
0 2 4 0.654 0.633 2 3 3 0.729 0.729
0 2 5 0.997 0.996 2 3 4 0.996 0.996
0 3 3 0.579 (.578 2 3 5 [.344 [.344
0 3 4 0.843 ().843 2 4 4 1.267 1.267
0 3 5 1.189 1.189 2 4 5 1.618 1.618
0 4 4 1.112 1.112 2 5 5 1.971 1.971
0 4 5 1.461 1.461 3 3 3 0.920 0.920
0 5 5 1.814 1.814 3 3 4 1.189 1.190
1 1 1 0.049 0.046 3 3 5 1.539 1.539
1 1 2 0.146 0.144 3 4 4 1.461 1.461
| 1 3 0.322 0.320 3 4 5 1.814 1.814
1 1 4 0.579 0.578 3 5 5 2.168 2.169
| 1 5 0.920 0.920 4 4 4 1.735 1.735
1 2 2 0.250 0.249 4 4 5 2.089 2.090
It follows that
c; =i — P = 0.0134, (11A.68)
close to (11A.66). For ¢, a numerical evaluation gives
c> = —(.0246. (11A.69)
Hence we find
c=c¢ +¢c,=—0.011, (11A.70)



[1. THERMODYNAMICS OF THE MELTING MODEL 1075

The values of j(x) are found by numerical integration of (11A.62) and
are shown in Table 11A.3. They are fitted optimally by the asymptotic
formula

) — XX 0y — 0011, (11A.71)
87 6

[with r,(0) = 0.252731] whose values are also listed in the same table.

NOTES AND REFERENCES

The lattice Green functions —(V-V) ' (V- V)7~ on a triangular lattice and their asymptotic
limits are calculated in

H. Kleinert, Berlin preprint (1988).

An asymptotic limit has also been given in

D. Nelson, Phys. Rer. B26 (1982) 269.

but this is incorrect. The error has been repeated by

K. Strandburg et al. (see the papers quoted in the next chapter, and the discussion in Section
14.11).



CHAPTER TWELVE

THE MELTING TRANSITION IN THE DEFECT MODEL

Let us now study the properties of the defect model and see whether it
properly describes the phase transition of melting. We shall first consider
the leading approximations at high and low temperatures, thereby
obtaining crude estimates for the location and type of the transition. Then
we shall proceed and calculate the corrections due to stress and defect
graphs (which, in three dimensions, will be found to produce amazingly
small effects).

12.1.  LOWEST ORDER RESULTS FOR D =2

For two dimensions and isotropic materials, the free energy in the high-
temperature limit is given by the first two terms in (11.38)

3 1 A 3 I 1
—BfT= -3 log(2mB) — 5 log [4(1 + ;L):| = —EIOg(%ﬁ) 5 log[41 i :j:| '

(12.1)

The low temperature limit, on the other hand, is given by the pure
phonon fluctuations (11.53) and reads

1076
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1 A
—Bf=" = —log(27B) — Elog (2 + —) — 1.16625
M
1 2

= —log(2nB) — Elog o 1.16625. (12.2)

-V

The two curves intersect at
1 o2 116025

I“Lll(l + v) ’n' 16625 — (.820. (123)

To lowest approximation, this determines the melting point. The
Lindemann number associated with this point is [recall (7.5a), (9.22)]

2 3
L= \/ e 277\/ Ha =27 VB | = 56893

1
kB Tmcll kB Tmcll(zw)2 V1 + v
(12.4)

In the anisotropic case we have, to lowest order [see (11.38) and (11.73)]
: 3 1 A
T—=x 9]
— = —log(2 ——logl4&(1+—) 1,
f 5 log(2mp) - 5 og( f( gﬂ))
: 1
—Bf" = ~log(27B) — 510g2 — £,

The intersection gives

A
mclt é § ( f,u) €

Using Table 9.1 for the logarithm of the anisotropic fluctuation deter-
minant ¢ we calculate melting points for A = 0 listed in Table 12.1.
The internal energy and entropy and given by

3

e |
U= (')B( Bf) = 1 for {

B

7> Tmel(s

12.5
T< Tmt:ll’ ( )
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T > Tmch»
f :
o {T< Tmclt- (12 6)

) [ S]]

5 = (1 —B;%)(—th -Bf+{

in the hot phase and cold phase, respectively. This corresponds to a first
order phase transition with a transition entropy per site of

The specific heat of the model is given by

—_ Zi _ % T> Tmclh
c.=—f aﬁu—{ 1 for {T< oo (12.8)

This is only the potential part. The kinetic part would add another 2- 1/2.

Note that to this approximation, the internal energy, the entropy jump,
and the specific heat are universal functions of 8. They are independent
of the elastic constants £ and A. As a consequence, the entropy jump As is
also universal, to this approximation.

12.2. LOWEST ORDER RESULTS FOR D=3
For three dimensions and isotropic materials, the high temperature limit
is given by (11.41) for {=1,
: 1 3A
_ T—o= . _ T + —
Bf 3log(27B) 2log (8(1 2“))
| 1+
= —3log(2mB) — =log| 8 ~ ). (12.9)
2 I —2v

The low-temperature limit was calculated in (11.53) and found to be

3 1 A 3
_ﬁfT"O = —log(2wB) — EIOg (2 + —) - E 1.67339
n

2
3 1 ] - 3

_ 7 _ — ) -Z.q. _ '
zlog(ZTrB) 2log( = 21}) 5 1.67339 (12.10)

These curves intersect at
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1+\ | 1 5
0 ( v) _ Tﬁelmw —().534. (12.11)
) .

melt 1—

which leads to a Lindemann number
L=20VE"., =4.593.
According to (7.41). this corresponds to
L~ 105, (12.12)
for v=0, which lies at the lower end of the range of experimental

numbers (100-200).
In the anisotropic case we have {see (11.41) and (11.73)]

—Bf 7 = =3log(27p) — %log (85’(1 + %)) :

— BT = “§l°g(2”8) - ilogz - ilogf.

and find the zeroth-order melting point

0 g1 ] ! e (12.13)

melt 27’."4”3 3A 173"
I+
2&p

Using ¢ from Table 9.1 this gives the values listed for A = 0 in Table 12.1.
The internal energy and entropy and obtained from

3

J B T> Tmclta
U= _é‘é(—ﬁf) =4 5 for (12.14)
E T< Tmc]ta
_ o _ 3 T> Thens
= (1 - B(,)B)(—Bf) = —fBf + { : for {T< T . (12.15)

This corresponds to a first-order phase transition with a transition entropy
of
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As =3, (12.16)
Similarly the specific heat is
I 2 d - 3 T> Tmclts
c=—8 5‘Bu = { : for {T< T . (12.17)

As in the two-dimensional case, the internal energy, specific heat and
entropy jump are all independent of the elastic constants & and A at this
level of approximation.

The alert reader might rightfully object to the present approximation
procedure. After all. by extrapolating high and low-temperature limits of
the free energy into the opposite regimes where they do not apply and
bringing them to intersection one will always find a first-order phase
transition which, in general. lies at the wrong place. The pleasant
property of our model, however, is that it is possible to calculate the
corrections to this lowest approximation and show that they come out to
be small for D =2 and extremely small for D = 3, as we shall now see.

12.3.  STRESS AND DEFECT CORRECTIONS IN ISOTROPIC
MATERIALS

We will first restrict ourselves to the leading correction,

THE TWO-DIMENSIONAL CASE

In two dimensions at high temperatures, the additional energy for an
isotropic crystal was given in (11.21) to be*

_Bftr — Zev(l/ﬁ)[ﬁ = SAL2H L+ A — ‘)()7(1;'5][5 =Sl = ] (12 18)

SITESS - -

For low temperatures, the first defect corrections are, from (11.53),
—Bfaer = 2077, (12.19)

Near the melting point B of (12.3) (calculated to lowest order) both
corrections are very small. Hence. we find the corrected melting

*Recall that in general A !

Mm2¢/‘y=v/(l + v).
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0

temperature by using the values of (12.18) and (12.19) at By,cir. Forv =10,
they are

= Bfstresslpn = 2e7 B — ().00449,

~Bfgerlgy , = 2e7 2™~ 0.01158. (12.20)

el

This leads to the corrected ¢ = 0 equation

Hog(4mB) = 1.16025 — Bfacilpe  + Blaveslgr . =0, (12.21)

meht metl

or

Bllncll = ‘l:]t‘]l efl(tl.llllih’f RN = B(ILL‘I[ 1 - 0()14) = ()808

This is to be compared with the value found by Monte Carlo simulations
on a 60 x 60 lattice to be described further down (see Table 12.1):

MC ~ ().815.

Curiously, the zeroth order value (12.11) is better than the first corrected
one. In fact we have to carry out the first four corrections in order to
obtain a perfect agreement. The corrections to the anisotropic values can
be found in the same way (see Table below).

TABLE 12.1. The intersection 8" of high and low temperature expansions of the free
energy for the D =2 melting model (Villain type, A = 0) including » corrections on both
sides (see Fig. 12.1). The Monte Carlo data at the last column arc from Janke and Kleinert
(1985).

.é.: ﬁ[P‘:l.E BIIHE ﬁ;‘”f Ih)r}( B“ Bll” B;ln AS“ A‘Sl A‘SM(

0.2 0.601  0.602  0.608 3.004 3008  3.039 0.5 (0.358
0.4 0.658 0.655 0.662 1645 1.639  1.656 0.5 (0.353
0.6 0713 0707 0715 119 1179 1.191 (.5 0.347
0.8 0767 0.757  (.766 (0.959  0.947  0.957 (.5 (.343
1.0 0.820 0806  0.814 0.818 | 0.820 0806  0.814 0.5 0.339 0.28
1.2 0871 0853 0.862 0.726 0711  0.718 0.5 0.335
1.4 0923 0.900  0.907 0.659  0.643  0.648 0.5 0.333

1.6 0973 0946 0.952 0.608 Q591 0.595 0.5 0.330
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TABLE 12.2. Transition parameters of the D = 3 melting model (Villain type) as obtained
from Figs. 12.6, for A = 0 and various values of £, in comparison with Monte Carlo Data
from Janke and Kleinert (1985).

£ Bt B B. B e A0 A A
0.2 0.283 1.42 1.400 = 0.100 1.50
0.4  0.360 0.900 (.8880 = 0.015 1.50
0.6 0.422 0.703 0.6875 + (0.0025 1.50
0.8 0.482 0.503 0.5875 = 0.0025 1.50

1.0 0.537 0.525 0.537 0.525 0.5175 + 0.0025 1.50 1.33 1.2
1.2 0.590 0.492 0.4690 = 0.0075 1.50

THE THREE-DIMENSIONAL CASE

In three dimensions, the additional stress energy in isotropic systems with
v =0 1s, according to (11.45),

_sttrchB“ = 69*5/&:}““- (1222)

melt

The exponent has the same form as it had in two dimensions. The leading
defect correction, on the other hand, becomes, due to (11.84),

b n .
R 6()—77 (22 B mend 1 + 24 ll.(l2i(l(\}- (1223)

mich

Aﬁfdcf

At the lowest order transition point, B4~ 0.5344 these have the values

—Biress ~ 00005, —=Bfuer ~ 0.0302. (12.24)

leading to an extremely small correction

Bl — U (,*(3/3)( ~Bfuer + Blures)
melt melt

= BU (1 —30.0304) = 0.524. (12.25a)

This is in excellent agreement with the Monte Carlo value obtained on a
16 lattice as described below (see Table 12.2)

e =~ 0.5175 + 0.0025. (12.25b)
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The fluctuations are so small that the position of the strong first-order
transition, shown by the model to lowest order, i1s modified only very
slightly by higher corrections.

12.4.  ANISOTROPIC CUBIC MATERIALS

For general cubic materials with A =0 the free energies with stress and
defect corrections are plotted in Fig. 12.1 for D =3 and in Fig. 12.2 for
D =72 In the first case we have not distinguished the zeroth and first
orders on the high temperature side since the differences are too small to
show up. On the low temperature side, they are visible and are given by
the dotted curve for ¢ = 1. We have not calculated the low temperature
correction in the anisotropic case & # 1, due to the complexity of the
anisotropic defect interactions. [See Eq. (9.104).] From these figures we
extract the critical temperatures as listed in Tables 12.1, 12.2.

From the three-dimensional isotropic value of B,, (8, = 0.525) we can
calculate the Lindemann parameter of the model. Recalling relation
(7.40) we find for isotropic systems

3 ~1/3
_ wa 1 1
=22, —=(1 - = vV —=(1 —
228\/kBTm[l 3(1 r)] 143 Bm{l 3(1 r)il

—1/3

(12.26)
where
3 302
r*%t—( # ) . (12.27)
Cy 2u+ A
Since our model has A = (0, L. becomes
L =155Vg,,. (12.28)
With g,,, = 0.517 we obtain
[ =112.3. (12.29)

This 1s somewhat smaller than the Lindemann number of isotropic
materials with small A. A good candidate for comparison is W (for which
E=1.005, A2u = 0.628)(see Table 1.2) which has L = 135 (see Table
7.2). One source of discrepancy is obvious. The experimental Lindemann
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FIG. 12.1.  Free energy of the D = 3 melting model (Villain type) as a function of 8 for

A =10 and various values of the anisotropy parameter £=10.2, 0.4, ... 1.2. The stress
corrections at low 8 are too small to be visible on this graph. The lowest defect correction at
high 8 is shown for the £ =1 curve (— —-— ). It 1s very small.

¥ L I Ll ) T LB 1 T

free energy
D =3 melt. (Villain)

® trans. points.
zeroth order

—Bf

parameter is defined via the Debye temperature [see Eq. (7.38)] which is
sensitive to the zero temperature elastic constants. The melting model, on
the other hand, involves temperature dependent elastic constants. A look
at Table 7.1 shows that the model’s value of 8,, has to be increased by
roughly 15% betore it can be inserted into formula (12.28). Still. this does
not remove the discrepancy entirely and the model really melts at a fairly
high temperature. In other words. when heating a crystal, the destruction
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FIG. 12.2. The D = 2 energy density of the melting model as a function of 8 for A = 0 and
various values of &(0.2. 0.4, ..., 1.2). The intercepts of the high and low temperature
expansions give the transition temperatures in Table 12.1. On the high as well as the low
temperature side. the lowest curves correspond to the lowest approximation without stress
or defect graphs. The highest solid curves include the corrections (the dotted curves are the
unphysical continuation of the corrected curves).

oL ® {rans. points \ -

+U zeroth order AN '\"-.(,)_'2 =&

N~
| N N
free energy S e
N D =2 melt. (Villain) ~No A
~
\i
15 | | | I
0.5 0.6 0.7 0.8 0.9 1.0

B¢
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of crystalline order via defect formation sets in too late, in comparison
with real crystals.

There can be different reasons for this. First, we have not taken the
proper crystal structure into account. The metal W is really f.c.c., while
the model is simple cubic. This could make a quantitative difference
which must be studied in the future. Second, the model may contain too
little information on point defects. The smallest defect loops may not be
an adequate representation of these. The third reason, which we believe
to be the most relevant one, will be understood only later, in Chapter 13.
There we shall point out the main weakness of the model. We shall see
that its disordered state is more disordered than that of a proper liquid.
The reason is that the model has no input parameter for the hard cores of
the atoms. In the disordered state these atoms are point-like objects
which makes the liquid look more like a gas than a liquid (see Fig. 13.23).
This causes a too large difference in the free energies between ordered
and disordered phases leading to an intersection at a rather high tempera-
ture. Considerable work will be necessary to repair this inadequacy of the
simple model.

Let us now turn to the internal energy. It is found by differentiation of
—Bf with respect to —B8. In the absence of stress and defect corrections,
the internal energy was seen to be independent of T:

3
E > Tmclh
= = 2.30
u 3 for {T< T D=3, (12.30)
2B
3
2 T> T
U= for Ty 5 (12.31)
l T< Tmclt-
B

We add to these the stress and defect corrections. For D = 3 we shall do
this only for é=1, due to the complexity of the defect interaction
potential in Eq. (9.104). The result is shown in Fig. 12.3. At the
transition points, the entropy jumps are given in Table 12.2. For £ = 1 we
find As =~ 1.49 to lowest order and As = 1.33 after including the lowest
stress and defect corrections. The Monte Carlo simulations to be
described below give As=1.2. This is in good agreement with the
experimental number for W (Asy = 1.5 from Table 7.1), Actually, this
comparison is not completely justified since this number for W was
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FIG. 12.3. The internal energy of the D =3 melting model (Villain type) at the same
values of £ as in Fig. 12.1. The curves now show the lowest stress corrections plus the lowest
defect correction for ¢ =1 as in Fig. 12.1.

6 1 T T 7 T T T T

D = 3 melt. (Villain)
int. energy

high T

9

0.4 0.6 08 B L0 1.2 1.4

measured at constant pressure while our model’s value is apparently
observed at constant volume for which As should be much smaller. It is,
however, not entirely clear what to take for the volume of the disordered
state of the model, since this is defined not via the lattice sites x but via
the displaced positions x + u(x) and these are defined modulo defect
gauge transformations. Quite possibly the correct size of As is partly a
consequence of the too large disorder in the liquid state.

For the two dimensional model we can easily calculate all higher
graphical corrections to the internal energy for various ¢ and find the
curves shown in Fig. 12.4. Using the transition values 3,, obtained before

from the free energies we find the transition entropies as listed in Table
12.2.

12.5. MONTE CARLO STUDY OF THE MELTING MODEL
(VILLAIN TYPE)

In order to check the accuracy of our calculations we have performed
Monte Carlo simulations of the model. Consider first the simpler case
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FIG. 12.4. The internal energy of the D =2 melting model (Villain type) at the same
values of & as in Fig. 12.1. The jumps Au at the transition points 8,, give the transition
entropies As = 8, Au hsted also in Table 12.2.

D =2 melt. (Villain)
int. energy

(B

D = 3 for which we have used lattices of various sizes from 4 to 16" with
periodic boundary conditions.

Equilibrium configurations were gencrated employing the standard
heat-bath algorithm. In order to save computer time we have approxi-
mated the continuous U(1) symmetry by its discrete Z(N) subgroup and
taken N to be once 16 and once 32. We have checked that the relevant
transition region does not depend on this approximation. This 1is
analogous to the situation in the XY model for which the additional
transition caused by the discreteness of the Z(N) variables (the so-called
“freezing transition™) increases with N as 8;, N- and thus lies at very high
N. At each temperature, we have made 100 passes through the lattice to
equilibriate the system and 250 more to measure the free energy and the
specific heat. The resulting numbers for isotropic materials (¢ =1) are
listed in table 12.3 and the corresponding curves are shown in Figs. 12.5
and 12.6." The inserts resolve the region near the transition point. We see
that in three dimensions the fluctuations are quite unimportant and the
approximate analytic calculations are very reasonable.

*For the sake of a better distinction with respect to the figures to be displayed in Chapter 13
for a cosine version of the melting model we have attached to labels 8 and ¢ a subscript V.
This is supposed to remind us of the Villain-like periodic Gaussian partition function
(compare Chapter II).
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Internal energy and specific heat of the D = 3 melting model (Villain type)

for A=0, £=1 found in a Monte Carlo simulation on an & X 8 X 8 simple cubic lattice.
Each step in the thermal cycle mvolves 100 sweeps for equilibriation and 200 sweeps for
measurement [Janke and Kleinert (1986)].

B u (heat) u (cool) ¢ (heat) ¢ (cool)
2.00 0.7432 0.7475 1.3997 1.1637
1.95 (0.7704 0.7655 1.5124 1.4937
190 0.7834 0.7871 1.6110 1.6331
1.85 0.8112 0.8115 1.4039 1.2718
1.80 0.8291 (.8292 1.5330 1.5967
1.75 0.8542 0.8542 1.4153 1.2727
1.70 (.8781 0.8737 1.4693 1.2041
1.65 0.9083 0.9059 1.5342 1.2962
1.60 (.9354 (0.9354 1.4787 1.6836
1.55 0.9615 0.9633 1.4964 1.6095
1.50 0.9995 (.9993 1.2407 1.2840
1.45 1.0328 1.0347 1.6478 1.8006
1.40 1.0709 1.0725 1.5141 1.5354
1.35 1.1129 1.1160 1.5709 1.5819
1.30 1.1517 11513 1.6278 1.6528
1.25 1.1971 1.2063 14825 1.7799
1.20 1.2453 1.2419 1.5432 1.4728
1.15 1.2949 1.3033 1.3540 1.3453
110 1.3716 1.3614 1.7440 1.8887
105 1.4293 1.4350 1.4587 1.3614
1.00 1.5049 1.4968 1.3345 1.5324
(.95 1.5790 1.5728 1.5331 1.4117
0.90 1.6675 1.6864 1.7417 1.6700
(.85 1.7626 1.7694 1.4675 1.4194
0.80 1.8860 1.8928 1.3710 2.0570
0.75 2.0228 2.0320 1.5393 1.4206
0.70 2.2213 22013 1.6052 1.8626
0.65 2.4059 2.9051 1.8863 73.3719
(.60 2.6731 4.7326 1.8815 33108
0.55 3.0771 5.2078 3.0595 3.8969
0.50 39711 5.8692 7.9192 3.2214
0.45 6.5738 6.5707 3.2643 3.1685
(1.40 7.4347 7.4385 3.1995 3.5484
(.35 8.5480 8.5420 3.2445 3.0269
(1.30 9.9615 9.9443 3.1429 2.9599
0.25 11.9727 12.0032 3.2393 2.8661
0.20 14,9715 15.0070 3.0202 2.8085
0.15 19.9825 19.3840 3.0044 2.9531
0.10 30.0042 29.9953 3.0089 2.9980
(.05 60,0058 59.9958 2.9989 2.9982
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FIG. 12.5. Comparison of the I> = 3 internal energy of the melting model (Villain type) of
Fig. 12.3 for £= 1 with Monte Carlo data on a §* and a 16" sc lattice. Notice that the 167
data show undercooling.
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In order to find the melting temperature we have positioned the system
into a mixed state [half liquid, half solid, where liquid means random
u;(x) € (—m, ), and solid means u;(x) =0] and observed the develop-
ment of the internal energy over many iterations. The system
equilibriates very quickly and decides after less than 500 iterations into
which state it belongs, even close to the point, for which melting occurs:
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FIG. 12.6a. Comparison of the D = 3 specific heat of the melting model (Villain type) at
&= 1, with Monte Carlo data. The insert resolves the jump in the specilic heat at the
melting point. This jump is very sensitive to £ and changes sign at & = .65 (see Fig. 12.6b).
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B, = 0.5175 (D=3,&=1) (12.32)

(see Fig. 12.6 for £ =1). This is in very good agreement with the analytic
result obtained above.

The accuracy of this value was further tested by studying the stability of
an initial solid or liquid state right at 8,,. The internal energies are shown
in Fig. 12.7. At 8,, = 0.5175 they are completely stable and from their
distance, shown in Fig. 12.8; we extract

Au=~2323, As=120 (D=3, £=1). (12.33)

We have repeated the same analysis for various values of £ and found 8,
and As as shown in Figs. 12.9 and 12.10, where they are also compared
with the analytic results of Table 12.2. The values of §,, are seen to
follow quite well a straight line given by

B,, ~ 0.5175¢7>7 (D =3). (12.34)

For é— 0, the transition temperature goes to zero. This has a simple
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FIG. 12.6b. The £ dependence of the difference between the specific heats of the solid and
liguid phases. Most materials have £=<0.6 (see Table 7.1) so that Ac is positive, In
agreement with experiment.
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FIG. 12.7. Development of the internal energy of a mixed imtial configuration (half solid,
half liquid) over many Monte Carlo iterations for 8 near the transition value (isotropic
crystal £=1).
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physical reason. We had seen in Section 1.2 [see the stability conditions in
Eqgs. (1.17) or (1.21b)] that at £ =0 a crystal becomes unstable with
respect to shear stresses. Hence fluctuations diverge and destroy the
crystalline order.

Since the transition entropy is rather large there is another way of
estimating the transition point and the value of As. We may go to a
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FIG. 12.8. Stability of solid and liquid phase at the transition point 8,,, = 0.5175 over many
iterations. From the distance of the internal ¢cnergies we extract As ~ 1.2,
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smaller lattice, say 4°, and look again at the development of the internal
energy over many iterations. At the transition point, the small system
fluctuates back and forth between the two equilibrium states as shown in
Fig. 12.11. 1f we plot a histogram for the distribution of the energies (also
in Fig. 12.11) we find a pronounced double peak which shows that for
B < B,, the system rests predominantly in the liquid state, for 8> 3, in
the solid state. At 8 = j8,, the two peaks are symmetric and their distance
determines As. Notice that for a 47 lattice, the melting temperature is
slightly lower than that for a 16° lattice (8,, = 0.534 versus f3,, = 0.5175 at
E=1).

Let us now turn to the case of two dimensions. Here we use lattices of
varying sizes, from 10° to 60°, with periodic boundary conditions.
Employing again the heat-bath algorithm and the Z(16) approximation
we find, after 50 sweeps for equilibriation and 100 sweeps for measure-
ment, the internal energy and specific heat as shown in Table 12.4 and
Figs. 12.12 and 12.13. We see that they compare rather well with the
analytic results. It is also interesting to note that the peak in the specific
heat has a shape quite similar to the experimental specific heat seen in the
two-dimensional melting of adsorbed layers (see, for instance, Fig. 7.13).

It must be noted that the system has much stronger fluctuations than in
three dimensions. This implies that much more care is needed when
trying to find a precise values of 3, and As. In particular this is necessary
since there are, in the literature, conflicting statements regarding the
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FIG. 12.9.

1. GAUGE FIELDS IN SOLIDS

Dependence of S8, on ¢ for the D = 3 melting model as found from the stability

runs. The analytically obtained values of Table 12.1 are practically the same.
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FIG. 12.10. Transition entropy As of the D = 3 melting model for various ¢ from Monte
Carlo simulations (compare with the &= 1 analytic result given in Table 12.3).
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FIG. 12.11. Transition signal of the melting model on a smaller lattice (47). The internal
encrgy jumps back and forth between the two phases. The histograms with a symmetric
double peak indicate the first order transition.
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order of the two-dimensional melting transitions. These will be discussed
in more detail below, particularly in Chapter 14.

In order to find B,, we proceed as in three dimensions and iterate the
system many times starting once from a solid and once from a liquid
state. The internal energies are shown in Fig. 12.14 and we extract

B,~0815 (D=2, ¢£=1). (12.35)
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For this value of 8,,. the two states are stable over as many as 15000 runs
(see Fig. 12.14c). From the distance of the curves we deduce

Au=0, As=0.3. (12.36)

Thus, with the definiteness which a Monte Carlo analysis statement can
possibly have, our model undergoes a first order phase transition.

When repeating the same analysis for various values of £ we find the £
dependence of the transition point and of the entropy jump as shown in
Fig. 12.16 and 12.17, respectively.

It should be mentioned, however, that some of the stability runs
display a curious behavior, an example of which occurs in Fig. 12.14b.
For some initial configurations, the energy of the solid phase jumps
abruptly. after many iterations, towards the liquid phase, followed by
further jumps later on. Also . the liquid state sometimes moves lower.
This could be interpreted as a signal that the stability of the two phases,
displayed in Fig. 12.14c, is only apparent and we just had not waited long
enough for the system to equilibriate. The suddenness of the energy
jumps, however. inclines us to believe that it may be some other
phenomenon that could be taking place.

We therefore study the distributions of defects after such jumps. They
are found by taking the configuration of displacements «;(x) and finding a
set of integer numbers n1;(x) and half integers n;(x)(i #/) so that

E (V,u;(x) — 27, (%)), (12.37)

X!

Yo (Vo (x) + V,u(x) — dam (%)), (12.38)

X 1<

are minimal. From these numbers we obtain the defect distribution by
forming the double curl

nij(x) = Eik¢ sjmnvkvmn(n(x +i+ j) (1239)

In two dimensions we are only dealing with the defect density
n(x) = n33(x). a few examples of which are shown in Fig. 12.17. The
defect distributions show an interesting feature. As the free energy of the
liquid moves down toward that of the solid, there are Mmacroscopic
sections of the crystal which are practically free of defects. Such sections
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TABLE 12.4. Intcrnal energy and specific heat of the D = 2 melting model (Villain type)
for A =0, ¢ = 1. The Monte Carlo simulations were performed on a 60 X 60 square lattice
with 50 sweeps for equilibriation and 100 sweeps for measurement [Janke and Kleinert
(1986)].

B u (heat) u (cool) ¢ (heat) ¢ (cool)
2.00 0.4990 0.7962 0.7548 0.9110
1.95 0.5112 0.6087 0.7579 0.7475
1.90 0.5252 0.6232 0.8927 1.2787
1.85 0.5376 0.6389 0.7967 1.1334
1.80 0.5559 0.6584 1.0974 0.8772
1.75 0.5721 0.6715 (0.7393 0.9614
1.70 0.5891 0.6886 1.0022 (0.9542
1.65 0.6035 0.7076 1.1414 1.0866
1.60 0.6256 (1.7266 1.0722 0.7998
1.55 0.6413 0.7490 1.1222 1.0393
1.50 ).6642 (.7742 1.0356 1.1047
1.45 0.6906 0.7962 1.8727 0.7926
1.40 0.7164 (0.8257 1.3910 0.9388
1.35 0.7392 (0.8552 1.0191 0.8679
1.30 0.7672 (1.8886 0.9279 1.0129
1.25 0.8074 0.9253 1.0081 0.9934
1.20 0.8374 0.9680 1.1057 1.1961
1.15 0.8767 1.0138 1.4215 0.9555
110 0.9179 1.0677 0.8685 1.2610
1.05 0.9685 1.1302 1.1580 1.1326
1.00 1.0317 1.2381 1.0001 2.3382
0.95 1.0879 1.3578 1.1523 1.3237
0.90 1.1621 1.4646 1.5221 1.2630
0.85 1.2631 1.6210 1.4976 1.8810
0.80 1.4009 1.7642 1.4947 1.5004
0.75 1.6045 1.9382 2.3084 1.3713
(.70 2.0387 2.1028 3.2047 2.2007
(.63 2.2845 2.2798 1.5969 1.8314
0.60 2.4807 2.4897 1.2777 1.1680
0.55 2.7191 2.7254 1.8126 1.2788
0.50 2.9906 3.0009 3.3905 1.1703
0.45 3.3134 3.3222 7.5173 1.2776
0.40 3.7461 3.7559 3.2282 1.5885
0.35 4.3012 4.2834 3.5455 1.2059
0.30 4.9946 4.9946 3.2809 1.2932
0.25 5.9950 6.0014 3.9873 1.7238
0.20 7.4901 7.5132 3.5328 1.4359
0.15 9.9912 9.9918 3.4499 1.4240
0.10 15.0034 15.0105 3.5394 1.5051

0.05 30.0000 30.0001 3.5001 1.5003
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FIG. 12.12.  Comparison of internal energy of the D = 2 melting model (Villain type) with
Monte Carlo data.
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are chunks of solid. Thus it appears as though the approach of the two
free energies is not a signal of an equilibriation of the system in a pure
state near a contribution transition, but rather an indication that the
system separates into a mixed state, with finite pieces of solid immersed
in the liquid phase. As a matter of fact, in nature, precisely such a
phenomenon happens if a crystal melts at fixed total volume. Due to the
difference of the solid and liquid phases, the internal energy does not
have a jump, as it does at fixed pressure, but moves continuously from
one value to the other. This issue, (raised by Toxvaerd in 1980 and
investigated further by Abraham in 1982, via molecular dynamics
simulation) will be discussed in more detail later in Chapter 14 (see, in
particular, Figs 14.11 and 14.12) which is dedicated entirely to the contro-
versial results on the order of two-dimensional melting.

At this juncture let us only mention that our results are in disagreement
with recent Monte Carlo investigations by Strandburg, Solla and Chester
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FIG. 12.13.  Comparison of specific heat of the D =2 melting model (Villain type) with
Monte Carlo data. The peak resembles the experimental peak in adsorbed solid *He films
found by Bretz (ct. Bretz er af. 1973: see Fig. 7.13).
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(1983) who claim to have seen two successive continuous transitions.
Their evidence 18 not derived directly from our model but their study
differs from ours in two respects.

(i) They use a triangular lattice rather than a square one.

(ii) They do not simulate our model but a dual form of it.

The first difference could, in principle, be important. But Bruce (1985)
has redone the same work on a square lattice and found the same result
(namely, two successive continuous transitions). If this were true, it could
only be the use of the dual version of the model which causes difficulties
in obtaining equilibrium in Monte Carlo simulations. Let us therefore
describe that model briefly. It is given directly by the integer-stress gauge
field form of the partition function. In two dimensions, this was written
down in Eq. (9.53) and (9.55). After summing over all defect fields 7(x)
it reads
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FIG. 12.14a,b,c. Stability of solid and liguid initial states for D = 2 near and at the melting
point over many iterations.
D =2 melt. Vill., 607 lattice, £ = 1
ordered/random starts
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FIG. 12.15. The melting transition values 8, of the D = 2 melting modetl (Villain type) for
various values of £. They follow only very roughly the empirical law 8, = c¢£ * with a lying
between 0.7 and 0.86.
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FIG. 12.16. Transition entropy As of the D = 2 melting model (Villain type) for various .
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(12.40)

where the sum extends over all integers X(x). Dropping the prefactor,
one remains with the sum

Zip= Z e~ (WABEXOF-FY(1 = (1) + (T 907 + (V)18 — DIX(x) (12.41)
{X(x))
This partition function is reminiscent of the discrete Gaussian model
which appeared before as the dual version of the ordinary Villain model:
Zr= Z o BRI (-T The(n) (12.42)
{e(x)]

We have seen that that model could be used to study the roughening
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FIG. 12.17a,b. Defect pictures illustrating the equilibriation process for the run in Fig.
12.14c at B =0.81 for ordered start (ord) and random start (ran), respectively. The
numbers to the right of each picture tell the number (in thousands) of equilibriation sweeps

[after Janke and Kleinert {1986)].
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FIG. 12.17a,b. (continued)

1103

'
ST Er—Ty
T

i
cetiat e
B

!
H i
th

o Dl ‘
TR 08l i
. +* ord i
10 L

vl
T 081
" ran
10

vil

vil
| o8l 0.81
IR 71 ord R
[ : % ran
. 12 L L2
,,,,,, i
- vil - ) 4wl
ol 081 i e, T 0.81
v ord ko T ran
14 14

e

transition on crystal surfaces [recall Part II, Eqgs. (11.254), (11.125)] with

the identification T = 1/8g = By

The partition function (12.40) has a very similar appearance. In the
isotropic case with £=1 it differs by having an energy (—V-V)? term
instead of (—V-V). It has therefore been named the Laplacian roughening
model by Nelson (1982). In this model, one usually defines the tempera-

ture T g such that 1/8 in (12.41) is replaced by

2

m = ZBLR-

(12.43)

Taking the prefactor in (12.40) into account, the internal energy and
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specific heat of the model (12.41) are related to those of the melting
model (12.40) with £ =1 as follows:

3 | 3 1
H:z—BF—Z—ﬁ}zll[_R, C:E—-BMLR“{‘CLR, (1244)
3 i 3 l
U p= - U, Cpp==——u-++ 12.45
Uk 28k MR 2T NTE (12:45)

The previously calculated high and low temperature expansions, which in
the melting model had the general form

. 3 ,
—pBf = constant — ElogB + E e~ (12.46)
se o= + e (12.47
2 ( g ) 40
for high temperatures and
—pBf = constant — log B + Z e H (12.48)
1 :
=5 Yibe®. c=1+8Y b (12.49)
for low temperatures, now read
_BfI,R = Z e Prra (125())
Upp = Z ae P e p = Bir E ate Pree (12.51)
and
I =128 g}
~Bfin= —5log2mBLe) + L W, (12.52)
b*
u — (I/IBLR)[)‘ C; + (__,_______ + )ellf’ZﬁLR)h‘
LR ZB, R E ZBLR Z Bir 4B &

(12.53)

in the opposite temperature limits of the temperature 7, g.
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FIG. 12.18. Internal energy of the Laplacian roughening model of melting and comparison
with Monte Carlo data on a square lattice [taken from Janke and Kleinert (1986)].

T T T T T T 1 T T

3F int. energy 7
[y = 2 Lapl. rough
O MC heat.
* MC cool.

2+

1]

In Figs. 12.18 and 12.19 we have compared the calculated internal
energy with the Monte Carlo data for ¢ = 1. In the immediate neighbor-
hood of the transition point the agreement is quite bad, demonstrating
the importance of fluctuations. Since we have studied this model in the
previous dual Villain form. there 1s no need to do this once more here.
Let us simply mention that. for the simulation, 1t 1s useful to bring the
energy to a more convenient form. First we rewrite

Z (@-V)?(x))3 = Z (Z (X’(x + i)) — 4)_((x))~

X *i

=) {zoi(x)l—sﬂi(xﬂ)i(xw ) )?(x+i—.i))7(x)}'

X *i, =

i (12.54)
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FIG. 12.19. Specific heat of the Laplacian roughening model and comparison with Monte
Carlo data on a square lattice.

2.5 T T T T T T Y T T

D =2 Lapl. rough.
— spec. heat .

O MC heat
* MC cool

FIG. 12.20. The three types of vectors to the neighboring positions appearing in Eqs.
(12.55)—(12.56) and (12.61)-(12.62). respectively.

" S

The vector sums over i, j with i #j covers twice the 4 next-nearest
neighbours and once the 4 second-nearest neighbours. If the correspond-
ing vectors are denoted by =u. *a. respectively (see Fig. 12.20). we find

Y (F-FR(x)?

{2())7(x)2—8 Y X(x+H)X(x)+2 Y X(x+p)X(x)+ ), i(x+a))?(x)}

zp

)
D X’(x)<2()i(x) 8 Y XX+ 2 Y XX+ )+ Y X(x+ a)) ,

*i ES7) Ta

(12.

N
L
S
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which 18 the desired form. It can also be rewritten as
Y, (F-9X(x))?

— 4T (Flxe) = X0~ X (R )~ X0 =3 E (Rlx ) =X (0
: - _ (12.56)

where the first term is the ordinary discrete roughening energy
8T X (X)(—V-V)X(x) and the others may be considered as next and second
neighbor corrections. These are quite significant as can be seen by merely
comparing the transition temperatures. If the other two terms were
negligible, we should have T, x/8 =Ty where Tg i1s the roughening
temperature. For 3, g we find from Fig. 12.19

so that T, x/8 = (.208 which is much lower than T, = 0.605.

The previous studies of this model by Nelson (1982) and by Strandburg
et al. (1983) were performed on a triangular lattice for which the
Laplacian reads

v =

| 2

Z (X(x + ) = X(x)) (12.58)

and the vector i denotes the three oriented links

I V3 1 V3
1=(l.0), 2=(w§. +7), 3:('5‘"7)' (12.59)

In momentum space, one has
K-K=:{6—2[cos(1-k) + cos(2-k) + cos(3-Kk)]}.  (12.60)
which for small k behaves correctly like k.

The energy 1s the square of the expression (12.58). In analogy with
(12.54). (12.35) it can be rewritten as follows:
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FIG. 12.21. Monte Carlo data on the specific heat of the Laplacian roughening model on
triangular lattices of various sizes N = L° whose finite-size scaling behavior ¢ = AN + B
indicates a first order transition [(from W. Janke and D. Toussaint (1986)].
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Y (V-VX(x))?

X

_iy {422(,()2 — 2 X(x+DX(®)+ ) )'((x+i—j)/?(X)}

9 i+
iFt]

zg. ) {42;?(x)2 — 12 5 X(x+ i) X(x) +2 25 X(x+ i) X(x)

F2 Y X(x+ ) X(x) + ), X (x+ a)X(x’)}

Tp

:gz)‘((x){atzif(x)— 10 Y X(x+i)+2 ), X(x+p)+ E;}(Ha)}.
X *i *p *a
(12.61)

In this form the Monte Carlo runs are easiest to perform.
As with (12.56) there is yet another version

== - k! 4 - - ) = - b
L (VY)Y =5 L, {5 2 (X(x+3) = K(x)* = 5 (K(x+ ) = X(x))?

X X

- % Y (X(x + a) - )_((x))z} , (12.62)
in which the first term
10y o
?Z X (x)(=¥-¥)X(x) | (12.63)

corresponds to the ordinary discrete Gaussion model and the other two
terms represent next-nearest and second nearest neighbor corrections.

The simulation of this model by Strandburg et al. (1983) focused
attention upon the long-range behavior of the correlation functions, as
first suggested by Nelson (1982). From a change in this behavior they
deduce two closely spaced continuous transitions at

T, = 1.825 = 0.025, (12.64)
and at

Ti = 1.925 + (.025. (12.65)
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FIG. 12.22. The linear growth of the peak in the specific heat with size (= two-
dimensional volume) characteristic of a finite-size -function and thus for a first-order
transition {Janke and Kleinert (1988)].
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As far as the melting transition is concerned, this would mean that the
crystalline order breaks down in two successive steps. In the first step. the
translational order breaks down leading to a phase in which the atoms can
move around freely but only along the six crystalline directions (hexatic
phase). The second step destroys this remaining directional memory and
leads to a completely disordered state.

On the basis of our own data we believe that these results are not
trustworthy for three reasons.

(i) The Monte Carlo iterations of the model equilibriate very slowly
since the interaction energy involves nearest and next-nearest neighbors.

(i) The correlation function cannot distinguish whether the system is
in a uniform phase during a continuous phase transition or in a mixed
phase during a first-order phase transition.

(iii) The size of the lattice was not large enough to see the effect of a
very weak first-order transition.
Our doubts were enhanced when reinvestigating the order of the tran-
sition on a square lattice [W. Janke and H. Kleinert (1986)], which gave
only a single weak first order transition. This prompted a repetition of the
simulation of the triangular model by W. Janke and D. Toussaint (1986)
with much higher statistics than the one by Strandburg er a/ (1983). The
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FIG. 12.23. Finite-size behaviour of peak positions in the specific heat of the Laplacian
roughening model on an L X L triangular lattice. The intercept gives the transition point
[Janke and Kleinert (1988)].
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result suggests that the model on the triangular lattice has the same weak
first order transition as on the square lattice.

A further simulation of the triangular model was performed recently by
Strandburg (1986), ignoring any work that had appeared after Strandburg
et al. (1983). The conclusion of a finite-size scaling analysis was, once
more, that the model has two successive continuous transitions. By
comparison with the work of Janke and Toussaint it appeared that
Strandburg had not gone to large enough lattices to see the finite-size
scaling associated with the first order transition of the modei. This was
confirmed in a high statistics study by Janke and Kleinert (1988) [see Fig.
12.22]. Figure 12.23 shows the finite size scaling of the transition point.

This transition will be discussed in more detail in Chapter 14.
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CHAPTER THIRTEEN

THE MELTING MODEL OF THE COSINE TYPE

For comparison we shall now investigate the melting transition in the
cosine form of our model as defined in Eq. (9.147). For simplicity, let us
omit the B dependent prefactors and consider the slightly modified
partition function,

SIS

X,/ —r 2 X, <)

P

i

X exp {an E cos(Viy; + V)

s A}
A
- (Bv:g) Zcos(v,-y,-ﬂ y,-,-(x+i)) +(2By)y )i cos y,,-(x)}-
Volox, i ] X, [<j
(13.1)

In the last chapter we saw that the parameter A produced little change in
the transition temperature and entropy. We may therefore confine our
attention to the case of A =0 for which y= D&+ 2ué?/A— = and the
angular integrations over vy, are frozen out, leading to the partition
function [compare (9.120)]

1113
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kti
Z’ ot H [f i}é_’?(-ri)] eBL l}:x.g--;C(‘S(vt'Yf+v;Yi)"’ (zﬂf)l L‘Q,,cm(\',y,). (132)

A—-0 x j -7

In order to simplify the notation we shall, from now on. omit the subscript
V! and study the model as a function of 8 and £ in its own right.

13.1. INEQUALITY FOR FREE ENERGY AND THE MEAN-
FIELD APPROXIMATION

A study of this partition function within the mean-field aproximation
becomes possible by observing that Z’ can be expressed in terms of pure
phase variables

U(x) = e (13.3)

as follows:

7z =]] [fﬂ M] exp Re {B Y Uix) Ul(x + 1) Ui (x + ) Uj(x)

X, i - 2m X, i<}
+ 2652 Ul (x) Ui (x + i)} . (13.4)
The arrangement of the U;(x) variables in the first term can be pictured by
a distortion graph around the site x

x+] —x+i+]

X — X +1i

where each U,(x) is represented by a displacement arrow along the link i
with U/ (x) pointing in the opposite direction.

Using the variational methods described in Part I, Section 5.1, we can
now derive an upper bound for the free energy. For the trial partition
function we choose the simplest product of independent one-link integrals,

T 1. . .
7, = H |:f Q’ix_)} o Bralv] = H [[ﬂ] RN YT HI(J(CY)D,

— 2 X.{ 2ar
(13.5)
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where « 1s the analogue to the magnetic field used in the ansatz (4.28) for
the XY model. We now take the positive normalized measure

H du(x) = WM e BEty] (13.6)
Z(,x, 2T

and denote expectation values within this measure by ( ),. Then we
rewrite the partition function in the form

7= Z[]H[]d.u(x):I ekﬁ(ﬁ’ly,lfﬁini%l)’ (13_7)

X

where

BE'[v:) =B Z cos(V,y; + V,y,) + 2352 cos V,y;. (13.8)

X, i<j X. i

Now we make use of Peierls’ inequality, as in (11.5.12), and obtain the
bound

~-BF = -BF, — B(E'[%‘] - En[%])o- (13-9)

The expectation value of E; is found in the same way as in (11.5.16):
Since Z, is a product of independent integrals on link variables U;(x), the
expectation values of all U;(x) is the same:

1 [7 dy .
W= [du U =5 [ B et
— ii __1__ )74 I (a)
=7z aaz() 1P(a) da Iy (@) = 10( ) (13.10)
Let us call this expectation value u
1 «
u=(Ui(x))y= 102 ; (13.11)

Then we can calculate
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CEviDo = 2 a{U;(x) = NDau. (13.12)

X, 7

The expectation value of the full energy (13.8) is found as follows:

B(E v =11 [ f du(X)] (B Re Y, U()U; (x+ i) U (x + ) Ui(x)

X X, i<l

+ 2B¢Re ), Uf(x) Uy(x + i))

= N(BD—(D%I—)M + 2,851)u2) .

Inserting this, together with (13.12), into (13.9) we find the following
bound for the energy density,

—Bf" = ﬁQQ—Dz——l)zﬁ +2B£Du? — Dau + Dlogly(«). (13.13)

This free cnergy has an important property: when changing S, one
changes directly the quartic term «’. This is in contrast with the XY
model, where only the quadratic term has a 8 factor. As we can see
immediately. it is this property which makes the melting transition first-
order.

The value of « in the free energy is given by (13.11), but just as in the
XY model, we can see that we might as well allow u to be an arbitrary
variable and determine it by maximizing the right-hand side in « and u,
independently. This gives the two cquations

u=I{a)(a). (13.14a)
2AB(D — Du' + 2B&u] = «. (13.14b)

The B-dependent «* term in (13.13) appears here as a cubic i’ term which
leads naturally to a first-order transition. This goes as follows. In the limit
a— 0, B approaches the value B, = 1/2¢& with {7 = 0. This is the point at
which the mean-ticld solution « =0, a = 0 destabilizes. As a increases.
the free energy —f' decreases first from zero to negative values. then,
starting from, say, B, it turns around and begins to grow monotonically
[see Fig. 13.1]. In the region B, < 8 < B,. the free energy as a function of
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FIG. 13.1. Signal for the first order transition at 8,,. As « is increased from zero, the free
energy moves along the arrow. The potentials are visualized on top of the figure.

ﬁd

Y

« and u has two minima (one at the field origin and one away from it),
and one maximum (between the two minima). The phase transition
occurs at a place 3, when the free energy at the second minimum passes
through zero. There, the order parameters « and v jump from zero to a
finite value. This is the signal for a first-order transition. In order to be
specific, let us fix & to be 0.25, 0.5, 0.75, 1. Then we take « from zero to
infinity, calculate u(a) from (13.14a) and B(«a) from (13.14b). The
resulting functions can then be inserted into (13.13) and we obtain the
free energy —f' as shown in Fig. 13.2 for D = 3. The transition points
extracted from this are plotted in Fig. 13.3 as a function of ¢ and
tabulated in Table 13.1.

In D =2 dimensions, the situation is somewhat different as shown in
Figs. 13.4, 13.5 and listed in Table 13.2. Only for ¢ <1 is there a first
order transition at the mean-field level. For ¢=1 the transition is of

second order. In fact, close to £ = 1 the mean-field free energy has the
Landau expansion

—Bf"™M = (Bfwl) o +%(1 — o’ -

= a4 (13.19)

2
which clearly shows that the point &= 1 is tricritical. We shall see later
that fluctuation corrections change this result drastically with the con-
sequence that melting in the two-dimensional cosine model 1s always a
first order transition.
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FIG. 13.2. The free energy of the cosine melting model as a function of 8¢ for various
values of £ in three dimensions. The intercepts between the high temperature expansion and

the one-loop corrected mean field gives the transition points (8,, = 1.69, 1.19, 0.95, 0.80,
0.71 for £=10.25, 0.5, .75, 1.0, 1.25). They are compared with Monte Carlo data in Table
13.1. The one-loop corrections can be taken in its limiting from (13.67) [i.e., involving only
the pure phonon fluctuation determinant calculated in (9.87)]. The full one-loop correction
shows practically no deviation from this down to the transition point. It merely changes the
curves in the irrelevant neighborhood of the mean-field transition point (where the dashed

curve intercepts the B¢ axis) as indicated by the dotted curved bottom piece for £ = 1.
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FIG. 13.3. The transition temperature of cosine meliing model for D = 3. extracted
from Fig. 13.2 (see Table 13.1) as compared to the Monte Carlo simulation of Jacobs and
Kleinert (1983). They are fitted reasonably well by the formula g8, ~0.77¢ 0397,

T
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' melting transition
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TABLE 13.1.
particular, the intersection of mean-field-plus-one-loop with the temperature curves (LT,

HT). The sixth column shows the empirical best fit to the ¢ dependence of 5,,.
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Transition data of the D = 3 cosine melting model from various sources, in

¢ ME HE pLT.HT MC 0.77& 0597 AGLTHT AsMC
0.25 2.00 1.09 1.69 1.73 1.76 1.68 1.64
0.50 1.00 0.77 1.19 1.17 1.16 1.77 1.58
0.75 0.67 .59 0.95 0.91 0.91 1.65 1.45
1.00 0.50 0.47 0.80 0.786 0.77 £.45 1.33
1.25 .40 (.40 0.71 0.67 0.67 1.20 1.20

FIG. 13.4. The free energy of cosine melting model in two dimensions, taken from Ami
and Kleinert (quoted in the Notes and References). From the intercepts we extract the
transition values 8,, = 4.46, 2.30, 1.71, 1.38, 1.18, 1.04 for ¢=0.2,0.4,0.6, 0.8, 1.0, 1.2 as
compared to Monte Carlo data 2.35 =0.05, 1.36 +0.02, 1.15 =0.05 for £ = 0.4, 0.8, 1.0 and
obtained by Janke and Kleinert (sce Fig. 13.5). The approximation has a second-order

transition for ¢ = 1.
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The internal energy per site is given by

fMF_,_i_ PMEY D—-1, 2| - &
w = ffB( Bt = D[ 5 u+2§u] (E)

1

N

(13.16)

and is shown in Fig. 13.6 for D =3 and in Fig. 13.7 for D =2 (more
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FIG. 13.5. The transition temperatures of the cosine melting model for D = 2 (extracted
from Fig. 13.4) as compared with the Monte Carlo data of Janke and Kleinert (1984). A
reasonable fit is B, =~ 1.15¢ 78,

-2 -, 7 I n1e 2
Ty
2D melt (cos)
5 .7 trans. temperature
= Bu(£) = 1156707
10 ’/” * —14 m . .

precisely, the figures give u™" = u'™MF + D[(D — 1)/2 + 2¢]. Notice how
in the latter case, the curves for § = 1.0 and 1.2 display the second order
transition at the mean-field level.

The entropy per site is given in terms of the internal energy u'™" and
the free energy f'™F by

SMF — BurMF _ Bf’MF' (1317)

Since f' 1s continuous, the transition entropy is determined by the jump in
the internal energy u’,

As = BAu’. (13.18)

Then if Au” denotes the jump in the powers p of the order parameter u,

AsMF = — [B@M‘ + ZBfDAuZ}. (13.19)

Using the fact that —Bf" is zero just above and below the transition, one
has

DD -1)

5 Aut + 28D Au” = A(Dau — Dlogly(a)), (13.20)

B

so that As can also be rewritten in the form
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AsM¥ = A(Dau — Dlogly(a)). (13.21)

When comparing the curves with those of the Villain-type model
calculated in the last chapter we have to keep in mind that the physical 8
and 28¢ are actually By« and (2B¢€)y : so that, in fact,

d

A = gL [W(B) LA

pye Aut + (2B€) v (B)DAu] (13.22)

13.2.  FLUCTUATIONS AROUND THE MEAN-FIELD SOLUTION

In the XY-model, we were able to derive corrections to the mean-field
energy by rewriting the partition function as a theory involving two
fluctuating complex fields. The new field energy had the property that the
mean-field approximation gave exactly the expression which appeared in
the bound for the free energy (13.14). The one-loop correction gave
sufficient improvement, resulting in an adequate description of the overall
behaviour of —gBf" in the cold phase up to the neighbourhood of the
phase transition.

We shall now follow the same approach here. For this we first use the
trivial identity (11.5.74) to liberate the phase variables U;(x) from the unit
circle and rewrite®Z’ as follows [compare (5.75), Part II]

7 =11 [ f”‘ da,-l(_x) da;z(f)] I1 { f ; dut;1(x) du,—z(X)]

' —i 2ri 2ri x. i

X exp{Re [B Z w,(x)uf (x + 1) uf (x + j) u;(x)

X, [<{§

+ZB§Z 1L(x)u()i:-H)] ——E(a (x) u;(x) + c.c.)

+2 loglo(laf(x)l)}’ (13.23)

where a;;, 4;; and «;5, u;> are the real and imaginary parts of the complex
fields «;, u;, respectively. Maximizing the exponent gives the equations

u=I(a)/lye), (13.24)

2[B(D — D' + 2B¢u] = a, (13.25)
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for each i = 1, 2, 3. These are precisely the equations (13.14a.b) and we
see that the saddle-point approximation to (13.23) does indeed satisfy the
bound (13.13).

Let us now calculate the one-loop corrections to the mean field solution
(13.25). For this we rewrite o; as a + daf + ida! and u; as u + duj + idu;
and expand the exponent in (13.23) up to quadratic order in 8o;, du,.”
The linear terms vanish, since a and « lie at the maximum. The quadratic
terms can be written in the form

1 : ’ 0 f ’
~B5°E = =3 X, (5ul. 3af)() Mijx. x“(iﬁ%)

1 [ s o wry[ O (X))
_522’ (Sup Sai)(x) Mlj(xa X )(aa:(xr)) . (1326)

The S« éu and da b parts of the M matrix are the same as in the XY
model, apart from an extra §; factor and we can write

mg(x, X’) ““18,1 8x,x’
Mi(x, x') = &2F , (13.27)
( ) "‘l(SU 6x,x' 5,;',‘—2‘6,“,"
da
m::j(x, x’) “16,] 8x,x'
M'(x, x') = 1 dF , 13.28
( ) _iaij ax,x’ 61’}'— ——6x.x’ ( )
a da

where

dF _1L(a) _u  d°F_ (Il(a))' ~ (1 -

da  alfa) a  da® Iy(a@)

I

- uz), (13.29)

and we have rotated the contour of integration in d«; to run along the
imaginary axis [just as in (I1.5.83) and (11.5.84)].
The explicit calculation of the mj; matrices governing the &y,

fluctuations requires more work. Consider first the quartic pieces in u;
(of 13.23). They give

“The superscripts € and ¢ refer to “longitudinal”™ and “transverse” with respect to the ground
state expectations e, u in the complex plane (not to be confused with the polarization
directions in space, which are denoted by L and 7).
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52(1 Y uf (%) wi(x i) up(x + ) uf(x) + c.c.)

2x,i<\j

- “? VY (61,1 (x) B, (x + ) + 8ui(%) St (x + §) + S (%) 1/ (x)
X.[<l]

+ Su;(x + 1) du; (x + j) + Bu (%) duy(x + 1) + S,/ (x) Su;(x +j) + c.c.]

= %2 E [Su (x)(1 + V) 8u,; (x) + 8u (x)(1 + V;) b (x) + Suj (x) du; (x)
X, i#] '

+ (1 + V) éu;(x)(1 + V) du,(x) + Sltf(x)(l + V) du,(x)

+ 8u/ (x)(1 + V;) du;(x) + c.c.]

:u; Y. [28uf(x)(1 + V) 8u,(x) + 28] (x)(1 + V) 1, (x)
X.[#)

+ 8 (x) duf (x) + du/ (x)(1 =V, + V, = V.V ) du;(x) + c.c.].  (13.30)

The second term can be reorganized slightly as follows

Y, Sui(x)(1 + V,)du;(x)

X, [#]

=2 Z Su (x) du;(x) + E Su (V; + V) du;(x)

X.f
i),k =cyclic

=2 Y 8u] (%) Sty (x) + 3 8uj (%) ) Ve du;(x) — ), 81] (x) V,6u,(x)
X, ! X, i { X, {

=2 E [511,:*(1()(1 + V; V") Su;(x) — duf (x) V; 3uf(x)} . (13.31)

From these expressions we can easily extract the matrices mj;'(x, x') in
(13.28). For this, we replace the sum ¥,,; in (13.30) by L, ;(1 — ), for
example:

Yo sul(x)(1 + ;) 8u;(x) = 25 u; (x)(1 — 8;)(1 + V,) dug; ().

X, [#j X, i,

Then the quartic piece gives the following contribution to mj'(x, x'):
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‘ V.V,
my (X, X)|quare = _3”2[2(1 — o)1+ V) + 43:‘;‘(1 + (4 6) - 28, V,

+(1-8;) % (1-8,)1+V,—V, - V,.V,)] 5(x — x'),
(13.32)

where the upper sign holds for the longitudinal (real part), the lower for
the transverse (imaginary) part of &u;. In the last term we observe that

51'1'(1 +V, + VJ' o vai) = 51;‘(1 + Vf - vi - vaf) = 5fj (13-33)

so that the two §; terms in the second row are, in fact, the same and
cancel. Moreover if we use the fact that between real fields

— Y 8u(x) V,8u,(x) = Y, V,8u:(%) Su;(x) = D, 8uj(x) V; 8u4;(x)
i i

0]

= ), 8u;(x) V,0u;(x), (13.34)
i

then (13.32) reads

— —Buz{[z(l + V:) + 1+ (1 + 2V,) + Vivj

m:f] ’(X, xl) quart

+0,[-2(1+V)+4+V,V, -2V, £ 2]} 5, . (13.35)
In momentum space we set 1 + V,=¢*, 1 —V, =¢7* and find
My (K)] quare
— —Buz{i(efk‘ = 1)e ™+ 1)+ 26,-]-(2(1 cosk, —2cosk; ¥ 1)}
- 2K, K, — 2(D — 3)),

—2K;K; = 2(D - 1)),
(13.36)

_ Buz _(eik'. + 1)(_6_”(’ + 1) + 5’](K . I:(

K,'Kj + 6,I(KK
where we have used the fact that between real fields in x space only the
real parts of the matrix elements contribute.

Consider now the piece quadratic in u;(x) of (13.23). Its fluctuation
energy is
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1
28¢5 Y. (6] (x)(1 + V,) u,(x) + c.c.) (13.37)
X, i
so that the matrices mf,f"(k) are extended by
mé’t(k)lquadr = 4B¢écosk; 5; = 4B&(1 — %Kr'l?i) dij (13.38)
in both the longitudinal and the transverse parts.

Combining all terms, the fluctuation matrices MY and M’ read, in
momentum space

Buz{P‘(k)+6,j[K-K+2(%— 1) K.K,— (453+2(D—3))]} ~i8,

€0 — “
M(k) . . (1_51’42) :
(13.39)
Buz{Pf(k)Jra,,[K-KJrz(é—l)K,E,—(4§+2(D—3))]} —i8,
M (k)= u |’
—is, 8~
o
(13.40)

where we have introduced the matrices
Pf] = (e™ + 1)(e”™ + 1), Pi= (e — 1)(e”‘f - 1) = K,-Kj. (13.41)
We now integrate out the 8a®' fields. This leads to the following

fluctuation matrices in éu‘"’ space alone:

u Lt2

D/(k) = Bu* [ Pik)+K-K§;+2 (%* 1) KK, 8,— (4 S 4 2(D— 3)) 5if]
(13.42)
Dj;(k) = pu* [K,-I?, + K-Ka,-,-+2(f-2~— 1) KK;8;— (4;§§+2(D— 1)) 51-,]

+ -8

TR

ij - (13.43)
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We now make use of the extremality condition (13.25) and see that the
last two terms in (13.43) cancel. Thus the matrix Dj;(k) describes massless
fluctuations. This was to be expected on the basis of the Nambu-Gold-
stone theorem, since the imaginary parts of the fields du’ point along the
valley of symmetry in the energy of the disorder field theory (for phase
rotations u — e'u, a— e'’a). These massless fluctuations describe sound
waves in a T # 0 crystal. In the limit of low temperature, they reduce to
the sound waves of the initial elastic energy. Indeed, in this limit, «— 1,
du;(x) = iudy;(x) — idy;(x) and the fluctuations du/(x) can be identified
with 8y,(x). Thus the matrix D(k) contributes a fluctuation energy

1 — _ -
22 ¥ on KR, + KK, + 26— 1) KKidy 167 (K).
k.i,j

This agrees with the fluctuation matrix for the elastic energy (9.10),

% = g Z yi(x)[FV,Vj - VV (Sij + 2Vjvi 6,']' - 2§Vrvl 5:’]’] 'Yj(x) (1344)

x.i.J

after over going to momentum space [see (9.64)].

For increasing temperatures, the matrix Dj;(k) describes the softening
of the elastic constants upon heating. As long as the temperature is still
small, the extremality conditions (13.24) and (13.25) can be solved
approximately as follows:

u—1 _Zl—a_ xiﬁ + 0(%) a— 2AB(D — 1) +2B8).  (13.45)

Thus v decreases linearly with temperature as

1
u—>1—i—>1

20 ABMD-1)+28¢]

(13.46)

It remains to properly normalize the fluctuation energy. For u+#1 we
have

du(x) = udy;(x), (13.47)
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which leads to the elastic energy

Lo LY by (—KBu(K.K, + K-K 8, — 2K,K,5,)
T 2 N
+ 2B&u” KK, 5;]8y;(K). (13.48)

From this we extract the elastic constants at non-zero temperature,

MDD _ e ED_ 2 (13.49)
I 3

When comparing these results with the experimental softening of the
elastic constants one must bear in mind the fact that 8 and 28¢ do not
reflect the proper temperatures but the inverse Villain transforms [recall
(9.124), (9.125)]. These, in turn, were assumed to contain the softening
effects of the cubic terms. Since we have given a detailed study of the
temperature behaviour of the elastic constants at an earlier stage we shall
refrain from repeating such an analysis within the present model.

The longitudinal modes described by the fluctuation matrix are ail
massive. The mass reflects the difficulty in creating defects. For low
temperature, the mass diverges to infinity. This follows directly from the
limit (13.45) according to which

ul —2a” + O(a) ~ 8[B(D — 1) + 2B¢F, (13.50)
] — = — 2
(9

which grows like 8, whereas the gradient terms in grow more slowly, like
B [see (13.42)].

13.3. ONE-LOOP CORRECTION TO THE MEAN-FIELD
ENERGY

Having analyzed the fluctuation modes we can now turn to calculating
their fluctuation determinants. From the integrals over 8¢; which we
performed to arrive at the pure 8u; fluctuation matrices (13.39) and
(13.40), there is one trivial contribution to the free energy, which 1s

D
_ﬁfll loop _ —5'|:10g (1 - E — uz) + logg] . (1351)
o (04
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After this, the integrals over &u;(x) produce the determinants
(Det D) "?(Det D) "> which give the remaining free energy at the
one-loop level,

_ I'loop _ _1 de ¢ t :
Bfz 2 ) @my? [trlog Df(k) + trlog D'(k)]. (13.52)

In order to treat the fluctuations of real and imaginary parts éu on the
same footing it is useful to introduce the following abbreviations

et = Bu2(1 - uz) , g = ;BuzE , (13.53)
e

43

and

: _ & — 3 D-3
Nf-f—1+gt'r|:K-K+2(;§—l> K';K,-—4—2—2{D_1 . (13.54)

Then we can rewrite (13.52) as

D u u 1{ dPk , _

_ lloop . = _ 22 el te _ _Ept
Bf. > (log (1 ~—u ) +log a) : f ( ZW)D[tr log (N{8; — £P})
+ Nlog (N/8; + £'P}))]. (13.55)

The first part cancels with (13.51) and the full one-loop correction energy
becomes

Q0 1 d[)k 1
—gf!! p=__j l:Ecost+ZN,’+trlog(6,,—sfPé)

2J) 2mP N}

1
+ trlog (é,ﬂr E’N;P,‘f-)]. (13.56)

In this form, the logarithms can be easily calculated by expanding them
into a power series in Pj":

- 1 . 1 A > 1 1 n
- El;;(e‘)”tr(mPf,-) =) —(—s’)”tr(—P’»-) . (13.57)
n= t

ey
n=1"n Ni
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The traces can be calculated by observing that dve to their factorized
forms, the matrices

Plik) = —P‘ (k) (13.58)
are essentially projection matrices,

(P(k)); = Zﬁmﬂ)fmm

k, 1 k, k; dcos®k,/2\ ~,
_ 2:_ Mot 2 On B — =y Pt
4c0s L cos > N64cos > coS > (? Nf, ) i

and similarly

4sin’ k,,/2 o~
(P'(k))% = (E N ) P (k). (13.59)
Let us denote the sums on the right-hand side by C*’(k), respectively,

le.,

k
cos’ -2,

= D

2
(13.60)
mn Nf;[ 2 &r_
2

sin
Incidentially, these sums are the same as tr(Pé '(k)). Using the relations

(pfr(k) :‘1’ — Ct,t(k)n—i ﬁéf(k),
tr(ﬁf’.f(k))n — Ct'.l(k)nfl tr ’P‘f,r(k) — Ct,t(k)n, (1361)

we can rewrite (13.57) as

ax

- L Ly - B (e O (13.62)

n=1
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which can now be summed up to
log(1 — & C(k)) + log(1 + &' C'(k)). (13.63)
We thus arrive at the one-loop correction to the free energy,

__Bfl loop _ _l de
2J 2mP

{E (log Nf + log NY) + log(1 — &' C'(k))
+log(l + &f C’(k))}~ (13.64)

This expression can be calculated numerically and the result is included in
Figs. 13.2 and 13.4, where it is added to the mean-field energy (for details
see the figure captions).

For very low temperatures, the real modes are very massive and can be
neglected. Then only the sound waves contribute. Their contribution is
found directly from (13.42), (13.48) by inserting the limits (13.45)

-1
trlog(Df(k)) — Dlog [1 — ch — uz] : (13.65)

The term (13.65) cancels with the corresponding term in (13.51). The
other term in (13.51) has the limit

D o D
= log=— = log[2(B(D - 1) + 2B8)]
2 u 2
and the full one-loop correction becomes, for very low temperatures,

D
—Bf1P 52 5 log[2(B(D — 1) + 289)]

—ldek trlog[B(K.K;, + K- K&, +2(¢§ — 1) K;K; 8
2 (2,”)1) og|B(K;K; ij (6 - 1)K:K;8;)].

(13.67)



13. MELTING MODEL OF THE COSINE TYPE 1131

This has to be added to the mean field energy

DD =1) s 2peDut - Dau + Dlogla).  (13.68)

_ tMF _
BT = g

Inserting the high B limits for u, « of Eq. (13.45) we find

DD -1 1
—pr™ —p 28 4 2pen — L ap(a(D — 1)+ 268)
- Da(l - 1) + Da — Qlog(Z'rra)
a 2
8D (Dz_ D, 2BED — g—log(}n'a)
-*BD(D;1)+ZB§D—§log(2fr-2[B(D—1)+2B§])+O(é).

(13.69)

Adding to this the one-loop correction (13.67) gives

D(D -1 D
_BfMF+LIe pB_);B ( > )+ZB§D_ElOg(2WB)
1 d% = T K
3 | Gmyprloa(KiK; + KoK, + 2(6 = DKK:3;).

(13.70)

This 1s just the pure phonon free energy of the partition function (13.2).
The first term contains the trivial 8 dependence of the cosine energies for
zero strain. The trace log is the sum of the purely quadratic fluctuations
for small displacement fields, where the quadratic part of the cosine
energy agrees with the energy of linear elasticity [see (13.44)].

After plotting the sum of the free energy (13.67) and (13.68) in Figs.
13.2 and 13.4, we find, in D =2 and D = 3 dimensions, that up to the
melting point (i.e., from large 8 down to B,,) it is practically the same as
the complicated full one-loop curve based on a tedious numerical
evaluation of (13.64) (see the ¢=1 curve in Fig. 13.2). Taking the
derivative with respect to B we obtain the internal energy u'™F =
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FIG. 13.6. The internal energy of the D =3 melting model as a function of B¢ for
different &(= 0.25, 0.5, 0.75, 1.0, 1.25). The left-hand branches are the high temperature
expansions, the right-hand branches, the mean-field expressions. The one-loop correction
practically drops out when forming —(a/8B)(~Bf'™"). The vertical lines indicate the jumps
at the transition temperatures. From these we can calculate the transition entropies
As = B,,Au and find the values listed in Table 13.1 and plotted in Fig. 13.14 where they are
also compared with Monte Carlo data.

20 T | B T 1
internal energy D = 3 cos melt

18
16
14
12

ul/é
10

—(8/0B)(—Bf™F) as shown in Figs. 13.6, 13.7. Since the one-loop correc-
tions are practically constant, for =g, they disappear from the
derivative and the high 8 energies are given directly by the mean field
approximation. The curves can be compared with Monte Carlo data and
we see that they are in excellent agreement with each other (see, for
example, Fig. 13.8 and 13.9).

13.4. HIGH TEMPERATURE EXPANSION OF THE COSINE
MELTING MODEL

In order to determine the melting point of the model without recourse to
Monte Carlo simulations we have to proceed as in the XY model,
calculate the high-temperature expansion of the free energy and sece
where it intersects with the loop-corrected-mean-field curve. For this, the
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FIG. 13.7. The internal energy of the cosine model in two dimensions (from Ami and
Kleinert. quoted in the Notes and References). From these curves we read off the entropy
Jumps as shown in Table 13.2 and compared there with the Monte Carlo data.

T T 1 T |
9 internal energy T
£=0.2 D = 2 melt (cos)

ul¢

FIG. 13.8. Comparison of the calculated internal energy (D=3) from Fig. 13.6 for
£€=1 with data from Monte Carlo simulations on an 8’ lattice (see Table 13.3).

9 T T T T T T T T T
ul D =3 cos melt T
i int. energy 1
6l * MC heat.
i O MC cool.
high T ]
3t o 5 i
| MF + 1 loop™&
1 i 1 1 4 1 1 1 L
0 1 2
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FIG. 13.9. Comparison of the calculated internal energy (D = 2) of Fig. 13.7 for £ = 1 with
data of the Monte Carlo simulation by Janke and Kleinert (1984).

5 T T T
ul
D =2 cos melt
ar int. energy |
* MC heat.
3h O MC cool.
on 8 lattice
2 high T .
/ \.\“:\/\
1t MF + 1 loop . IR, .
!‘%‘%} ;

cosines are again expanded as in Part II [Eq. (4.15), and following] and
the partition function (13.2) becomes

Z' = Iy(B)VIPP-UN [ (apeyPN Y Y, 11 £z,(8)
(3,00, i<j) (7,00 x.i<j To(B)

I5,(2B¢) [ f,, dv-(X)] 5o o
x fa \ePs] “wyilay e:E,“,qﬂ'q(VrY; + Vi) + ')“~‘””"-'7f, 13.71
g 1,(288) H —w 2 ( )

By rewriting the integrals over vy;(x) as

H[f i d‘Y(X):| e"’.Exviaij’(x)Yj(x)’ (1372)

X, I —ar 27T
with ;; = ;;, we can evaluate them and find the stress conservation law
Viﬁij-(x) =0, (13.73)

so that the high temperature series reads

7 = IO(B)(1/2)D(D—I)Nlo(zﬁg)DN

If’r(")(ﬁ) IU-(X) (2B§)
o7 ; ; , 13.74
5 {6,,(§i2j} Via"’oxgj 1(B) 1—[: 1y(2B¢£) ( )
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We can now perform the same graphical expansion we employed
previously in the Villain form, the only difference being that instead of

e~ PR Ex iy @i+ (12O%070) (13.75)

the weights of the graphs are now given by

1,8 11 1n.08)
x,lilj Ip(B) ::I;:[ 1(2B¢)

(13.76)

These are the same for large 8 for which 1,(aB)/ly(aB) has the limit
eﬁ(lfza,e)a?_

We can now insert the lowest graph, discussed already in Chapter 2,
and find in D dimensions

Z' = Iy(B) POV Iy (2pE) PN
X [1 +ND(D - 1)(I‘(B))4(l‘(2‘85))4(12(2‘89)2+ . ] . (13.77)

In(B)) \Lo(2B¢€)) \In(2B¢)
and hence
~pr' =22 Diog 1(8) + Dlog Li265)
LB\ (1284 L(2BE) \*
+ D= 1)(10(6)) (10(265)) (10(235)) re (1379

In three dimensions, this term suffices to fit the precritical stress
fluctuations on the high temperature side. In two dimensions, we have to
carry the expansion to higher order. This is most conveniently done by
taking recourse to the expansion in terms of integer-stress gauge field
configurations whose diagrams were counted before in Fig. 11.1 in the
context of the melting model of the Villain type. In order to use those
results for the cosine model, we rewrite the product (13.76) in the form

11z osx0(B) |1 Ioox00 286 [ 1 I g.x0(2B€).  (13.79)

Performing a trivial shift in x, the second and third products become
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I 75 ¢ 200288 | Koo 50 (2BE). (13.80)

Thus, the Bessel functions I (28¢) which appear in the high-temperature
series are determined by the values of the two-dimensional Laplacians
V,V,, V,V, for each graph. They can be extracted from Fig. 11.1 and
are listed in Table 11.1 (actually, their squares since these were relevant
for the Villain form of the energy). In the present case each number m;
on the graphs in the fourth and fifth columns of Fig. 11.1 amounts to a
Bessel function I, (2B8£). For instance, the graphs ——and 44—
give 1,286’28 and  L(2BO°N(2¢)° from i L]

1

and

1
L1 1 149 h , respectively. The first Bessel function in (13.79)

function in (13.79) occurs with the index

V. VoX(x)=X(x) —X(x— 1) —X(x —2) + X(x — 1 —2). (13.81)
We can obtain these numbers by placing an elementary square : : on
top of each graph, site by site, and counting the occupied corners with
alternating sign. Each number to gives a factor I (8). For example, the
graph

(13.82)
gives 1,(B8)*. So do the graphs
R | I k?o I o |-
@01;0_0 0 (13.83)
1 ] 0 }—1 : T ETEes
1 ‘ 0 0 -1

The indices of the Bessel function I; (B) are listed in column 7 of Fig.
11.1 (with 1* for 1,(8)*, etc.). As long as there are no graphs with doubly
occupied points, the index V,V,X can only be zero or one and the power

of 1,(B) is directly equal to 2(n — m). If e(n,, m;, m,) denotes the free
energy terms

) = (11(6))"'(11(2B§))m‘ (12(235))"’2, (13,84

1(B)) \1o(2B8)) \In(2BE)
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then the high temperature expansion in two dimensions reads

—Bf =log I(B) + 2log I,(2B¢) + 2e(4, 4, 2) + de(4, 8, 2) + 2¢(4, 16, 0)
12 16 20

+4e(4, 10, 3) + 8e(6, 12, 2) + 4e(4, 24, 0) + de(4, 12, ) + . ..

20 22 24 24
(13.85)
The disconnected graph gives a further
—Bf*c = —18e(8, 8, 4). (13.86)

24

On the bottom of each term, we have listed the total power of
B(t = ny + my + 2m,) to which it reduces for small 8. As a cross check,
we let B grow very large in  which case the product

5 (B) 15 (2B¢) 15 (2B€) must tend to exp[—(1/8){n — m + m(1/£)}],
where n, m are the numbers in the expansion (11.38) in terms of

s 3)onl )

(1/4)ym, + m, and (n,/2) + (1/4)m; + m, are equal to the numbers m
and » in the expansion (11.38), respectively.
The internal energy associated with each term e(n;, m,, m,) is given by

d
__e(nla mi, mZ)

3B
= _n (i@)”"(ll(mf))'"'(b(zﬁe))"“[] 1 (11(3))2]
"\ 1o(B) 1(288)] \Ix(2B¢) B1(B)  \lo(B)

o (h(ﬁ))'"(h(msg))"“‘l(12(268)’"22 ; [1 _1 L@py (11(265))]
"\1(B) \1o(288) 1,(28¢) 2BE1,(288)  \L(288)

o (II(B))"' (11(236))’”1 (12(235))"’2‘12 g[h(zﬁf) 1 L(2B8)
\io(B)) \1(288)) \1,(2B¢) 1(2B¢) &8 1,(2B¢)

_1(288) 12(2B§)J
1(2B88) 1,(28¢) |
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TABLE 13.2. Transition data for the D = 2 cosine melting model (with the same notation
as in Table 13.1). The theoretical entropy jumps are now much less reliable than those for

D = 3, due to larger fluctuations (after Ami and Kleinert, and Janke and Kleinert, quoted in
the Notes and References).

¢ MP e gLraT gMe [15£7 078 AgLTHI AsME
0.2 2.50 1.77 4.46 439+ 0.15 4.04 0.7% 0.48
0.4 1.25 1.12 2.30 2.35x0.05 2.35 0.70 0.41
0.6 0.83 0.81 1.71 1.71 0.69

0.8 0.62 0.62 1.38 1.36 + 0.02 1.37 0.66 0.35
1.0 0.50 0.50 1.18 1.15 +0.05 1.15 0.62 0.30
1.2 0.42 0.42 1.04 1.00 0.60 0.20

If we denote this by wu(n;, m;, m>) we can obviously write
u(ry, my, m)

1
= —n[e(nl — L, my, my) — [—Se(n], my, my) —e(n, + 1, my, mz):|

1
—ml[de(nl, m, — 1, msy) — Be(n,, mp. m>) — 2ée(n,, m; + 1. m-)

2
—mz[Z{fe(nl, m+ 1, m-— 1)——§~e(nl. my., my)—2&e(n,. my+1, m,)

(13.87)

The free energies are plotted in Figs. 13.2, 13.4 for D =3 and D =2 and
various values of the anisotropic parameter & Their intercepts with the
one-loop corrected mean field curves determine the melting points 8, as a
function of & as shown in Tables 13.1 and 13.2 and in Figs. 13.3 and 13.5.
The internal energies are shown in Figs. 13.6 and 13.7. The compare very
well with Monte Carlo simulations as can be seen in Figs. 13.8, 13.9.

In order to find precise values of 8, (Monte Carlo) for the melting
point we proceed as in Section 12.4 for the Villain version of the melting
model. We place the system in a mixed initial state (half solid, half
liquid) and iterate the internal energy many times. Above and below S,,,.
the system runs immediately into the solid or liquid phase. Melting occurs
at the turnover point. Thus we see in Fig. 13.10 that in three dimensions
we have, for é =1,
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FIG. 13.10. The development of the internal energy of a mixed initial state (half solid, half
liquid) over many Monte Carlo iterations in the D =3, isotropic (¢ =1) model. This
determines the transition value S,, = 0.786.
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500 1000
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B = 1.786 (D=3,§&=1). (13.88)
The accuracy of this value is again tested by placing the system once in
a solid and once in a liquid initial state and observing that after many
iterations the energies are extremely stable. The resulting figure looks
quite similar to that of the D = 3 Villain model (see Fig. 12.8) so we do
not show it here. From the distance between the stable internal energies,

Au=169 (D=3, ¢=1), (13.89)

we deduce the transition entropy

As = B,,Au = 1.33 (D=3, £=1). (13.90)

In two dimensions we go once more through the same procedure.
In Fig. 13.11 we exhibit the development of the mixed initial state for
=114 1.15 1.16, 1.17 from which we extract

B = 1155, Au=1034, As=039 (D=2,¢&=1). (13.91)

These values are confirmed by a stability test of the solid and the liquid
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FIG. 13.11. Analogous plot to Fig. 13.6 for the D = 2. isotropic (¢ = 1) melting model
giving f3,, = 1.155.
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phase shown in Fig. 13.12 for various values of g in the neighborhood of
Brn-

Similar runs are performed in D = 3 and D = 2 dimensions for different
values of & The results agree with the analytic calculations plotted in
Figs. 13.3, 13.5 and tabulated in Tables 13.1, 13.2. The data fit very well
with the following empirical formulas

B~ 0776977 (D =3), (13.92)
Bn=115%"% (D =2). (13.93)

For ¢— 0, the melting temperatures approach zero since at £ =0 the
crystal becomes unstable with respect to shear stresses [recall the stability
conditions (1.17), (1.216)].

The good agreement between the analytic and Monte Carlo values
shows that, for the free energy, the contribution of cven the lowest
non-trivial graph may be neglected up to the melting point and we might
as well extract the intercept using only the first two Bessel function terms
in (13.78). This corresponds to the physical fact that, as a liquid is cooled,
the pre-transition fluctuations, which tend to form microcrystallites before
the on-set of freezing, are extremely small.

Just as before in the melting model of the Villain type [recall Eq.
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FIG. 13.12. Stability. in the 2D isotropic. melting model, of solid and liquid initial state
over 4000 Monte Carlo iterations.
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(12.26)] it is possible to compare the three-dimensional values of 8, with
experimental numbers, provided we ignore the dependence of 8, on the
elastic constant A (which, as we recall, had been assumed to be zero
throughout this discussion, for simplicity). An exploratory calculation for
A~ 0.5 indicates a very weak A dependence. We therefore decide to
use B3, = pua’/T and calculate the Lindemann number associated with it
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via (7.40). Since that formula was derived only for isotropic materials we
employ the averaged elastic constants

wnix

0 (3 +2¢),

A

2
A— g#(l — &),

introduced by Voigt [see Eq. (7.44) and Voigt’s book, quoted in Chapter
1, Part ITI] in order to describe sound propagation in polycrystalline
samples. This gives the Lindemann numbers

1/2 —1/3
L=27-22.6 (3 +52§Bm) (1 = %(1 - ?)) . (13.94)

where

=3 — 32 3+ 2 32
7:‘;{:( z ) Y (= (13.95)

A
44+6E+5-
M

is the correction term in formula (7.40) involving the averaged longitu-

dinal and transverse sound velocities, ¢, = V(2u + X)/p, 7= \/ﬁ_/p The
result is shown as a function of ¢ in Fig. 13.13. We may now use Table 7.1
and insert also the experimental values. They are seen to be in rather
satisfactory agreement with our predictions.

Let us now turn to another important quantity of the melting process,
the transition entropy. Using the theoretical transition values g,, of
Tables 13.1, 13.2, we can extract from (13.6) and (13.7) the entropy
jumps As = 3,,Au for various ¢ and find the values shown also in Tables
13.1 and 13.2." For D = 3 they are plotted in Fig. 13.14 and are in good
agreement with those obtained from Monte Carlo simulations as
described above. For D = 2 the analytic As values are about twice as large
as the Monte Carlo ones which are plotted in Fig. 13.15. The reason is

"In Figs. 13.8 and 13.9 we can verify once more the values As of Egs. (13.90), (13.91).
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FIG. 13.13. Comparison of the model’s Lindemann numbers with experimental values
from Table 7.1.
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that fluctuations in two dimensions are much more important than those
in three dimensions. Notice also that the fluctuation corrections produce
an entropy jump even for £ > 1 for which the mean-field approximation
had a continuous transition [recall Eq. (13.15)].

Forming a further derivative with respect to 8 yields the specific heat
¢ =—B%0/0B)u’. The analytic results are compared with the Monte
Carlo data for ¢ =1 (listed in Table 13.1, 13.2) in Figs. 13.16 and 13.17.
In Fig. 13.18 we have also compared the D =3 data with the experi-
mental data for lead (extracted from the curves in Fig. 7.2 after sub-
tracting the electronic and vaporization parts).

It 1s instructive to study also the defect distribution in the model:
for simplicity we take only the two-dimensional case. We proceed in
the same way as in Section 12.4. The jump numbers n;(x) are extracted
according to Eqs. (12.37)-(12.39) after iterating an ordered or disordered
initial state 4000 times (i.e., after arriving at the final states of the stability
runs in Fig. 13.8). These are displayed in Figs. 13.19a—g. These lead to
the defect densities n(x) as shown in Fig. 13.20d,e. Notice that since the
final state is a solid, there are very few defects. Nevertheless, the jump
numbers obtained from ordered and disordered initial states differ vastly.
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TABLE 13.3. Monte Carlo data for the D = 3 cosine melting model on an 8 lattice (Z(16)
approx.)(é¢ = 1, A = 0). There were 100 + 200 sweeps for equilibriation and measurements,
respectively. Note the *8-function peak’™ in c(cool) at 8= 0.9 as a signal for the first order
of the transition (from Jacobs and Kleinert, 1983).

B w(heat) wu(cool) c(heat) c(cool) B wutheat) wu(cool) c(heat) c(cool)

200 0783  0.7919  1.578¢ 2.0322 1.00 1.7319 1.7275  2.5359  2.3944
1.95 0.8182  0.8102  1.4309 1.7767 0.95 1.8467 1.8479  2.1596 2.2959
1.90  0.8336  0.8381 1.7355  1.5974 090 1.9890  2.4431  2.7781 133.3700
.85 0.8602 0.8643  1.5558 1.5481 0.85 2.1433  3.6894 2.6490  7.4843
[.80 0.8883 0.8833  1.8540 1.3791 0.80 2.3722 4.0411  2.8292 3.0625
1.75 09122 09119 1.6688 1.7736 0.75 2.7337 42849  4.4629 3.3217
1.70  0.9378 09353  1.7834  1.6531 0.70 45123  4.5176  2.1423 2.5629
1.65 0.9767 09712  1.8210 1.7969 0.65 4.7621 47675  2.0221 2.0424
1.60  1.0084  1.0042 1.5658 1.8619 0.60 50536  5.0267 1.8545 1.4745
1.55  1.0364 1.0434  1.8064 1.9528 055 52905 5.2731 1.6750 1.5084
1.50  1.0785 1.0808 1.5886  1.5915 0.50 5.5890 5.5748  1.0598 1.5084
1.45 1.1220  1.1232  1.7185 1.6046 0.45 58698 5.8844  1.2755 1.1039
1.40  1.1693  1.1631 [.9998  2.0098 0.40 6.1815  6.1946  1.0187 1.0481
1.35  1.2089  1.2166  1.9086 1.9414 0.35 6.4857 6.5104  0.83585 0.7101
1.30 1.2682 1.2716  1.5930 1.9068 0.30 6.8264 58411 0.678%  0.6386
1.25  1.3289  1.3332  1.8468 1.8777 0.25 7.1722  7.1766  0.4327  0.3921
.20 1.3922  1.3846  1.8658  2.0927 020 7.5137 7.5215  0.2682  0.2345
115 14449  1.4579  2.1894 21376 0.15 7.8793  7.8752  0.1633  0.1498
1,10 1.5491  1.5414 23550 20680 0.10 82505 8.2487 0.0746  0.0780
1.05 1.6367  1.6354 19019 1.7571 0.05 8.6318 8.6258  0.0168  0.0164

The difference consists, of course, mainly in a trivial defect-gauge trans-
formation. The same analysis is performed for other values of 8 and the
defects obtained are shown in the remaining Figs. 13.20. By comparison
with the stability curves in Figs. 13.8 we can easily see the correspon-
dence between the solid and liquid energies and the defect densities.

Finally, let us test the quality of the Villain approximation for the
melting model. By taking the values B, through the Villain transform,
(9.124) and (9.125). i.e., by calculating®

Bv = —1/[2log I,(B)1(B)],
2Bvéy = —U[2log 1,(2B€)1,(2B£)]. (13.96)

“We have now attached the subscript V' to the parameters of the Villain-type melting model.
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FIG. 13.14. The entropy jumps of the D = 3 melting model extracted from the curves of
Fig. 13.6 as compared with the Monte Carlo data of Jacobs and Kleinert (1984) (see also
Table 13.1).

TABLE 13.4.
dimensions (Z(16) approx.) with (£ =1, A = 0). The lattice size is 32 x 32. There were 100
sweeps for equilibriation plus 200 for measurement (from Janke and Kieinert, 1984).

(0.5}

D = 3 melt model (cos)

—r

entropy
jumps at T,

N

I

x Analytic Calc.
| Monte Carlo Data

T

[nternal energy and specific heat of the cosine model of melting in D =2

B ulheat)  wu(cool) wu(hcat)  u(cool) B ulheat) wu(cool) w(heat) u(cool)
200 0.5365 0.5365 1.1841 1LISR]T 1.0 1.7080 1.7326 1.8140 1.3103
1.95  0.53506  0.5523 (.9798 1.1536  0.95 1.8130 1.8339 1.5476 1.8343
1.90  (.3692  0.5428 1.3140 1.2859  0.90  1.9367 1.9228 1.6133 1.5350
1.8 0.5911 ().5864 1.1905 11444 085 2.0400  2.0364 1.5579 1.3409
180 0.6063  0.6050 1.1676 1.2766  0.80 2.1452 21262 1.6984 1.6106
175 0.6247  (0.6225 1.2698 1.2669 075 2.2603  2.2539 1.5546 1.6246
170 06459  0.6454 1.8193 14908 070  2.3952 23772 1.3375 1.0886
1.65  0.6654 0.6714 1.2197 1.3882  (L65 2.5136 2.5130 1.133¢  0.9855
L.60  0.6910 0.6917 1.2903 1.1680  0.60 2.6496  2.6629 1.0812 1.4138
1,35 (L7199 0.7193 1.2325 1.3803  0.55 28198 27988  0.9650  (0.9805
130 0.7452  {1.7563 1.3487 1.3347 050 2.9684 29708  (.8242  (.7993
145 0.7842  0.7803 1.3297 13744 045 31495 31473 (.7896  (.8848
40 (0.8222  (.8157 1.8275 14053 040 3.3174 33213 0.5834  (.4838
1,35 0.85)7  (1.8440 1.7549 1.4832  0.35 3.4998 35039 0.4233  .5295
130 0.8993  (.9439 1.4988 1.8471  0.30  3.7091 3.6984  0.3697  0.4007
125 0.9450 1.0959 1.4825 1.7231 .25 3.8976  3.9052  0.2538  0.2465
1.200 1.0135 1.2626 19586 2.6552  0.20 41194 41153  0.1509  0.1848
15 11100 1.3633 44383 6.2191 015 4.3208 4.3442  0.1052  0.1210
L1 1.278%6 13348 5.6822  3.2761  0.10 45493  4.549] 0.0444  0.0452
1.05  1.6329 1.6310 22055 1.9622  0.05 47709  4.7731 0011y 0.0107
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FIG. 13.15. The entropy jumps in two dimensions as a function of £ as obtained from
Monte Carlo simulations of Janke and Klieinert. The theoretical values in Table 13.2 are not
in satisfactory agreement with these since in the mean-field-plus-one-loop calculation cannot
do justice to the defect excitations of the model {cf. heading to Fig. 13.17).
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FIG. 13.16. Specific heat of the D =3 cosine model for &= 1. Comparison between
theoretical curves and Monte Carlo data (obtained by Jacobs and Kleinert).
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we find transition values for the Villain-type melting model which are in
good agreement with those obtained in Chapter 12.

It must be noted, however, that this is somewhat of an accident. In
fact, as far as the full high-temperature behavior of « and ¢ 1s concerned,
the Villain approximation is really much worse in this model than it is
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FIG. 13.17.  Specific heat of the D = 2 cosine model. Comparison of the Monte Carlo data
with the mean-field-plus-one-loop correction (from Janke and Kleinert). We sce the
descrepancy due to the neglect of defects. This phenomenon was observed before and
discussed in detail in the XY model of superfluidity, sec 7.19, Part I.
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FIG. 1318, Specitic heat of the D =3 model for & = 0.25. Comparison of Monte Carlo
data with experimental data for lead as obtained from Fig. 7.2 with appropriate subtractions
(after Jacobs and Kleinert).

5 T T T T | T T T T ‘ T T 1 T
— -
C : spec. heat
L £=10.25
4 e —
L . B
| L] ‘. i
o » *
f -~ —
® . . . 7]
3 e . . ]
L ]
] ) . )
L @ cxp. for Pb ", 1
L 4 MC Data : ]
20
(0 ] 2 3

in the XV case. The reason is the following: We pointed out in Part I1
that the quality of the Villain approximation is nor based on the equality
of (13.75) and (13.76) for large B but rather on the approximate equality
of the Bessel functions, for small B, i.e.,

1 F
I(B) ~ o (g) (13.97)
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FIG. 13.19. The defect gauge fiedds m,(x). 1,~(X), n22(x) obtained from a Monte Carlo
simulation of the D =2 cosine melting model on a 60 x 60 sc lattice (Janke and Kleinert,
1984) taken after 4000 sweeps for equilibriation for the defect configuration at 8= 1.2.
Notice that with a random start, there are many 1, (x) excitations. most of them correspond
to a pure defect gauge whose double curl vanishes. (Here o.s. and r.s. refer to ordered and
random start; ¢f. Fig. 13.20.)
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FIG. 13.20. Disclinations in the 2-dimensional cosine model of melting on a 60 X 60 sc
lattice below and right above the melting transition g, =0.135. We se¢ that in the
molten state the disclinations of alternating sign are linked up into strings. Below the
transition. there arc mostly nearest neighbor and next-nearest neighbor quadruplets,
i.e., short closed strings. As the melting temperature is passed the loops become large
and break open. The pictures were taken after having performed 4000 sweeps for equi-
libriation. once with an ordered start {(0.s.) and once with a random start (r.s.). The
difference in the pictures is understood by looking at the development of the internal
energy over the 4000 sweeps which are displayed in Fig. 13.12. For 8 =< 1.14 the system
always winds up in the liquid state, and for 8> 1.17 in the crystalline state. This ex-
plains the similarity of the defect pictures for g =1.14, 1.18. 1.20. For g = 1.16, on the
other hand, the initial configuration remains practically frozen. The defect configurations
are determuned by fhnding for a fixed displacement field w,(x) = (a/27)v;(x) the defect
gauge field n;,(x) by minimizing ¥, . ,(V,y,+ V,y, — 2mn,(x)) and T, (V,y, — 27n,(x))".
The resulting pictures of n1;{x). n;-(x). n.»(x) are shown in Figs. 13.19 for = 1.2, The
defects are obtained by taking the double curl of these fields (from Janke and Kleinert,
1984). See also Fig. 12.17.
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Fig. 13.20. (continued)
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with the Gaussian approximation

plou (B (13.98)

for @ = 0 and & = 1. For & = 2 this is no longer a good approximation. In

the case of vortex lines

. this was not very serious since the phase tran-

sition was mainly caused by lines of unit strength as they were growing to

infinite length. Here,

however, even the lowest stress configuration

contains &; elements of strength rwo so that the approximation (13.97),
(13.98) breaks down. For the determination of 8, from the free energy.
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this breakdown was of little consequence since, as we observed above,
even the lowest correction is quantitatively rather insignificant due to the
smallness of pre-transitional fluctuations. But for the internal energy it
becomes observable and for the specific heat quite important. A much
more intimate relationship between the Villain type of melting model and
cosine models is obtained by observing that all graphs included in the
high-temperature expansion (13.85) involve the three Bessel functions

L(By-1) L{E2BEyv v L(2BHv 1)

-

Io(Bv 1) 1((2BE)y ) L((2B&)y 1)

(13.99)

with the numbers n,, m, m, in e(n, my, my) giving their powers. In the
model Villain-type melting, the corresponding terms are

= (BN 2Y + {0y + )Y + () + 3m Y0176 — 1)

kl

€

i.e., they are equal to the terms e(n, m) of (11.38) with n=n,/2
+ (m, + my)/4, m = (m,; + 4m,)/4. From the discussion in Part II, Eq.
(7.113) on the improvement of the Villain approximation to the XY
model, we decided that for the melting models of the Villain and of the
cosine type, a really close correspondence can be achieved only by the
presence of a second cos(2V;u;) term in the cosine energy. Thus we find
the improved Villain approximation for D =2,

z=) <I>[nff]H [f ’ d%“‘(x")‘]
i, X.!

2

X EXP{“B[ Z (Vf%‘ +V,y, - 477”';}')2 + 62 (Vivi — ZW"fi)z:l}

X. [l X1

> i d.i
~ R, I(B)R31(2B§)'H[f —“/L’-‘—)}

X.! - 2

X CXP{BV ! E cos(Viy+ V) + (2BE)y I[COS(V:‘%)+5C03(2Vf7f)]}‘
o (13.100)

where

Ry (B) = [I(By ) VIR, o iom = 2By ),
Io(By-1)
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and

Ry ((2B¢) = [IS((2B6)y 1) V27 (2BE)] ",
eV CBO — 1288y WIN(2BE)v ).
e VRN = [X(2B8)y-)IN((2BE)y ). (13.101)

With this identification we ensure that all terms in the high temperature
series (13.85) become identically equal to the corresponding one in the
Villain version (11.38).

In this form, the Villain approximation is very good throughout the
entire high temperature region, including the transition point. For more
details, see Janke and Kleinert (1986), quoted at the end of chapter 12.

13.5. PAIR CORRELATIONS IN THE DISORDERED PHASE

We have called the phase transition of the model “melting transition.”
Let us now investigate whether this terminology is really justified on
physical grounds. For simplicity, we shall consider only the case of two
dimensions. Since the defects comprise dislocations and disclinations we
certainly expect the defect proliferation to destroy both translational and
rotational order. This is necessary for the final state to become a liquid.

But there is more to a liquid than just complete disorder. A gas also
has complete disorder. The difference between a liquid and a gas lies in
the density correlation function, which is defined as follows:

D(x. %) = Dix = ) = = (p(x) X)) (13.102)

where

N
A(x) = ), 3(x—x,) (13.103)

i=1

is the density operator and p, is the average density (p(x)). Separating
out the disconnected part,
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D(x —x') = J;}5(ﬁ()ﬁ)ﬁ(?&')>(- + i (A(x))°=D(x—x)+1 (13.104)

and using the fact that density correlations are of finite range (except at a
critical point) the asymptotic behavior of D(x —x') is

D(x —x') (13.105)

X =%
Since 8(x — x;) 8(x — x;) = 8(x — x' — x; + X;) 8(x’ — x;) the density corre-
lation function can also be written as the expectation value

D(x —x')= L:Z (8(x —x" —x; + x;) 6(x" — x,—)).k (13.106)

Po i

Because of translational invariance, the sum over x; is isotropic in x’, on
the average, and we can remove the second é-function in favour of a
factor py/N." In this way, one arrives at another form,

D(x—x’)=~l—lE (8(x —x' —x;+x;)). (13.107)
po N ‘

The average has to be taken, as usual, with the N-particle probability
distribution

1 W @ik —
w(x]‘ s xN) — __Z eAﬁ(”.u)Ai_; b(x, X,]’ (13.108)
N

ds

dPx, ... dPx
(O(X], ...,XN)>:f L NI NO(X], ....,XN)W(Xl. ....,XN),
(13.109)

where ®(x; — x;) are the pair potentials between the atoms in the gas and
Zx is the classical partition function,

9This is due to the average 8(x' — x,;) — [(d*x'/V)8(x' — x;) = 1/V = py/N.
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d[) d[)
Zsz all N N (X ) X) (13.110)

and the expression

WX, .. Xy)

is the probability of finding one particle in the volume element d”x,
another one in d”x,, etc.

In liquid state physics, it is customary to define the pair distribution
function as

1 (dPxy ... dP
f“ N, X Xas - xh). (13.111)

s =x) =5 | T N o )

PO

This i1s obviously the expectation value of the operator

L: Z &(x — x;)0(x — x;).

Po i#j

Hence the relation to the density correlation is the following
! l '
D(xﬂx)=p—6(x—x)+g(x—x’). (13.112)
{)
From (13.110) we see that the normalization of g(x — x’) is
P(%fdnx dPx g(x — x') = pg Vfd“xg(x) =N’—N.
In & grand canonical ensemble, the right-hand side becomes
s 3
(N*) = (N) = knT=-(N) |y 1.
M
Using

3(N)

v.T OM

_op
op

P

i _Lap
v.r dp

a_p
v.r Vap

p
v.TOM

VT
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we see that we can make the identification

(N?) = (N = ky T(N) 2

13.113
oP ’ ( )

v.T

so that

poV i [P0 = 1) = (V) = (M) = (N Ky T2E

V. T

and we arrive at the so-called compressibility sum rule

I + p()fd[)X(g(X) - 1) = kB T}C/p(;, (13114)

where x = (1/p)(8p/dP)|y 1 is the isothermal compressibility. In an ideal
gas, w(x;, ..., Xy) = NYVN and

1
g(x—x’)zl—ﬁﬁl. (13.115)

The density correlation function is measurable quite directly in scatter-
ing experiments, typically with X-rays, clectrons or neutrons, the first
probing the electron distribution, the second the charge density, and the
third the positions of the nuclei. Taking neutron scattering as an example,
the atomic distances are usually larger than the scattering nuclei and the
scattering cross section in the Born approximation is given by the well-

known formula
do [ m, 2
dQ \2mh?

where (} is the solid scattering angle, q the momentum transfer, and V(x)
is the scattering potential of the neutrons. For slow enough neutrons, for
instance reactor neutrons with thermal energies and de Broglie wave-
lengths A ~ 1A, the nuclei may be approximated as point-like objects,
whose effect upon the neutrons is described to a good approximation by a

2
, (13.116)

fd“x e’ V(x)
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simple phase shift g in the s wave. Such a phase shift 1s associated with a
total cross section 47ra* and can be thought of as coming from a potential

2k’
V(x) =

ad,8(x—x) (13.117)

i.e., using the particle density (13.103), as

27h?

V(x) = a p(x). (13.118)

1

In a thermal ensemble, the absolute square is replaced by the expectation

Udl’xe"q*wx)fd”x'e"“' V(x')>, (13.119)

so that

do_

= azfd[’xd[’x’ e G A(x)) = a®NS(q). (13.120)

where N is the total number of atoms in the sample and
— D._. iqx D iq- 1
S(q) = p(,fd xe'"*D(x) = jd xe' "N<Z S(x — x; + xj)>
i
1 _
=_Z (e’Q'(xl“r)> (13121)
N if

the Fourier transform of the density correlation function, i.e., the
structure factor of the liquid. In terms of the pair correlation function
g(x), S(q) is given by [see (13.112)]

S(g)=1+ p(,fdbxe“‘"‘g(x) (13.122)

=14+ p(,dex e *(g(x) — 1) + py(27)P 8°(q)

= S.(q) + po(2m)" 8°(q). (13.123)
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FIG. 13.21. Pair distribution of argon at 84.4K as obtained from neutron diffraction by
Henshaw et al. (cited in the Notes and References). The curves of the atomic position for
the D =2 melting model are from Kahn (see Notes and References).
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From (13.114), the value of S.(q) at q =0 is directly related to the
isothermal compressionality:

dp
S.(q=0)=kpzT— : 13.
Aq=0)=kzT-3 . (13.124)
In an ideal gas, for which g(x) ~ 1 we find
1=k Ta—‘D (13.125)
PRoPlyv.r '

in agreement with the equation of state pV = NkgT.

A typical pair distribution g(x) is that of liquid argon at 84.4K shown
in Fig. 13.21, as obtained from neutron diffraction data. The figure shows
also two theoretical curves obtained by assuming Lennard-Jones poten-
tials. If r = |x| is much smaller than the diameter of the atoms, the pair
distribution vanishes. The ‘‘hole” at the origin leads to the peak in the
Fourier transform S.(q) at q ~ 27/d and S.(q) has the characteristic shape
shown in Fig. 13.22 for another system, Rb, at 40K.

Let us now find the pair distribution function in the disordered phase of
the melting model. For this we perform a Monte Carlo simulation of the
cosine model and record the displacement variables u;(x). These can be
used to find the atomic positions. Notice that the positions are not
immediately given by
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FIG. 13.22. Structure factor S(Q) for a gas of hard spheres as calculated by Ashcroft and

Lekner (cited in the Notes and References) and compared with experimental data on Rb at
40C.
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x' = x + u(x). (13.126)

The reason is that the variables u;(x) in the cosine model run only from
—a 1o a so that the atoms can apparently never leave the unit cell. This
would be unphysical. In order to permit an identification of x + u(x) with
particle positions we have to perform a defect-gauge transformation into
a gauge in which the trivial fluctuations of the Volterra surface are
absent. In order to understand this point more clearly, consider the
Villain approximation to the cosine model (taking A = 0, for simplicity):

“ du, (x)]
aentie
Xexp{—ﬁ(ggz)zz [2 E (Viuj+V,u; —2an,1)2+§z (Viu;—ani;) ]}

X <<
(13.127)

In it the displacement fields u,(x) all remain within the unit cell and
the jump numbers »j;(x) include all fluctuations of the Volterra sur-
faces. From our previous considerations in Chapter 10 we know that
these fluctuations are unphysical. If we want to include only physical
fluctuations, we have to remove the irrelevant parts by a defect-gauge
transformation,

w;(x) = u; (X} + aN:(x), nj;(x)— nj(x) +3(V;N;(x) + V;N;(x)), (13.128)
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FIG. 13.23. Atomic positions in the melting model before and after the transition. The
molten state looks like a gas rather than a liquid due to the absence of a hard-core
repulsion.

where we may choose the integer fields N;(x) such that nj; satisfies the
gauge conditions (10.4) and (10.5). Then the partition function reads

z= Y @[nf,-lﬂ[f i—(—)]

{my(0)} gl d
2 \*® 1 .
X exp {B (jﬁ) Z [5 Z (Vi + Vu; = 2an})* + fz (Viu;— a”‘:'i)z]} ’
X i<j i

(13.129)

®[n}] being the gauge-fixing functional enforcing the gauge (10.4),
(10.5).
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Now the different allowed configurations of the jump numbers
correspond precisely to all physically different defect configurations. In
addition, the displacement variables cover the entire crystal. Thus, in the
fixed defect gauge, the variables

X' =x + u(x)

can be identified with atomic positions. In Figs. 13.23 we have shown
these positions above the melting transition. (Below the transition the
positions show, of course perfect crystalline order with only small
disturbances.) There is complete disorder with neither translational nor
rotational memory. The pair distribution of this system is obviously not
that of a real liquid but of an ideal gas. The reason for this is quite clear:
the model contains no information on the hard cores of the atoms. It
describes a crystal of point-like atoms. Consequently, the pair distribution
function g(x) does not vanish for |x| smaller than some atomic diameter
and, in that respect, does not resemble that of a proper liquid. The model
will need modifications in order to incorporate the finite atomic sizes into
the system.
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CHAPTER FOURTEEN

THE TWO-DIMENSIONAL KOSTERLITZ-THOULESS-
HALPERIN-NELSON-YOUNG APPROACH TO
DEFECT MELTING

Let us compare the properties of our defect models of melting with
previous predictions on the behavior of two-dimensional defect melting
as advanced by Kosterlitz, Thouless. Halperin, Nelson and Young
(KTHNY).

14.1. DISSOCIATION OF DISLOCATION PAIRS

We begin with a slight modification of the partition function (9.53),
namely (dropping now the bars on top of g; and X):

B 1 § NI2 I -
e[ ] ] 3 e

5

1 . | N ]
X eXP{“EZ [UTE + (o7 + 731) — Z/(Un + Uzz)h}

2¢
+ 2771'21),-()() s,-,ﬁ,\.)((x)}, (14.1)

where the stress tensor is the double-curl of the stress “gauge field™ X(x).

(Tr'j (X) = Eik gimvk Vm X(X) (142)

1162
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and
b,‘(X) = CE,'(X) = E(J'V( n,'j (]43)

is the two-dimensional lattice version of the dislocation density. Actually,
KTHNY considered triangular lattices while our partition function was
set up for cubic systems. In two dimensions the linear elastic energy of
triangular lattices can be parametrized in the same way as in isotropic
systems. We will, therefore, find it convenient to consider first isotropic
square lattices and include the modifications due to the triangular
structure at a later stage. In isotropic systems, where £ = 1, the parameter
v 1s given in terms of the elastic Lamé constants & and A by

1 AMu v
y 2A/p+1) 14w

Hence (1/4)(1 —2/y) = (1/4)1/(Mu + 1) = (1/4)(1 — v)/(1 + v) and the
partition function becomes

11-—v Ni2 1 *
Z= [Z 1+ v:l (V2mpB)*N I;[ [f-xdx(x)] {rl§c)} Pl

1

1 = 5 ‘ =
x exp{—4—B TTvZ (V-VX)? + 2ri Z b.(x) g,kvkx}- (14.4)

The X field can be integrated out giving

1 Ni2 1 i _
Z= [E(l — v):| —( m—zwﬁ)szet (—V-V){H”Z(;)} P[7;}
V.V 1
X exp{—4wzﬁ(l + v) E b,(x)(a,'j - v—vl) ?V_b’(x)} ’ (14.5)

This is the same expression as (9.60) except that the defects are described
in terms of the dislocation density b;(x) instead of the defect density n(x).
In the dislocation form, the defect representation is very similar to the
vortex representation of the ordinary Villain model in two dimensions:

_ 1 2B ! .
Zt’_(\/m)zN{z exp{ 4,,22§X]e(x)_vvc)(x)} (14.6)

t(x)}



1164 [II. GAUGE FIELDS IN SOLIDS

Indeed, the interaction energy between two dislocations has the form

V.V, 1 = -
)= (5" ) W) sl CUARES AT ONEER)
where
dzk ik-x 1

p3(x) = (14.8)

2m2¢ (K K+ 62
is the potential 1/(V-V)* with an infinitesimal regulator mass [recall Eq.
(1.119)]. For large separations |x|, the first term —§;V-V(x) gives rise

to the same logarithmic potential as in the vortex case [see Eq. (1.123)
and take the trace]:

-8, V-Vol(x) = 8; V- V(3/88%)vs(x)

1 1 i 1
) e} - —(logs+=)|. (149
= 8"[ 2wl°g(|x|26) 27r(l°g‘3 2)] (450

The second term contributes

1 1 iX; 1
V,V0l(x) — . [6,,log(|x|2e7) TTT%] +Er§,-jlog 8, (14.9b)

so that both together give [see Eq. (1.124)]

1 1 o)
v (x) > ——{ 8;log|x| — =4 | - —|loglze?| +1|8;. (14.9¢)
41 | | 4 2

In the limit § — 0, the second term enforces neutrality of the dislocation
gas,

Y bi(x) = 0. (14.10)

This is a manifestation of the dipole neutrality (9.76). For such neutral
gases we can replace v; by the subtracted potential

oiT(x) =0 }(%) — v1(0) = —(8,V-V - V,;¥))uli(x).  (14.11)
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For long distances, the potential is dominated by the logarithmic part

1
5. 14.12
2 & log |x| ( )

just as in the ordinary XY model.

Since critical properties of a system are governed by its long-distance
properties, Kosterlitz and Thouless concluded that there should be no
difference between the phase transition of vortices in a thin film of
superfluid *He and that of dislocations in a two-dimensional crystal. At
low temperature, the crystal should contain only very few dislocations
bound in pairs of opposite charge. As the temperature increases, the
average separation increases. The long-range interaction energy of a pair
of fundamental Burgers vectors with b7 = 1 is

1
Ei =~ 4mB(1 +v)2—logr,
4

where r = |x|, is the separation of the pair. Using only this asymptotic
formula the average of +* can easily be estimated as follows

fdzxrzexp{mélﬂ-zﬁ(l + v)%rlogr}

2 -2mB(1 +

() ~ _272mBU ) g
.2 4= 27B(1 + v)
fdzx expy —4mB(1 +v)—logr
4ar

For B(1 + v) = 2/« this expression has a pole of the form

(P~ -2 - (14.14)
4 -27B(1 +v)

Because of the frequent appearance of the combination B(1 + v) we
shall, from now on, call this quantity S.

If renormalitation effects are taken into account, formula (14.14)
implies that there should be a dislocation pair unbinding transition at a
critical temperature at which
R uf+ AR 2
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where vE, ].LR, AR are the renormalized elastic constants right at the
transition point. Remembering that 8 was equal to ua®/(2w)°kz T where a
is the lattice spacing, this result can also be written more explicitly as

a*uR uR+ AR 2
G kT W R = 0.6366. (14.16)

In the literature on this subject one finds the results stated in terms of the
stiffness parameter®

a’ mtA

K= T a2 (14.17)
which is related to our 8 by
K = 87°B. (14.18)
At the critical point, the renormalized K® should have the value
KR = 167 = 50.265. (14.19)

Equations (14.15), (14.16), or (14.19) are universality statements: A rare
gas of dislocations undergoes a continuous phase transition whenever the
combination of elastic constants on the left-hand side has softened to a
point at which these equations are satisfied.

The relation (14.16) is, of course, the precise analogue of the univer-
sality condition for the critical superfluid density in films of *He,

hip, 2
e - keTe (14.20)

which was derived from the critical value [see Eq. (11.179)]

gk == (14.21)

in the Villain model.

Notice that the critical index governing the width of the Bragg-like
peaks (7.123) is not universal since it contains a combination of w® and
AR which is different from K.

“For triangular lattices, a” is the square of the lattice spacing a, and the cell volume is
v = a’ = V3a3/2. See also footnote h below.
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14.2. RENORMALIZATION GROUP EQUATIONS

A characteristic feature of the continuous pair unbinding mechanism is
the unusual temperature behavior with which the coherence length ¢ of
the disordered phase goes to infinity when approaching the critical point.
We have seen such a behavior in Part II, where the coherence length of
the Villain model was found to have an essential singularity at T = T, of
the form

&= exp{const. (TVT.— 1)~'2}, (14.22)

rather than diverging with the usual critical power”

(X _"
¢=\7 : (14.23)

A similar law can be derived for dislocations on a two-dimensional lattice.
To do so we first find the general renormalization equation for the elastic
constants which is analogous to Eq. (11.112) of Part II for the superfluid
density in the Villain model. For this we define the renormalized elastic
constants at a momentum k by the correlation functions of the stress
tensor o = £ € Vi Vi X:

(Uij*(k) Oy ¢ (k)> = (K ’ K) —281'117 Efn Km Kn Eprys Kr ]_<.S‘ [23(1 + v)]R(k)
(14.24)

In linear elasticity, [B(1 + v)]® reduces to the k independent “bare”
elastic constant. In the presence of defects, the correlations of o;;(x) can
be obtained from the partition function with external strain sources,

. dax
AU H[ —\/'2"%%3:' 8%, .0

X

1
X exp {"26 Z T Cijkt Txe + 2 Z Ohy; + Z U,,MS’"} » (14.25)
X.i.] X X

by forming the functional derivative

®We use the customary notation for this power v even though this letter is already occupied
by the Poisson number v. The alert reader will, hopefully, not be confused.
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8°Z
(o;(x) 026(0)) = zau:;’“(x) Sui(0)

(14.26)

iy ‘—(l

With o;; expressed in terms of the stress ‘“‘gauge field” X we can
integrate out the X field and find, for isotropic media [recall (17.34), Part
I1],

Z[ug] = GXP{—§4W22(1+V)Zn(X)(VIV)an(X)} (14.27)

where 9(x) is defined to be a modification of the defect density 7(x) in
which the plastic gauge field 27n; appears together with the external
source as follows

’F](X) = Eik Ejt-kaf (n - ‘I_UCXt) N (1428)
27

Forming now, in (14.27), the derivatives with respect to u;* and setting

ext

u; =0 we obtain

(U'T](k) Ok (k)> = 26(1 + v) Eim Ein Km Kn EkrEes I-er I_<s

1
(K-K)’

2(1 +v
x(l—% (;})Z)(ﬁ*(k)n(k))) (14.29)

Contracting the indices ij with k¢ gives

2(1 + v)
(K-K)*

(o (k) oy (k)) = 2B(1 + V)(l — 4B (n*(k) ﬁ(k)>) - (14.30)

The quantity on the left-hand side is, due to (14.24) equal to the renor-
malized value of 28(1 + v), so that we find the exact equation

2B%(k) = 2B (1 — 878 ® _1K)2 (7*(k) ﬁ(k))) , (14.31)
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with 8 = B(1 + v), as defined before. In a pure dislocation model, (k)
can be written as

n(k) = & K¢ bi(k), (14.32)

where b;(k) is the Fourier transformed dislocation distribution and the
formula becomes

BR(K) = (1—8w3—~1—((5,-,- IIEK)“) (k)b(k))). (14.33)

Let us find the x-space version of the limit k — 0 on the right-hand side:

1

if}]ﬁ(aﬁ_%)(b?‘(mf’j(k))- (14.34)

As far as the first term is concerned, we may proceed as in Part 1l
where we proved in equation (11.114) that due to charge neutrality,
Vb (x) =

1 1
lim =— (b2(K) b;(k)) =~ ), x*(b;(x) b;(0)). (14.35)
ko K-K 45
Here we need a similar statement also for the second term, i.e.,

lim -——— K; K;{b} (k) b;(k)). (14.36)

ko (K-K)?

For this we consider a general tensor function

fi (k) = X5 e fi(x). (14.37)

which satisties the charge neutrality condition X, f;(x) =0, so that
fiy(k =0) = 0. Invoking mirror reflection invariance, the lowest expansion
terms of f,(k) are

[ (&) = ak’8, + Bk k, + O(k*). (14.38)
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On multiplying this by (K;K;)/(K - K)* and taking the limit k— 0 we find
a + B. If we, on the other hand, differentiate twice with respect to k we
see that —x.x;f;(x) and —x’f;(x) have the Fourier transforms

a J a
ok; ok, ok Ji (k) = da + 6B, @fy(k) = 8a + 48. (14.39)

Thus we may supplement the relation (14.35) by

lim — KK, (b} k)b(k))-1Z("—23,-,-+x,x,-)(b,-(x)b,-(0)>.

k-0 (K K) 8 X 2
(14.40)
Combining both limits gives
. &, — K.K/K-K
lim 2~ ARRR )b, (K)) —Z (3x28;, — 2x,x,) (b, (x) b,(0)).
k—0 K-K
(14.41)

so that the renomalization equation (14.31) becomes

B~ = B{l + Bﬂ; Z (3x7 8, — 2x,x;)(b;(x) b,(“))} - (14.42)

where the expectation is to be formed within the partition function (14.5).

If the dislocation gas is very dilute, a fugacity expansion can be set
up for evaluating the contributions of an increasing number of dis-
locations. The dominant contribution is a single pair of oppositely
oriented fundamental Burgers vectors. Their interaction at a long range
is given by a subtracted transverse potential (14.11), with the limit

1 XiX; 1
t*,—',-T(x) - —E(Sﬁloglxl — ?i) — ES,-,—log C. (14.43)

¢ being a constant depending on the type of lattice. It can be determined
most easily from the fact that the trace of ¢;/(x) is equal to the lattice
Coulomb potential r;;"(x) = '(x). Thus

1 1
i) T2 —;T(log(lﬁdc) - 5) (14.44)
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has to coincide with the asymptotic behavior of the subtracted lattice
Coulomb potential, which is known to be [see Part I, Eq. (6.196)]

_1

xt—>= 2

' (x) log(|x|2V2e?) (14.45)

on a square lattice. Hence we can identify
c,=2V2e?" 12 =8.3057. .. (14.46)

On a triangwar lattice, p'(x), with the normalization V-Vp'(x) =
8xi2/V3, behaves like [see Appendix 6A, Part I, Eq. (6A.77)]

1
p’(x)ﬁ——z—log(lxﬁ\/ﬁe"), (14.47)
X — x rs

with x measured in units of the lattice spacing 4, and
c,=2V3e" 1% =10.172. (14.48)

In contrast to the vortices in the ordinary Villain XY model, the
interaction energy of a pair of Burgers vectors b,(x) depends on
the azimuthal angle 6 of the distance vector between them [cos 6=

(x —x")/|x — x’l]. If the Burgers vectors point along the *+1-direction,
their energy 1s

Ewi = 0,090/ (,(0) = <= [log (xic) ~ cos’8]  (14.49)

Notice that due to the subtraction (14.11), there is no self-energy
[v/;(0) = 0]. Therefore, the expression

Y (38;%% = 2x:x;)(b(x)b;(0)) (14.50)
b, = *X%

is equal to
R 2 - 1
—2(3 — 2cos°0) x> exp{—4w2264—[10g(|x\c) - cosze]}’ (14.51a)
T

which holds for square and triangular lattices. In both cases
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~ pai; 2w+ 1A) K
= B(1 +v) = =
B=BUt+v) = om? 2a v A~ 3

(14.52)

If the direction of the Burgers vectors is rotated by 90° we find once
more the same expression with cos®0 replaced by sin’6.

_ 1 ,
-2(3 - 25in29)xzexp{—4w22ﬁ4—(log(x c) — sin‘(:?)} - (14.51b)
o
We now perform the integration over the angles ¢ and use the formulas

2w ~ s - _
f df ™ BunmIcoss — 5 7B 1y(7B). (14.53a)
{

)
2 o] 29 - ~1 — -
f d6 cos’@e ™ PRS- 2776””5[1.](77[3) + I (wB)]. (14.53b)
0

where [, and [, are the associated Bessel functions. Then the two terms
(14.51) together give

—8me™ [31y(mB) — (Io(mPB) + L,(mP))] (14.54)

and we obtain, from (14.42), the following renormalization equation for
the elastic stiffness constant 8 = 8(1 + v):

“dR

B¥=p [1 — 2B 2 [enﬁ(lu(’”é) ~(1/2) 1,(7B))] 277[ ?R42”ﬁ] .(14.55)

where
7=c"" (14.56)

is the fugacity of a single dislocation.
This is to be compared with the equation in the ordinary Villain model

B = 3(1 - 2n23222wf x%RR‘*-?"B), (14.57)

1

in which the fugacity was
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z=(2V2e") ™. (14.58)

Thus, apart from a multiplicity factor of 2 for the two directions of the
Burgers vectors, the different fugacity

2=,
and the angular factor

e [Iy(mB) — +1,(mB)).

the expression 1s the same.
For small fugacities and close to

g ~2 (14.59)
o

we can therefore derive the renormalization group equations for B and z
as functions of the scale parameter € = log A in the same way as in Sec.
11.6, Part II:

o . ] I
%:4#22"2776”‘3 []“(’H'B) "2'11(7713)] (14.60)
and
92 _»_ -5 14.61
86—( - 7B)z. (14.61)

14.3. TRIANGULAR LATTICE

Let us now see what modifications arise when working on a triangular
lattice. Since in two dimensions the laws of linear elasticity for a
hexagonal crystal are the same as those for an isotropic one, the long-
range elastic forces between defects are unchanged. What is different for
a triangular lattice is, first of all, the number of possible configurations of
Burgers vectors. As on the square lattice, there can be two oppositely
oriented vectors along the x-direction with the same interaction energy as
in the 1sotropic lattice,
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FIG. 14.1. Triplets of dislocations contributing to the renormalization equation (14.71).
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—4m°28 e [log(]x| ¢) — cos®8].
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Now instead of a contribution of the same type with cos?6 — sin%0,
there are two more terms arising from the directions of one Burgers
vector being rotated once by 60° and once more by 120°. Hence the
expression (14.51a) plus (14.51b) is to be replaced by

5 1as | y
—2(3 — 2cos79) exp{—41r‘ ZBE[log(\ﬂ c)— COS“B]}

) 2 Yo | b |
~2(3-2cos’{ -2 exp —41rr*23L log(|x|¢) — cos” 9—2—77
3 4 | 3]
, 47 N | 47\ |
——-2 —2 - —_—— —_ - _— _ _—— )
(3 cos (0 3 )) exp{ 41 2,847T hlog(|x|c) cos” (6 3 }

and Eq. (14.55) becomes

P T
L

dR

R } (14.63)
1

— - 3 ! 1 3
BR = [3[1 — 6Bz e™ (Iy(wf) — ;11(’ff3))277f

e., the factor 47 of the square lattice is replaced by 67°.

Were it only for this modificating, the critical behavior would have
been the same for both lattices. On a triangular lattice, however. there is.
an additional contribution to the defect sum. It consists of three dis-
locations pointing into the three different lattice directions (see Fig.
14.1). The relevance of such configurations derives from the fact that the
special case when two of the partners coalesce reduces to the previous
simple pairs. We may therefore view the additional triplet configurations
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as a result of a break up of one partner in a dislocation pair into a further
pair. As long as the “fragments’” remain close to each other this produces
only a small increase in the energy which, moreover, is partly compen-
sated by an increase in configurational entropy. So what we have to do is
supplement each of the three pair terms in (14.63),

= ~ 1 — “dR -
2772 ZZ 6”‘3 (1()(773) — EI[(’ITB)) 277[ ?R-i-‘ln-ﬁ
1

by a three-body term (Ax'®) = x(© — x() k¢ n =123, 231, 312)

27° f d’R (;)(mx“"ﬂa,, — 2AxF AxR)pLOpE J d’x

oty 7 a3, T RN TN N
% (eé%nﬁh’. IR+ x2) 4 K BA B (R - xi2) | 8w BB r”.(x))’ (14.64)

where Ax®) =x") — xU = (x, R —x/2, R+ x/2) for ktm = (123, 231,
312). We assume that the distance r = |x| between x, and x; is much
smaller than the distance R = |R| between x, and the center of mass of x,
and x;. Expanding the exponent in x up to quadratic terms gives

exp {87 B[b(B + b ¢ [(R) + b2 b ¢ I (x)]}
X [1 +48m°B bV (b)) 4, v,/ (R)
+ 18R bIBD = 6D a0, (R) BB = ), 500, (R) 2
+ _'1;'87T2E bf”(b(z) + b(3))jak(”)k*vj]‘(R)xkxk' + .. ] (1465)
On integrating over x, the linear terms vanish. The quadratic correction

terms are of order (#/R)* and can be neglected as long as r « R. Thus the
additional contribution reads

8zt e™ (1(.(7TB) — %Il(wﬁ))

AR L (Cdr (7T s o
. R 1 0

¥

and r, <« R is the distance up to which the break up is included. It will be
taken to be some fixed fraction of R, say
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7o = pR. (14.67)
Taking the Burgers vectors
b =1i(-1, V3), b =1(-1, —=V3) (14.68)
and the relative direction
X = (cos ¢, sin @),

the integral over ¢ is seen to give
2 B _ _
f d‘P eZTr,BCOS(‘p* m/3)cos(p + w/3) _ Zwenﬁlz I()(WB)- (1469)
0

Hence, the effect of the break up can be described as a change of the

o’

integral in (14.63) from f dFRR“Z”E to
1

x R . _ _ r(]d —
f %R-I_HWB (1 + 228”3 1()(7TB)21T[ Trr“ ﬂﬁ) (1470)
| 1

and the renormalization equation becomes, at low fugacity,

BX - E[l ~ 622 (1y(nf) = 5 11(vP))

Rdr

“dR . . o _
X 27?[ E‘Rh‘_znﬁ(l + 226”‘8/_1()(7TB)27TJ\ “r—r“ Tfﬁ):l . (1471)
1 i

In order to extract from this equation reliable information on the
critical regime we must again resort to a length-scale dependent self-
consistent approach similar to that in the Villain model (see Section 11.7,
Part II).

We first define a softened stiffness constant B(A) which contains all
pairs of distances smaller than A plus all possible split ups of each partner
into two individual dislocations of radius smaller than pA.

As a second step, we replace the potentials in the Boltzmann factors

T = o 2Bk by the integrals over the scale dependent force up
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log R

to the corresponding radius exp{—wa dlog)\ﬁ()\)} [recall the
0

treatment of (11.140) in Part 1IJ.
For the third step we introduce the auxiliary fugacity of a pair of
dislocations separated by a distance R with the possibility of a break up of

each partner [recall (11.144)]

log R

z2(R) = zexp{210gR — wf dlog)\ﬁ(/\)}

—logc

_ _ pR .
X (1 + ze ™ 1(,(7TB)2wf %r*”ﬁ). (14.72)
0

In the fourth step, we finally allow for the fact that the potential between
the products of the break up is renormalized once more by pair
fluctuations between them. Hence we push the factor ze ™2 [(wB) under
the integral and replace (14.72) by

log R

z(R) = exp{ZlogR — wf dlog AE(/\)}

—logc

log(pR) o
x |1+ 27Tf dlogr z(r)e™ " I(wB(r)) }. (14.73)
0

After these manipulations, the renormalization equation (14.71) turns
into a pair of sclf-consistent integral equations, valid at low fugacity:

log A

BA) '=8"1+ 677'3—[ dlog Rz*(R) ay(mB(R)),

0

log R

z(R)=zexp{2logR— wf dlog)\f%(/\)}

—loge

log (pR) _
x |1+ ZWJ‘ dlogrz(rya,(wB(r)) ], (14.74)
0
where we have abbrewviated

an(é) = 265(10(&) — $1(8). @) = e 1y(&). (14.75)



1178 1. GAUGE FIELDS IN SOLIDS

The corresponding equations for the square lattice are obtained by
replacing [compare (14.60) and (14.61)]

ba)— 4ay, a,— 0. (14.76)

We then differentiate both equations and find

dB—'(A) |, . ;
“dlogh 622 (A) ag (7B(X)),

dz(A)
dlog A

= (2 = mB(A)z(A) + 2mz(M)z(pA)a(mB(pA)) + O(2°). (14.77)

This 1s a pair of ordinary differential equations which specifies the
renormalization group trajectories in the 8!, z plane as a function of A.

As in (11.149), Part 1I, it is convenient to introduce the variable
¢ = logA. We furthermore define £, = logA. Then the equations read

B i
LD~ 620 (B0,
dz(f) = (2 — TRO)2(E) + 2m(O)2(¢ + o)y (B + o) + O(2).

(14.78)

These can be solved numerically. The flow graphs are shown in Fig.
14.5.

For an approximate analytic solution we observe that «,(€) and «a,(£)
are smooth functions of ¢ so that in the neighbourhood of the critical
point £ = B = 2 they can be replaced by

ag = ap(2) = 2e°(1,(2) — 11,(2)) =~ 21.9347,
a; = a,(2) = ely(2) = 6.1966. (14.79)

Expanding z(¢ + €,) in a power series in {, and using repeatedly Egs.
(14.78) to express the derivatives of z({) in terms of z({) we realize that
z(€)z(€ + £,) on the right-hand side can be replaced by z°(¢) with an
error which is, at most, of the order (2 — 7B)z*(€) or z*(¢). Close to the
critical point, such terms can be neglected when compared with the two
leading terms. We may therefore replace z(¢) z({ + €,) by z*(¢) with no
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effect upon the critical behavior. With the same accuracy, we may replace
2 — @B by 2[(2/mB " — 1].

14.4. CALCULATION OF CRITICAL TEMPERATURE

Let us use the renormalization group equations and calculate the critical
temperature for both square and triangular lattices. The procedure
becomes most similar to that of the Villain model by introducing the
reduced variables [compare (11.148), Part 1i]

x==p"1-1, V= Vba,z, (14.80)

m

which obey the reduced equations

dx
— =2y? 14.81
T (14.81)
dy _ 2
i 2xy + 2ry”, (14.82)
where
p=—21 O on ] SAUATC  ices (14.83)
= = attices. :
Véa, 0.5401 triangular

We now determine the trivial straight-line solutions which separate the
set of all trajectories into three classes (see Fig. 14.2). Inserting into
(14.81), (14.82) the relation

y = mx, (14.84)
we find the algebraic equation

m—rm—1=0 (14.85)

or
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FIG. 14.2. The renormalization flow (schematic) in the 87!, z plane. Near x =0, the
two v-like heavy lines are the separatices y = m,x with m. given in (14.86). The solid
line is the locus describing the melting model of the Villain type with no extra core energy
and the purely elastic fugacity z=Ac " (A = Vbaym =36, ¢~=10.17). The dashed

lines of the same thickness, with the core parameters ¢~ 6 and ¢~ 20 are drawn for
comparison.
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for square lattices and

r r? 1.3059
PSR LS ’ 14.86
me=3r Vgt {0.7658, (14.86)

for triangular lattices. That r enters non-trivially into the solutions
demonstrates that the y? term in Eq. (14.82) is relevant to the critical
behavior. It can be easily verified that any higher term xy? or y in either
equation would change the separatrices only further away from the
critical point and can therefore be ignored in the critical limit.
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The critical temperature is found from the intersection of the separatrix
S_ (i.e., y = m_x) with the initial fugacity curve

2(B) = =M, (14.87)

Recall that the number ¢ was defined by the asymptotic behavior of the
potential v;/(x), i.e.,

, 1 x,
UijT(x) - _E(log(l’d ) — ?l) (14.88)

and had the values

¢, =2V2e” Ve ~ 8.3057 (14.89)

on a square lattice and
¢;=2V3e”Ve=10.172 (14.90)

on a triangular lattice [see (14.46), (14.48)].
In terms of the natural variables x, y, Eq. (14.87) amounts to

A, 200 square .
=47 f : lattices, 14.91
Y {A,c’,” (1+x) 1O triangular ' ( )

where the prefactor is A, = Vdaym=29.427 for square and
A, = Vbaym=36.0451 for triangular lattices. The intersection of this
curve with the separatrix S_ is given by the equation

A

X, = oY+ )
m_

or

x. = —1 — 2log c/log (’"A”‘C) . (14.92)

Solving for x by iteration we find
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—0.1744 square :
= f lattices, 14.93
e {—0.1726 of {triangular ATHees ( )
so that
~ 2 0.7711 square )
== f : lattices. 14.
P (1l + x.) {0.7694 o {trlangular attices (14.94)

It turns out that in both cases, x is somewhat too large to permit the
use of the small fugacity approximation employed in the derivation of the
critical stiffness. In going from (14.78) to (14.82) we replaced

Bl =5 +x)

2
B.=—(1 —x).
T

The error involved is about 3% for the square lattice value of x. as well as
for the triangular lattice. We should therefore expect discrepancies of this
order when comparing B, with the melting temperatures obtained
previously for the Villain model, either by analytic calculations, or by
Monte Carlo simulations. Indeed, for square lattices, we found at v =0

B,, = 0.815 (14.95)

which agrees to within 5% with (14.94). For triangular lattices, on the
other hand, Strandburg er al. (1983) locate a transition between

B (1 +v) =0.9125, B (1 +v)=0.9625.

A recent higher precision study by Janke and Toussaint (1986) finds a
melting transition at

Bo(1 + v) ~0.932. (14.96)
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Dividing this value by 2/V3 [because of the normalization (14.88) as
opposed to the one implied by (12.60)] gives

I’B-m] ~0.79, Eml == ().834, Bm = ().807.

These numbers differ from the calculated value (14.94) by the expected
amount.

14.5. THE CRITICAL BEHAVIOR OF THE COHERENCE
LENGTH

Just as in the case of the ordinary Villain model, the renormalization
group equations allows us to examine the manner in which the coherence
length tends to zero as the crystal is heated beyond the critical tempera-
ture. For this purpose we have to study the solutions close to the
separatrices. We shall proceed as in Chapter 11 of Part {I: divide the two
equations (14.81) and (14.82) by each other, and study the differential
equation

dy x
— ==+ .
Ay r, (14.97)

which for r = 0 was solved trivially by y = Vx? + x§.

On triangular lattices, for which r# 0, Eq. (14.97) is still a homo-
geneous differential equation so that it is possible to separate variables by
introducing u(x) = y/x. This satisfies the differential equation

u+x@—l+ 14.98
dx  u " (14.98)

which can be brought to the form

dx udu udu

5 =

x l1+ru—u

Cw—m)u—m)

_ (1 du 1 du ) (14.99)

The integration is now trivial and gives
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x = x(u — my )M mIm(y — )V s mme (14.100)
where » is a constant of integration. This can also be rewritten as
(y —mex) V(y —m_x)" = x, (14.101)

with

(14.102)

Using (14.86), we find
v=0.36963. (14.103)

For quadratic lattices, r =0, m, =1, v becomes 1/2, and Eq. (14.101)
reduces to

as it should [compare (11.154), Part 1I].
The value of x is determined by the initial condition which, close to the
separatrix, i.e., close to the critical point, has the form [compare

(11.134), Part 11]

2
X=Xx.+7, y=m_ x.+ art, t=—(TIT.—1). (14.105)

T
Inserting this into (14.101) gives

[((m_—m)x.+ (@—m)r]' V(ea—m_)r"~=x  (14.106)

For small 7, this can be rewritten as

o=~ p! e —mo)' T =, (14.107)
where
=(m.—m_)|x]|= _£|x | ~ 2|x.| = 0.349 square,
g i e v e 2.0715|x.| = 0.358 triangular.

(14.108)
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We can express the slope parameter a in terms of the critical value |x.| by
taking the fugacity equation in terms of reduced variables,

y=Ac 21+, (14.109)

differentiating with respect to x, a=(dy/dx)|.=2logc (U/(1+x)?)y.,
and expressing logc once more in terms of x. via Eq. (14.92),

xo= e, (14.110)
m.
This gives

2loge = —(1 +xc)logm;1xc’ (14.111)

and we have [compare (11.170b), Part II]

m_x nm.x

= — < = 14.112
* 1+ xclog A ( )

For square and triangular lattices with ¢ = 8.3057 and 10.172, A = 29.427
and 36.0451, respectively, this takes the values

—x.~0.1744: a = 1.083 square,

_x,~0.1726: «=0.896 triangular. (14.113)
We are now ready to calculate the length scale from (14.81),
1 {*dx :
=51 37 4.114
2 x"yz (1 )

The integral has to be carried from xg, yo tO Xmin, Ymin, Where y reaches its
minimal value [recall Part II, Eq. (11.136)], and further on to some place
X1, y1, where the dependence €(x) slows down. The minimum is given by
the intercept of (14.101) with the line dy/dx =0=x/y + r, i.e., by

Vmin = #(1 + rm Y {1+ rm_) " =xm¥ *m>%, (14.115)



1186 11l. GAUGE FIELDS IN SOLIDS

Xmin = ~F¥Ymin- (14116)

For 7— 0, these quantities vanish like X, 7%, Vmin 7" Where*

Vo = F2 2 m |2 = 1 5 = ().852 for square,
Yonin = 2002 0.8704 0.550 " | triangular,

0 square,
f = i | 14.117
Y min 7Y mi {~0.296 of {trlangular, ( )

in the three cases.

In the integral (14.115). the small v dependence comes mostly from the
region around the minimum of y with the dependence of x, on t giving
only higher order corrections. The leading behavior can best be exhibited
by introducing further reduced variables y = yr ™", ¥ = x77" and rewriting
the integral as

1 (“dy 7V (%7 dx
(t==| == —- 14.118
2 f.\‘(. yZ 2 f\‘(,r"’ y2 ( )

Since the integral converges, the dependence on the limits of integration
is very weak. We therefore separate the integral into three pieces

—v x = "t dx x dx
g=1 U ‘_i—’ﬁ—f %—j —f]. (14.119)
2 = ¥ —= ¥ nt Yo

For small 7, the second and third integrals can be well approximated by

Wt gy * 4y 1 1
| LA = - v (14.120
J‘._x m? x° f‘.lr..,mifz (mz_x() mix,) o )

and we find
{=hr v+ ! — ! ’ (14.121)
2mixo  2mi xy
where A 1s the number
‘For m, = |m_{ =1, v=1/2, A =27 this reduces correctly to the XY model formula

(11.171) of Part L.
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1 {* dx
h== = 1
2jx = (14.122)

and x, = x. + 7. For x; we may choose again [compare (11.166), Part 1]
x; = 0.25, (14.123)

which is large enough to put x;, v, into the disordered phase and small
enough to remain within the validity of the fugacity expansion. In order
to estimate # we expand ¥ around the minimum as

1
2)7|ni|1

Y= Vonin + (F = Fmin)” + -+ (14.124)

The curvature 1/2y.;, follows directly from the differential equation
dyldx = x/v +r = x/Vain + ¥ = (X = XminVmin (now applied to v, x). Thus
we find

1{~ dx ™
h o= — = 14.125
- ZJ‘*I jy?nin + (f - --X_min)2 2)_)min ( )
and the coherence length becomes
&(r) = &( )e LS N S — (14.126)
Ll EIIILEE PN 0TS

[to be compared with the similar expression in Part I, Eq. (11.139) for
the XY model].
For r— 0. the coherence length diverges like

§(r) ~ ehr - er'”(n/’l?mm]. (14127)

If we insert the numbers —x, = (0.1744, 0.1726 and the corresponding
values of A we find

1.84 square,
h= {2.86 for {triangu]ar. (14.128)
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Given experimental or Monte Carlo data, the resolution of the critical
behavior is just as difficult as it was previously in the XY model, due to
the 7 behavior of the second and third integrals in (14.119). In order to
estimate the corrections we expand y(X) around the separatrices as
follows

—1—1/(1—v) >
. _ X S..
y=m.X +p+{’f|h”v near {S. (14.129)
where
3 %l/(l*u) 3 }—tl/u 14130
P+ (my —m )79 P-= (my —m_)") (14.130)
This leads to the additional terms in (14.121)
1
t=1"7"h+——(1- 2 P- -ll/v
2m_X() |+ l 'm,_| ’x”|
v
1 2 1
———{1- m_mw + ...
2mix, {4 1 my X . (14.131)
1 —v

with the small r expansion,

{):hrv_( 1 1) 1 ¢ 1 p. e

+ ) - )
2m*|x]  2mix,)  2m* |x ) Ll I | |x [P
v
1 p, /0w
+ | m; eI + ... (14.132)
14— 7
Il —v

As a cross check, we set m. = =1, v=1/2, k= V;;, and recover the
correct XY model result (11.173b) of Part II.
Numerically, the expansions are, term by term,

¢~1.847 "2 —2.86—2— 16.447 + 2.857 + 2.857 + ... (square),
(14.133)



14, TWO-DIMENSIONAL KTHNY APPROACH TO DEFECT MELTING 1189

€=2.867 "7 — 494 — .17 — 28.597 + 5.097 + 0.347"°Y (triangular).
(14.134)

On a triangular lattice, 7 has to be considerably smaller than 7 = 1072 to
see clearly the 7" dependence of the first term. This brings the
coherence length to the order of a few hundred lattice units.

Experimentally, the coherence length has been measured up to several
hundred Angstroms by Heiney er al. (1982) (op. cit. in the Notes and
References. sce Fig. 14.4). Thus, under the assumption that the system
has no extra core energy, this coherence length begins to barely invade
into the scaling regime. Indeed, the data can be fitted quite well also by
an ordinary scaling curve é=a((T/T,)— 1)" [see also Eq. (14.142)-
(14.143)].

14.6. TWO-STEP MELTING

In their work on the dissociation of dislocation pairs, Halperin, Nelson,
and Young (HNY) realized that this dissociation alone could not readily
be identified with a melting process. The high-temperature phase in which
dislocation pairs are separated does not behave like a proper liquid. Even
though the translational order is destroyed, there is still memory of the
orientational order of the crystal. On triangular lattices, this phase with
orientational order is referred to as the ““hexatic phase.” A further phase
transition would be necessary to destroy this orientational order.

In order to describe it, HNY introduced an independent set of dis-
clinations into the ‘‘hexatic phase™. In that phase, these have once more
the same interaction energy as vortices in a film of superfluid He. There-
fore, when heating the ‘“hexatic phase,” they can undergo a further
Kosterlitz-Thouless phase transition with a jump of the orientational
elastic constant from a universal value to zero. This elastic constant Is
defined by the orientational energy of the bond angles w(x). It can be
parametrized by

_Ka
2

E: d°x (9;w(x))", (14.135)

where the subscript A of the elastic constant K4 records the fact that K,
refers to the angular stiffness. In a hexatic phase, the fundamental dis-
clinations have an angular defect [see (2.7), (2.118)]
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Q =60° = 27u/6, (14.136)

and the disclination density ©(x) = ¢;0,0;w(x) can be written as
B(x) = Q ),5D(x — x™), (14.137)
x(

where x are the positions of the disclinations. It is then possible to
introduce® a “gauge field” of the “angular stress” and write

1

E=——
2K,

d’x (8;A)" + ifdzx@)(x)A(x). (14.138)

From this, the interaction energy between a disclination and an anti-
disclination 1is, at long distances,

1
E.. = Q*K,—loglx|. .
= 02Ky 5 logl (14.139)

By the same argument as in (14.13), (14.14) it is now possible to conclude
that a rare gas of such pairs undergoes a pair-unbinding transition when-
ever the angular stiffness drops to a point at which

QKR 2
TG n (14.140)

Ba

corresponding to the universality relation ({2 = 27/6)

KR . =T72kgT.Im. (14.141)

14.7. EXPERIMENTAL EVIDENCES FOR AND AGAINST A
HEXATIC PHASE

The work of Halperin, Nelson and Young catalyzed a large number of
investigations on the two-dimensional melting process. Experiments were

dWe write the angular stress as a4, = £,3;4;. As was the case with X in Eq. (14.26), A(x) is
not really a gauge field, due to the reduced space dimension D = 2. In higher dimensions it
would be, though.
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FIG. 14.3a.b. The p, T phase diagram of Xenon on graphite (p is the coverage of the
adsorbed). The pioneering experiment is due to Thomy and Duval in 1970 (Fig. 14.3a)
followed by Hammonds et a/. in 1980 (Fig. 14.3b) (cited in the Notes and References). The
dashed lines are paths traced in recent experiments of Heiney et al., (Fig. 14.3b). There is a
first-order melting transition at submonolayer density.
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performed both in the laboratory and in model systems, via molecular
dynamics or Monte Carlo simulations. In laboratory experiments there is
now evidence for both continuous as well as first-order melting transi-
tions. But none of the first type of experiments really separates the
two transitions. Up to the end of 1988, evidence for the hexatic phase in
atomic crystals has remained scarce and indirect. Only in crystals, which
consist of rod-like molecules with an extra directional degree of freedom,
and to which the above theory does not apply, the situation is different.
Simulation studies with two-dimensional atomic crystals on the other
hand, suggest that these melt in a single first-order phase transition as was
obtained previously in our cosine model of defect melting. The only
exception 1s the 2D Wigner crystal (electron lattice) which could undergo
a continuous transition. This will be discussed later in detail. Let us first
describe some of the important experimental data. The references can all
be found in the notes at the end of this chapter.

In a pioneering vapor pressure isotherm experiment, Thomy and Duval
showed in 1970 that Xenon adsorbed with less than a monolayer density
on a (0, 0, 1) surface of graphite (see Fig. 7.9) exists in the three phases
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FIG. 14.4. The coherence length of a layer of Xenon layers on graphite at a coverage
p=1.1 and a melting temperature of 152K, as measured by Heiney et al. (1982). It is

better fitted by the Kosterlitz-Thouless form &' -v.eﬁ”(T‘T")”2 than by the power law
£~ 024 A (TN52.04K — 1)*277,
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gas, liquid, (incommensurate) solid, with a phase diagram which is very
similar to that of a three-dimensional system and with first-order tran-
sitions between the phases. The original phase diagram is shown in Fig.
14.3a. This behavior of Xenon is in contrast to Krypton or Nitrogen on
graphite for which Butler er al. in 1979 found neither the triple point nor
the critical point. The structure of the Xenon phase was investigated
further by Hammonds et al. in 1980 (Fig. 14.3b) who found again a
first-order transition up to 112K which was the highest temperature they
studied.

In 1982 Heiney et al. reported that an increase of coverage to 1.1
monolayers softened the melting transition and made it continuous. This
evidence was taken from a measurement of the coherence length which
is shown in Fig. 14.4, It can be followed continuously to more than 100 A
(in their more recent 1983 paper to 200 A) which would be impossible in
a first-order transition unless it is extremely weak. A best fit to the
Kosterlitz-Thouless form (14.127) gives

3 T v
£1=0.082A exp [—0.0862/(-1—5—2—1( - 1) ] . (14.142)
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where v lies between 0.3690 and 0.4, in good agreement with the HNY
number of 0.369. This fit reproduces the experimental points somewhat
better than an optimally chosen power law formula®

» » T 0.277

At the critical point, the cusp parameter 7 of the (1, 0) Bragg peak at the
momentum transfer ¢ = 1.63 A~ = (27/ay)(2/V3) was found to be?

n~ 0.28 £ 0.05. (14.144)

Using (14.52) and the lattice spacing ay = (2/V3)(2w/q) = 4.42 A this
corresponds to a measurement of’

1A
R1 2u 1 3 gPad 1 1
; = B == — =——~0.57, (14.145
P 1+1é R 1—vR3 29Qn)4nr 9 2xn ( )
3ulr

a number which is compatible with what would be obtained from the
universal pair unbinding value Eq. (14.15)

2
BR(1+vRy =2 ~0.64, (14.146)
Tr

as long as v® is a small positive number (which is usually the case).

Similar experimental results were reported by McTague et al. (1982) for
monolayers of Argon.

At first sight, these results seem to give evidence that two-dimensional
melting does proceed as described by the HNY theory. However, things
are not as simple. First of all, one should remember that the two-dimen-

It was argued by J.M. Greif er al. (1982) and by J.L. Cardy (1982) (see the Notes and
References) that the scaling law (14.128) should not be applicable before ¢ reaches ~108
lattice spacings. Experimentally, one never gets beyond 10° spacings so, if these authors
are right, it would be futile to attempt fitting the anomalous behavior (14.142).

"Recall the definition of 7 in Eq. (7.199). Notice that we may use the inequality on v, which
follows from the positivity of k = A + u, —1<v=1 to derive, from (14.145) and the
untversality prediction (14.15), the inequality n < 1/3. Moreover, since v is usually >0,
one also has a weak lower bound 7 = 1/4 which is satified by (14.144),
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FIG. 14.5. The phase diagrams of Xe, Kr and Ar, as given by McTague er al. (1982). The
density is measured in units of the epitaxial density p., on the substrate.
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sional melting process in layers of *He exhibits a sharp peak in the
specific heat [recall the data of M. Bretz er al. in Fig. 7.13]. Sharp peaks
were also reported for Neon by G.B. Huff and J.G. Dash (1974). Such
peaks are incompatible with the dislocation unbinding HNY mechanism
which should not show up at all as a singularity in the specific heat, nor in
any thermodynamic measurement.

Second, there are only two experiments which report orientational
order in liquid layers of Argon, namely, one by Shaw et al. (1982), and
another one by Rosenbaum et al. (1983), in Xenon. The evidence for the
hexatic phase presented in these papers is, however, quite indirect and
carries some theoretical bias (they apparently wanted to see the hexatic
phase) so that it is hard to assess the systematic errors.

Third, none of the papers reporting a continuous transition has
described the second transition from the hexatic phase to the proper
liquid.

An additional difficulty is the following: when McTague et al. (see Fig.
14.5) compare the phase diagrams of Xenon, Argon and Krypton,
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plotting them against a temperature 7/T7p (D = 3), where Trp (D = 3) is
the triple point of the three-dimensional system, the diagrams look quite
different. They should, however, be very similar due to the law of
corresponding states (which is clearly obeyed in 3D). If substrate effects
are as unimportant as often claimed, this is hard to understand.

A two-dimensional system which is free of substrate effects can be
studied using smectic liquid crystals of Type B. When smearing such a
material across a hole one can prepare well-defined few-layer systems of
two-dimensional crystals lying on top of each other and coupled weakly to
each other. In this system, D.E. Moncton et al. (1982) find a definite
sharp first-order transition for two layers and, surprisingly, two successive
first-order transitions for 3, 4, 5 layers. Unfortunately, it has been
impossible to prepare thinner than two-layer systems so that the substrate
problem is replaced by the disadvantage of not having a monolayer.
Another disadvantage is that the system consists of rod-like molecules
which can have additional directional fluctuations and these might easily
change the order of the transition.®

14.8. COMPARISON WITH MOLECULAR DYNAMICS
COMPUTER SIMULATIONS

Up to now, the only way of studying substrate free monoatomic two-
dimensional systems is via Monte Carlo simulations. This road of approach
has been followed by numerous authors and the outcome of their
investigations conforms with the behavior of our cosine model of two-
dimensional melting, which shows a first-order process. Early work by
Hansen and Verlet on Lenard-Jones systems found a phase diagram of
the usual type, with a first order transition and a density jump of the
order of 5%. (See the phase diagram in Fig. 14.6 and 14.7.)

In 1979, after the theoretical work of HNY, McTague and Frenkel
claimed to have seen two continuous transitions in a soft disc system with
a potential ® = g(o/r)°, just as is required by the theory, Working at a
constant overall density po® = 0.8, they identified the following transition
temperatures

T, =0.1525  T.=0.15625. (14.147)

#Recall the discussion in Chapter 3, Part II. See also Section 18.7.
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FIG. 14.6. The phase diagram of a 2-D Lennard-Jones system [V(r) = 4e((ofr)"? ~
(o/r)")] obtained via molecular dynamics calculations by Hansen and Verlet (1969).
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Moreover, in the small temperature interval between T, and T, the
correlation functions were reported to display a large-distance behavior as
expected for the hexatic phase.

This appears to confirm the HNY theory. The picture is, however, not
consistent. The internal energy (see Fig. 14.8) has a clear jump and this is
in serious contradiction with the HNY theory. From what we have
learned earlier in the Villain model, the pair-unbinding transition is
practically undetectable in the internal energy. The specific heat should
show only a smooth peak which lies considerably above the transition
temperature. Thus the conclusions of McTague er al. are at variance with
their own internal energy data. Incidentally, by counting the deviation
from the coordination number g around each atom (see Fig. 14.9), the
authors showed in which way the disclinations proliferate in the melting
process and the result looks very similar to what we found in our cosine
model (recall Figs. 13.20).

The contradictory situation was clarified by Toxvaerd in 1980 and by
Abraham in 1980, who studied the same Lennard-Jones system once
more at fixed pressure and various temperatures via Monte Carlo
techniques. They observed discontinuities in the enthalpy and density
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FIG. 14.7. The pT diagram of the 2-D Lennard-Jones system as given by Abrahams
(1980). The dashed line is extracted from simulation data of Toxvaerd (1978).
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which are characteristic of a first-order transition (see Fig. 14.10). They
also gave a simple reason why the previous authors had seen two
transitions: if a first-order solid-liquid transition is studied at fixed overall
density (i.e., along isochores) there exists a two-phase co-existence
regime in which pieces of solid with lower density are in thermal
equilibrium with surrounding regions of liquids of higher density (Figs.
14.11-14.12). Abraham also suggested an explanation for the observed
stiffness K, of the angular correlations in the two-phase regime: in the
computer simulation, the solid pieces had not had enough time to change
their crystalline orientation with respect to the initial solid. This is why
some orientational memory is retained if one carelessly averages over the
two-phase system. In fact, if extracted properly, the orientational order in
the two-phase regime was shown to disappear by Zollweg (1982) in a
simulation of a hard-disc system.
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FIG. 14.8. Temperature dependence of internal energy as reported by McTague er al.
(1980) in their simulation study of soft discs with an r~® repulsive interaction potential. They
claim to see two successive continuous transittons but the internal energy displays a clear
first-order signal.
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After these results, Abraham and Koch (1982) found it worthwhile to
reinvestigate once more the importance of the subtrate by simulating
Xenon atoms adsorbed on a graphite via Monte Carlo techniques sub-
jected to the same conditions under which Heiney et al. (1982) had seen a
continuous transition. Contrary to the laboratory experiments, they found
a clear first-order transition. Since Heiney ef al.’s coverage was 1.1
monolayers, Abraham and Koch also studied the effects of second-layer
promotion. This did not affect the character of the transitions.

On the basis of these simulation results it thus appears that two-
dimensional melting of Lennard-Jones soft-disc and hard-disc systems is a
first-order process. The adsorption on a surface of graphits does not
change this.

More work will be necessary to tell the difference between the
laboratory and the simulated systems and to understand why one system
can apparently undergo a continuous phase transition while the other
cannot.

14.9. UNIVERSAL STIFFNESS

An important feature of the HNY theory is the prediction of a universal
stiffness B =[B(1 + v)]® =2/7=0.64 at the transition, after which it
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FIG. 14.9. The atomic positions as found by McTague et al. (1980) for soft discs of the
potential &(a/r)® at T* = kgT/e = 0.150. By counting the deviations from the regular
coordination number ¢ = 6 of the triangular solid they find pictures of the disclinations
similar to those of the cosine melting model in Fig. 13.20. The pictures are taken at
T*=0.1, T*=0.15, T* =0.1525. The melting temperature lies between 7™ =0.15 and
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must fall rapidly to zero. This should happen significantly below the peak
in the specific heat. Experimentally, Greif, Silva-Moreira and Goodstein
(1980) noticed that the sharp peaks in the specific heats of solid helium lie
considerably above the temperature 7,,, calculated by using the zero-
temperature elastic constants, i.e., they observed

ag[p (1 + )]y < 2

Q) kpToee 7 (14.148)
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FIG. 14.10. The discontinuities in density and enthalpy as observed by Abraham (1980) in
a 16 X 16 Lennard-Jones system at two different pressures.
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FIG. 14.11. The p = const. and p = const. cuts through the state diagram of a solid-liquid-
gas system. While melting and evaporation are discontinuous processes at p = const. they
appear as two successive continuous transitions at p = const., due to phase mixing.
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FIG. 14.12. Schematics of phase diagrams in a first order process at p-const. (after
Abraham, 1980).
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Since elastic constants usually soften with temperature, this is consistent
with the HNY theory.

Tobochnik and Chester (1980), in a computer simulation of a Lennard-
Jones system, found that at high densities" (po® ~ 1.143) the stiffness at
the melting point is still higher than that predicted by theory (Fig. 14.13).
At lower density (po® ~ 0.86 — 0.89), however, the universal value can be
reached. These results indicate that at higher' density, melting is a first-
order transition which takes place before the dislocation-unbinding
mechanism can come into action. The coherence length does not have a
chance to grow large enough so that the renormalization group procedure
becomes applicable. The Monte Carlo data on the internal energy
support this picture. For high densities they show a discontinuity, while
for low densities they appear quite similar to the internal energy of the
XY model for the superfluid phase transition for which pair unbinding is
believed to be active.

PRemember that ¢ is the size parameter in the Lennard-Jones potential V = 4¢e[(a/r)'? —
(air)®].

“This is in contrast to the experimental finding that the transition softens with increasing
density (sce Figs. 14.3 and 14.5).
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FIG. 14.13. The stiffness constant K = 87°8% as a function of temperature in a 32 x 32
Lennard-Jones system as obtained by Tobochnik and Chester (1980) in a Monte Carlo
simulation. Only at the lower densities (0, A) does the stiffness reach the universal value
167 = 50.27. At higher densities, melting occurs slowly, indicating a first order transition.
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14.10. THE WIGNER ELECTRON LATTICE

Another two-dimensional crystal in which the melting transition has been
studied in detail is the two-dimensional version of the electron lattice
proposed by E.P. Wigner in 1934. It was pointed out in 1971 that by
applying a strong electric field perpendicular to the surface of superfluid
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helium it is possible to prepare an electron crystal in two dimensions. By
calculating the ground state energy for all five possible two-dimensional
Bravais lattices, i.e., square, triangular, centered-rectangular, primitive
rectangular, and oblique,’ Bonsall and Maradudin (1977) showed that the
triangular lattice had the lowest energy. For this lattice they found the
static ground state energy per electron [to be rederived latter in (18.224)]

2
E=—3.921034 — (14.149)
LW

and the eigenvalue equations for long wavelength phonons
mw*u, (q) = § Aup (0) 145 (q) (14.150)
with [for a derivation see Eq. (18.343)]

2
e | 2mwq q,
AQB=UI,2[ 7 n(aanZ—f)qaqﬁ)} +0(@),  (14.151)

v
where 7 1s a numeric constant

n = 0.245065. (14.152)

The g factor in front of the longitudinal projection g, qﬁlq2 implies that
the Lamé constant A is infinite, corresponding to an incompressible solid.
The shear modulus u 1s equal to

82

H=n3m (14.153)

The quantum mechanical zero-point energy was calculated to be

2

1 1 e 1/2
Egp == ] e 14.154
0pt. 2Zq: (q) ) (maa) ( )

The basic vectors and cell volumes v are ay(1, 0), a0, 1), ao; ay(l, 0y, ay(1/2, V3/2),
(V3/2)aq; (a, 0), (a/2. b/2), abl2; (a, 0), (0, b), ab; (a, 0), (c. b), ab. respectively,
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In 1975, Hockney and Brown simulated a 2D Wigner crystal via mole-
cular dynamics and found a melting transition at*

et 1
F,,,E\/;U—l/im:gSiz, (14.155)
with a transition entropy of
As = 0.3 kg/particle (14.156)

distributed continuously over roughly 1K. The specific heat they
observed looked very much like that of a A transition in bulk superfluid
helium (see Fig. 14.14), and at the vicinity of the critical point could be
fitted by a power behavior ¢ ~ 77" on the low and ¢~ v %' on the
high 7 side. This value of 7,, was compared by Thouless with the univer-
sality prediction, using the zero-temperature elastic constants of Bonsall
and Maradudin. We had seen in Eq. (14.151) that due to the 1/7* forces,
the 2D electron crystal is incompressible so that A == and v = A/
(2u + A) = 1, and hence the universality prediction (14.146) is

2, R
ag M

k B Tm

KR = 4m = 167 (14.157)

Using (14.155) and (14.153) this corresponds to

8

—nIR =16 14.158
mn " m ( )

or
'R =~ 78.71. (14.159)

Since usually the elastic constants soften with increasing temperatures
this could, in principle, be compatible with the value found by Hockney
and Brown. However, in 1979 simulations were preformed by Gann,
Chakravarty and Chester who could not reproduce the data of Hockney
and Brown and found instead a much larger value of

“They used v = 107! cm? so that T, = 296.12(1/T,(K)).
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FIG. 14.14. The specific heat of a 2-D electron lattice at a density of 10'" electrons/cm” as
found in molecular dynamics simulations by Hockney and Brown (1975).
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I, =125 = 15.

At the same time, Grimes and Adams (1979) performed a laboratory
experiment observing a melting temperature consistent with this number.
Such a large value for I',, would imply that the elastic constant u could
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soften by as much as 20%, from T =0 to the melting temperature.
Although this seems rather large, it could. in principle, be possible.

In 1979, however, Morf pointed out that according to the theory of
Platzman and Fukuyama (1974) the elastic constant u in a 2D electron
gas should have an anomalous temperature behavior and increase with
temperature. This would immediately destroy the possibility of a
universal melting stiffness. Puzzled by this contradiction he performed a
simulation in which he determined directly the shear modulus u as a
function of temperature. He found that the elastic constants soften
linearly, at low temperature, behaving as

w(T)=p[l =308 '+ O(I' )] (14.160)
and confirmed the value (see Fig. 14.15)
", ~ 130 = 10, (14.161)

Thus he found a strong decrease of p with a melting temperature only
slightly below the universality prediction (see Fig. 14.15). In addition. he
was able to fit his data with a curve obtained via a renormalization group
calculation. For this he integrated Eqs. (14.81). (14.82), by assuming the
initial stiffness B((,) to soften linearly with temperature. with a slope
obtained from the initial piece of his simulation data. He then took the
estimated core energy of Fisher, Halperin. and Morf (1979) (n, = ¢~ "),

e~ 0.1 200207 = pCloge (14.162)
Kérra

with € = 13 + 6. estimated the natural core energy to be u(ai/27)log2. and
worked with an initial fugacity of

z=(20)" " (14.163)

While he claims to see agreement with the KTHNY theory. two problems
arise. One is the sharpness of the peak in the specific heat, which a
Kosterlitz-Thouless transition should not have. The second is the
apparent absence of an intermediate hexatic phase. In fact. the data look
very much like those of the melting model of the Villain type (recall the
specific heat in Fig. 12.13). A further probiem is prompted by the contra-
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FIG. 14.15. The shear modulus of a 2-D electron lattice (26 x 26) obtained by Mort (1978)
in a molecular dynamics simulation as a function of I' ' (labeling the abscissa directly with I
values). The dashed-dotted line shows the locus where the stiffness should collaps according
to the HNY theory [Eq. (14.158)] assuming lincar softening of u(7). A = =, The triangle
indicates Thouless’ value "= 78.71 obtained from the use of the 7= 0 clastic constants.
The solid curve was obtained from renormalization group calculations by (a) assuming the
bare elastic stiffness to soften linearly with temperature, as indicated by the dashed line. (b)
including a core energy. e.~ 0.1 X As"=¢” as calculated by Fisher, Halperin, and Mort
(1979). and (c) adjusting one parameter, the size of the defect core. The value
[, = 130 = 10 is the presently accepted value.
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dictory simulation data of Kalia er a/. (1981). who find a clear first-order
transition.

Summarizing the status of experimental and simulation data one may
say the following.

. Experimentally 20 melting is mostly a first-order process, as in our
models of defect melting. but may sometimes be continuous.
2. Molecular dynamics calculations have found a first-order transition
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for Lennard-Jones systems and possibly a continuous transition for an
electron lattice.

3. In many cases the specific heat has a clear single sharp peak which, if
the transition is continuous, cannot be understood on the basis of the
KTHNY theory.

4. The experiments which have measured the divergence of the
coherence length a la Kosterlitz-Thouless, Eq. (14.134), have not
simulaneously measured the peak in the specific heat to see whether it lies
significantly above the transition as it should.

5. The experiments which, in atomic two-dimensional crystals, claim to
have measured an angular stiffness as a signal for the hexatic phase have
not seen the collapse of this stiffness and related this second point to the
peak in the specific heat.

Thus, while first-order and continuous transitions both seem to occur in
adsorbed atomic largers there is no convincing evidence as yet for the
existence of two successive continuous transitions in the continuous case.

Some indirect evidence comes from NMR measurements of spin-spin
and spin-lattice relaxation times which are claimed to show two successive
anomalies in temperature, the first lying roughly at the universality point
BR =2/, the second at the peak of the specific heat [M.G. Richards
(1982)]. Whether the first anomaly is really associated with the pair-
unbinding transition is not clear and remains to be shown more con-
vincingly.

Our models of defect melting have a first-order transition. Certain
modifications will therefore be necessary in order to explain the experi-
mental data, in which the transition is continuous. Preliminary steps in
this direction have been undertaken in other models, such as the three-
dimensional XY model and the four-dimensional Abelian lattice gauge
model [see Janke, Kleinert (1986)]. We shall see in chap. 18, in particular
Sec. 18.6, how we can generalize our models of defect melting so as to
comprise both types of transitions.

14.11. FIRST ORDER VERSUS CONTINUOUS KTHNY
TRANSITIONS

If 2D melting is of the first order, as in our models of defect melting, the
question arises as to how the KTHNY formulation of defect melting has
to be corrected in order to account for this. When deriving the partition
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function of the dislocation gas KTHNY use the asymptotic form of the
potential between two dislocations

—5vV+V,v ! 1 5 X X;

(V-V)? 4n
(14.164)
They separate this into a term
1 XX,
_ Rl il
yp (log|x| 8 " ) (14.165)
and an x independent diagonal term’
l .
e log(2V2Ze?* )5, (14.166)
(0

Contracting v,-’jT(x —x') with the Burgers vectors b,(x), b;(x’) and
summing over x # x’, they use charge neutrality [Z,b;(x) = 0] to rewrite
this latter term as a core energy,’

4i1og (2VZe 1Y Y p2(x). (14.167)
v X

A core energy of this magnitude, if it exists, would indeed enforce a low
density of dislocations, justify the fugacity expansion, and could lead to a
pair-unbinding transition as envisaged by these authors. Unfortunately,
this procedure violates an important fundamental property of the elastic
energy between defects. We had seen in the general discussion of Chapter
5 that disclinations can be thought of as a string-like pile-up of
dislocations. When such a pile-up takes place, the memory of the string
disappears completely due to a perfect matching of the crystal faces along
this string. A core energy of the type (14.167) would prevent this from
happening. If it were present, the string would carry an infinite energy
and no disclinations could form.

In the formalism, the disappearance of the string energy for disloca-
tions with unit separation is a direct consequence of the fact that the

'Actually, their numerical constant is different since they work on a triangular lattice, but
this is irrelevant to the discussion to follow. Also they did not know this term exactly on a
triangular lattice; it is given by (14.43), (14.48).
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FIG. 14.16. A nearest neighbor stack-up of dislocations which is equal to a disclination
and a second-nearest neighbor stack-up which is equal to a large-angle grain boundary.
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Boltzmann factor contains only the transverse projection of the dis-
locations density

V-V + V.V,
eXP{—‘lwzﬁ ) b,-<x)( Ly )(x x)b(x)}

X#x'

= exp{ 47°B Z J,V bi(x) =—== 2 V)2 Eex Vb (x')}- (14.168)

X#Ex'

In order to see this let us form a string of Burgers vectors b,(x) which all
point along the y-axis and are stacked up along the x-axis, starting from
point X, Y (see Fig. 14.16):

b,-(X) = J2V 5\ X‘S\, Yy — 6! IG)A Xav Y- (14169)
1

Here

O == x= 2, B x (14.170)
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1s the lattice version of the Heaviside function which vanishes for x < X
and is equal to unity for x = X. Applying to this the operation ¢,V we
find

giV,bi =8, xd, x (14.171)
This formula shows explicitly that the string has no elastic energy. The
energy 1s focused roughly concentrically around the point (X, Y) which is
the disclination generated by the string of dislocations.

Notice that if the long-distance limit (14.164) of the transverse potential
vf(x)" is employed too early (as Halperin, Nelson and Young have done)
one is incapable of describing this phenomenon. The cancellation of the
elastic energy makes essential use of the short-range properties of the
potential v/(x) on the lattice. As discussed in Section 2.5, a crystal may
contain not only complete pile-ups of dislocations but also incomplete
ones, where the Burgers vectors are stacked with a separation of 2, 3, or
more lattice spacings. Such incomplete stack-ups are observed in the form
of grain boundaries (see Fig. 14.16 and Fig. 2.6 in Section 2.1). The
disappearance of the energy for nearest neighbour spacing has the con-
sequence that strings with spacing 2 still have quite a moderate amount of
energy. Since they carry, in addition (and in contrast to string of nearest
neighbour dislocations), the configurational entropy of a random chain,
this can outbalance their energy and we may expect the proliferation of
grain boundaries at a certain temperature. It was suggested by Chiu
(1982) that this proliferation would take place before pairs of individual
dislocations could dissociate.

The results of simulations of our models of defect melting confirm this
idea. In these models, the fundamental defects are carried by n(x) and
are disclinations. Pairs of these have the same interaction as a single
dislocation with the Burgers vector pointing orthogonally to the dipole
vector. If we look at the distribution of disclinations extracted from our
simulation data (see Fig. 13.20) we see that for low temperature the
disclinations always appear as quadruplets, corresponding to pairs of
dislocations and antidislocations. As the system passes the melting
transition, these quadruplets do not split up into pairs, as predicted by the
KTHNY theory, with a subsequent unbinding transition of these pairs,
but they blow up into larger and larger strings of alternating charge n(x)
with or without open ends, in a single transition. Interpreting each pair of
neighboring disclinations as a dislocation, these strings may be viewed as
string dislocations with spacing 2., i.e., they can be viewed as grain
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boundaries. The reader is referred back to the end of Chapter 12 for a
more detailed discussion of these features of the melting process.

[t is not easy to reconcile the KTHNY theory with these findings. As
long as the theory is formulated in the continuum and uses the long-
distance form of the defect potential. The melting process requires stacks
of defects at next-ncarest neighbor positions and an additive core energy
would prevent their formation.

14.12. DIRECT SIMULATION OF A GAS OF DISLOCATIONS

The importance of the pile-up of dislocations was confirmed in Monte
Carlo simulations by Saito (1982). He considered directly the partition
function of a gas of dislocations:

Ziw= ), exp{uﬁ Zb,-(x)("‘s"fv_'V +2v,v,) (x,x’)b,-(x’)}- (14.172)
{bix)} x. x' (VV)

In order to enforce the validity of the dilute-gas limit, he followed
Halperin, Nelson and Young and added on the core encrgy

¢RI, (14.173)

Working on a triangular lattice with lattice vector ao(1, 0), ay(—1/2,
V3/2). he considered only the fundamental Burgers vectors

V3 I V3
2 vl 3)

B 272
(14.174)

b | =

b = +q,(1,0), b = ia(,(_

For the potential he took the long-distance approximation (14.43)

—5,V-V+ V.V, \ 1 XX
e/ (x) ( T ) 0 47T{log(|x|c)5,, |x3]' (14.175)

where, we recall. ¢ is the constant (14.47) determined numerically by
Saito. When he simulated the system using the above asymptotic form he

“His parameters are related ours by Aap/k ;T = [u(pe + AN/ 2u + M/ mky Ty =278,
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found a continuous dislocation pair-unbinding transition as predicted by
the HNY theory. He then reduced the natural core energy implied by
(14.175) by an additional negative term, i.c., he used the core parameter

&=clVe (14.176)

instead of c¢. This produced a first-order transition in which the
dislocations piled up into strings of large-angle grain boundaries.

In view of the above discussion it is easy to interprete this result. While
working with an unphysical model in which he had taken the long-
distance limit of the lattice potential (thus destroying the proper pile-up
behavior of the dislocations), the artificial reduction of the core energy
partially corrected for the wrong starting point. It lowerest the energy
of the nearest neighbor strings of dislocations so much that their
configurational entropy led in the end to their proliferation before the
pair-unbinding transition could set in. While Saito’s result tells us how the
parameters of the HNY theory can be modifed in order to generate a first
order transition, his approach maintains the fundamental drawbacks of
the HNY formulation. Saito’s strings of dislocations are, by construction,
nearest-neighbor strings on a triangular lattice which, as we have seen in
Eq. (14.171), are really disclinations and thus should not carry any string
energy at all (they are not even physical degrees of freedom). Only the
next-nearest-neighbor strings are physical. It is the artificial core energy
which gives rise to his model’s nearest-neighbor strings. This must be kept
in mind if we want to reinterprete Saito’s result in terms of real crystals.
Satto attempted to account for this short coming in ad hoc manner by
taking, as a length scale over which the dislocations can be separated,
twice the lattice spacing rather than the lattice spacing itself. This was
certainly a step in the right direction although it introduced an error in
the positional entropy of the single defect configurations.
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CHAPTER FIFTEEN

DISORDER FIELD THEORY OF DEFECT MELTING

Now that we possess a lattice model which respects all stack-up properties
of the defects in a crystal it is possible to derive a consistent disorder field
theory of crystalline defects. This field theory turns out to be rather
different from the tentative construction presented in Chapter 8. In
contrast to that theory for which a good deal of effort was spent in finding
possible mechanisms for making the transition first-order, the proper
disorder field theory to be proposed in this chapter will have a natural
way of undergoing a first-order transition right at the mean field level. We
shall see that as was the case with the field theory involving order fields
[see Section 13.1] the disorder field theory will contain a temperature
dependent quartic term which naturally causes a first-order transition
(recall Fig. 13.1). The disorder field theory contains D complex disorder
fields, one for every lattice direction. It describes all possible configura-
tions of the defect tensor 7,(x) and consequently a grand canonical
ensemble of dislocations as well as disclinations.

15.1. DISORDER LATTICE MODEL FOR THREE-
DIMENSIONAL DEFECT CONFIGURATIONS

Our starting point 1s the defect representation (9.40) of the partition
function of the melting model (omitting the bar on top of X;;)
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Z_[L(Hg)]’“l
| 8¢ Ty @mp)yY

X H[deH(x)de x)pr(X)] Z 8%, 7, (x). 0
1 Y
Xexp{ BE[E (r,, ZU,,—Z/(ZGH(X—I)) ]

i< 26 i i

— 2mi 2 X(,,(X)T_]('n(X)}' (151)

Xx.{.n

A disorder-lattice model will now be introduced to replace the sum over
the defect configuration %;(x). In order to achieve this, consider the
following auxiliary sum over defects with an arbitrary core energy e,

Lot = Z ‘Svn (x). (,pr{F( E "Ir; +3 Z "In)} (15.2)

L"? (x}} X<

where 7;(x), 7;(x)(i <j) run over all integer and half integer numbers,
respectively. By comparison with (11.6) we see that the sum over 7;(x)
has exactly the same form as the sum over stress configurations, i.e.,

1
E SV (X)), ()exp Z I,' + Z ) (153)
{0 (%))} 4B X, <)

The only difference between the 7;,(x) and &;;(x) sums is that o, are all
integer numbers for i =j and ¢ #j while 7;(i <j) are half-mteger. The
sum (15.2) can be thought of as being the dual transform of a model

T dy(x)
Lack.v = Z (D[”rj(x)] H [I P jl
{n;(x)} X i -7 T
1
X exp{—F[ Z (V,')/] + V’.'}’, - 27Tn”)2 + 2 Z (V,"y‘,’ - ﬂ'ﬂu)z:l } \

X.i<f
(15.4)

where the symmetric jump numbers n;(x) run over all integer values for
t=j and i#/. Indeed, if we introduce integrations over auxiliary
variables 7;(x), we can write this, just as in (9.22), as
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chf v= 23}\//2 l:JdTL :I{ Z (D[nij(x)]eXp{—E E {E "7;,+ E nu]

I[(X)} 1= f

+ 25[ E 1 (Viy, + Vv, — 27ny) + Z n;:(Viyi — mny; ]}
X, i<(f L

(15.5)

This is the same as (15.2) since the integrations over v,, the conservation
law V;71;(x) =0, and the sums over 7, force m;(x) to be integer and
7, (x)(i <j) to be half-integer. The latter is the principal difference with
respect to (9.22), where o;;(x) had to be integer for i =j and i <j.

In order to work toward the desired disorder ficld theory we now
proceed in the same way as we did in the case of vortex lines in Chapter
12, Part 1I. We take the inverse Villain approximation to (15.4) and write

ZLaet = H [f%gl] exp{g[ Z cos(Viy; + V,v:) + % E COS(zvf’)’:)]}'

X, I X, i<j
(15.6)

Notice the appearance of the double angle in the i = j cosine [in contrast
with the melting model in the cosine form (13.2)]. This partition function
of all defect configurations can then be transtormed into a disorder field
theory just as the cosine form of the melting model in Sec. 13.2. Before
doing this, however, let us see how the stress field enters into this
partition function.

15.2. COUPLING THE STRESS GAUGE FIELD

Let us we add to the defect sum (15.6) the stress gauge field. According
to (15.1), the coupling is

exp {Zm'

>

x, €, n

Xen(X) ey (X)} ' (15.7)

In the partition function (15.5), 7, appears in the last two terms, so
(15.7) changes them to

2i E [Z 0 (Viy; + Vv, — 2wX; — 2mmy) + E 1:(Viyi — wXy — Ry ] :

X [<<J
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As a consequence, the disorder model (15.6) contains X;;(x) as follows,

- 11| 2]

2 1
Xexp{— |: E COS(V,‘ ')’I.+V1, 'YI—ZWX,])+§ Z COS(2V,‘ )f,-—?,TrX,-,- ):|} :
X.0<f X. I
(15.8)

Combining this with (15.1), the complete disorder lattice model becomes,
in the presence of an extra core energy e,

REY Al
ZLgisord = [853(1 - 37})] —(277;3)3N : [den(X)dXzz(x)Xmz(x)}

1 1 1 ?
X exXpy —== E op+ =) on — — ( a‘,»,x-—i)}
p{ 23[,(,,-@% el L Lot
2 1
+ [ Z cos(Viy; + Viy, — 27X,) + 5 Z cos(2V;y, — 27TX,‘5):| } ;
X 1<) X, i
(15.9)

where
Crij(x) = Ejkg ejmnvk vm X(.'n (X - ‘e - n)- (1510)

Notice that the model is properly invariant under stress gauge trans-
formations,

Xii(x) = X;(x) + VA (x) + VA (x), ¥ (X) = v (x) + 27 A (x), (15.11)

as it should.

The original melting model (15.1) corresponds to the limit £ — 0, i.e.,
no extra core energy. In that case the model becomes the analogue of the
“frozen lattice superconductor” treated in Part II [see the remark there
before Eq. (12.8)].

For the case £¢— 0, the model (15.9) can be replaced by yet another
one in which ¢ is nonzero and plays the role of the natural core energy
associated with stress fluctuations [recall (9.116)],

eXP{_4WZB|C| E [ﬁs(x) + l_i_v(%] Nee (X — 3)) ]} , (15.12)
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lc| =~ 0.011 (15.13)

i the constant by which the asymptotic behavior of the subtracted defect
potential

’ , d?k eik-(xfx'}_*l
ri(x — x') = f(zw)3 o (15.14)

differs from the continbum form —|x — x'|/8% [recall Egs. (11.A65),
(11.A71), ei(x — x") — —(|x — x'|)/87 + ¢]. We may choose

e = 8mB|c| (15.15)

and modify the energy in (15.4) in such a way that the dual transform
(15.2) involves the natural core energy

exp{g[g 7 (x) 77 ) (Z T (x - f))“]} (15.16)

X

The removal of the natural core energy is to be accompanied by a change
in the gradient terms of X, in (15.9). Everything can be done in complete
analogy with Sec. 12.4 of Part II.

15.3. DISORDER FIELD THEORY OF INTERACTING DEFECTS

After these preparatory steps, the derivation of the disorder field theory
is straightforward. All we have to do is to transform the cosines into three
sets pairs of complex fields u;, a; in the same way as we did in Chapter 13.
The partition function (15.8) 1s rewritten as

Lyer = H [fﬁ g’“}:}”}rﬂ] exp {%Re Z U (x) Ui(x + i)}

X. ! T i X <]

.
X exp {: Re [ Y, Ui(x) U(x + i) Ui (x + j) Uj (x) e 2%
£

X.f<y

" Z UIT(X)Z Uz(x + l) eEmk,,(x)j|} 5 (1517)
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where
Ui(x) = el VX (15.18)

are pure phase variables. These are replaced by pairs of complex fields
u;(x) and o;(x) in the well-known way [see Eq. (13.25)].
Notice that the products

Ulx + ) Uj(x + jye 2 (15.19)

transform under stress gauge transformations (15.11) just as U;(x)
themselves:

U](X) U,‘(X) — ezmm/u)+ Aitx)) U;(X) U,‘(X). (1520)
Indeed

Ui(x + 1) Ui(x + j)exp { —2mi X, (x)} — U (x + 1) Ui(x + j)
X exp {2mi[A;(x + 1) + A;(x + j)] — 2mi[X;(x) + V,A; + VAL
= Ui(x + ) U(x + j)exp { —2miX;(x)} exp {2mi (A;(x) + A(x)} .

In contrast with the disorder theory of vortex lines in Part 1, the
symmetry of X;;(x) makes it impossible to rewrite (15.19) in terms of a
covariant derivative of single U,(x)’s [recall Eq. (12.10) of Part II].
The stress gauge invariant field theory involving u;(x). a,(x), X;;(x) has
a structure which is markedly different from the theory of dislocation
lines studied in Chapter 8 in analogy with the theory of vortex lines. It
does contain three pairs of complex fields u;, «; to describe the defects
associated with the three spatial directions. In contrast to the vortex case,
however, the B dependent terms appear with the fourth power in the
disorder fields u;. The quadratic powers in u and « remain stable at all
temperatures. This is the crucial difference between defect and vortex
disorder. The phase transition is caused by making 8 small, i.e., & small.
This produces a large negative quartic term in the energy. The u;, o; fields
destabilize and acquire non-vanishing expectation values as a signal of the
condensation of crystalline defects. Since these describe what happens to
the total defect tensor, they comprise both dislocations and disclinations.
We observed previously in Chapter 13 that if a phase transition is
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caused by the temperature variation of the quartic term at fixed stable
quartic terms, the phase transition is always of first order. No subtle
Coleman-Weinberg mechanism is required to generate a first order
transition from stress fluctuations. The interplay of dislocations and dis-
clinations is sufficient to generate a discontinuity in the phase transition.
This is the lesson we can learn from the lattice model of defect melting
and its disorder field theory.



CHAPTER SIXTEEN

GENERAL ANALYSIS OF DEFECTS ON THE LATTICE

In Chapter 15 we constructed a model of defect melting which, after a
duality transformation, yielded a partition function with a sum over
symmetric discrete defect tensors %, satisfying the conservation law
V,7; = 0. The diagonal parts of n; were integer, the off-diagonal parts
half-integer. Such a sum contained only three independent sets of integer
numbers which were not able to distinguish the full variety of all possible
defect lines. So the question arises as to how we have to modify the
model so that all defect lines appear explicitly in the partition function. In
order to work towards an answer to this question let us first try and
reformulate the continuous decomposition of the defect tensor according
to dislocations and disclinations in such a way that it can be used on a
lattice.

16.1. DEFECT DENSITIES ON A LATTICE

In analogy with the differential definitions (2.42) we define dislocation
and disclination densities on the lattice as follows:

@i (X) = g0 Vi Ve (x + 1), (:)ij (x) = ik Vi Vew; (x + 1), (16.1)

where we have introduced the rotation field

1225
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w;(x) = %Efjk Wik (x) = %&'jk Vj“k (x). (16.2)

From the definition of ®;(x) we find directly the conservation law for
disclinations on the lattice,

V,0,(x)=0. (16.3)

In order to derive the lattice analogue of the conservation law for dislo-
cations we write

ain (X) = %Eik( Vk (V( un(x + i) + Vnu( (x + 1)) + %Eik( VI'\'(V( U, (X + l)
- Vnu( (x + i))
= Eige Vit (X 1) + €4 Viwe, (x + 1)

= Ejk¢ Vku(n(x + l) + 5in err(x + l) - Vn w,-(x + i) (164)
and arrive at the conservation law

V., (x) =V,a,,(x—i) = VoV, 0(x) = V)V, 0,(x)
= T Eiin€ike Vkvf’wj(x) = T E&jn G)ij(x —i). (16.5)

Furthermore, Ifrom (16.1) we see that
@i (X — 1) = e Vi Ve (x) = 2V, i (X)), (16.6)
implying that (16.3) can be rewritten as
Eine Vit (X + 1) = V,0,(x + 1) + @, (x) — 18,0, (x — 1 + ).

Shifting the argument by j and applying the lattice curl ¢,,,V,, this
becomes :

ﬁ!f(x) = (;)ji(x + j) + Sjmnvm[ain (X + J) - %ahr&n—(x —r+i+ _])], (167)
where 7,(x) is the defect tensor on the lattice,
7_71']' (X) = Eike gj'mnvk Vmu('n (X +i+ j) (168)

Hence we may define Nye’s contortion on the lattice by
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]?m (X) = _C_l",‘” + %5”5,,(?( . + i) (169)
and write
‘F],','(X) = (:)if (x + j) — Eunn Vm I?in(x + j)-, (1610)

which is the desired lattice analogue of the decomposition (2.80a).
It i1s also straightforward to derive the other form (2.80b) of this
decomposition. For this we take the expression and apply the identity

1 _ 1
Ejmn iy — 3 Em 5nq - _f(gmin 8;'(] + Enjn 6iq)' (16 1 1)

iq
This gives

“Ejmn Vm I?in (X + j)

= Ejmn Vm (ain(x + .]) - %&'narr‘(x —r+i+ .]))

= '_%Vm (Emiuajn (X + l) + Emjna.in (X + i) - Ejiu &,,,,,(x —m+i+ .l))
s0 that we obtain indeed the lattice version of (2.80b):

ﬁij (X) = (:)ji (X + i) - %Vm(gmm ajn(x + l) + (I]))
+%€,-j,,V,,,&,,,,,(x—m+ i +j) (1612)

The conservation law (16.4) can be used to rewrite the last term as

sjin Vmamn (X —m+i+t .]) = Ejin vm Xk (X +i+ J)
= _Ejik Eenk Vk (:)('n(x —€+i+ j)
= —0;(x +1i) + 0,(x + j).
Inserting this into (16.12) gives

ﬁij(x) = %(@ji(x + i) + (U)) - %Vm(gminajn (X + l) + (l]))v (1613)

which exhibits correctly the symmetry of the defect tensor.
Forming the lattice derivative V;%;; and using the conservation laws of
dislocations and disclinations
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v'i"d.in (X + j) - _Enpq(:)pq(x —pt j)’ V.l'(:)i,f(x + j) = O’

we can verify that the defect tensor is also properly conserved:

vi ﬁij(x) = %v: ®ji(x + ') + %Vm Emjn 8.-1pq (:)pq (X . + j)

= fl (:)ﬂ(x) + %Vp (:)pq (X e + .]) o %Vq(:)'q (X) = 0.

7

16.2. INTERDEPENDENCE OF DISLOCATIONS AND
DISCLINATIONS

We now observe that for a given 7;(x), the decomposition into dis-
location and disclination densities is by no means unique. One possible
trivial decomposition is

a;(x) =0, 0, (x) = 5, (x), (16.14)

in which there are no dislocations but only a certain set of disclinations
constrained so that ©;(x) is symmetric. Another possibility is

(:)”—(X) = 0'
x;— 1

C—YJF(X) = T &3 Z ﬁmi(X, - m)|x,':x,,xé:x2- (1615)

x‘i):—oo
The sum can also be written as

1

g (X) = _8{’3:r16—3ﬁmi(x —m). (16.16)

Instead of picking the z-direction for the sum we can use any direction
n=xX., ¥, or Zand write

C_Yi(’(X) = _E(k’nn_-—v—nk TT””'(X - m) (1617)

By reinserting this expression into (16.13) we recover 7;(x).

The operation (16.15) has a simple geometric meaning. Whenever
there is a value 7,,(x) # 0 it may be viewed as a string of dislocations
stretching from x along the positive z-axis to infinity.
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The non-uniqueness of the decomposition of the defect-tensor is a
manifestation of the interdependence of dislocations and disclinations
which was discussed in general in Chapter 2 (and ignored in Chapter 8).
It was also of importance in Section 14.11,

Whatever decomposition we choose, our model of defects and stresses
involving only a sum over 7;(x) contains only a subset of either dis-
locations or disclinations. In a real crystal, on the other hand, all con-
figurations of dislocations and disclinations are possible and their elastic
energies determine the probability of each configuration.

For a dislocation, each of the circuit integrals

can be an arbitrary multiple of the basis vectors. This means that each of
the displacement vectors «;(x) can have its own independent jumps across
the links j =X, §, and Z. The energy must therefore contain jumping
numbers n;(x) corresponding to all lattice gradients V,u;(x). The model,
up to now, was restricted to only symmetric matrices n;(x). This
restriction was a consequence of the fact that the elastic energy involves
only the symmetric combination of gradients, i.e., the strain

Uj = %(V,u] + Vju!'). (1619)

In order to include the antisymmetric part of n,(x), the elastic energy has
to contain also the antisymmetric part of the gradients,

In the classical theory of elasticity this is not the case. The reason lies in
the extreme long-wavelength approximation of that theory. Only first
gradients of the displacement field u;(x) are considered. At that level the
rotation field, which is itself a first-gradient field, is a constant and does
not vary throughout the crystal. It corresponds to a global rotation of the
entire crystal. It follows from rotational invariance that the energy is
independent of w;(x).

When describing the situation in this way it becomes obvious that the
absence of w;(x) is not an intrinsic property of the system but a con-
sequence of the first-gradient approximation. This approximation is
sufficiently accurate for most classical problems which involve only the
long-range aspects of elasticity. Questions concerning disclinations,
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however, are of a more microscopic nature and involve directly the
rotation field w;(x). They cannot be answered within this approximation.
This suggests a rather obvious way of extending the defect model of
melting. The clastic energy must be made sensitive to variations of w,(x)
in the crystal. Thus it must depend, at least, on 4, w;(x) which means that
second gradients of the displacement field are present. Due to the
absence of w;(x) in the classical theory of elasticity, the clastic energy
depends entirely on the symmetric combination of gradients, the strain
tensor (d;u; + d;u;)/2. This tensor can be calculated uniquely if the
symmetric defect tensor 7,(x) vanishes. We had seen previously in Egs.
(2.105) that the distortion fields d,1;(x) themselves cannot be determined
knowing only that ;;(x) = 0 (besides boundary conditions}. Their deter-
mination would require the additional knowledge of the vanishing of the
rotational defects, ©;(x) =0. Only then can we reconstruct the field
w;; (x) = (1/2)(9;u,;(x) — d,u;(x)) which can be combined with u;(x) to find
d;u;(x). The independence of w,;(x) makes the classical elastic energy
highly degenerate with respect to variations of the defect configurations.
The degeneracy is described quantitatively via the decomposition (2.80)
of the defect tensor. The tensor 7;(x) which uniquely determines the
clastic energy consists only of three sets of independent integer of half-
integer numbers. In contrast, the disclination tensor ©;(x) has six
independent elements and the dislocation tensor «;;(x) another six. Of
these twelve degrees of freedom, only three differ by their classical elastic
energy. Our model of defect melting identifies all degenerate defect
configurations and distinguishes only the three equivalence classes of
defects which are characterized by different elastic energy densities. As
far as the thermodynamic behavior of all defects is concerned, this
identification is of no consequence since inclusion of the degenerate
degrees of freedom in the partition function would merely result in a
trivial, temperature independent, overall factor (albeit an infinite one).
The situation 1s very similar to that encountered previously in gauge
theories. Also there we were confronted with a degeneracy field confi-
guration which were those differing by a gauge transformation. Had we
performed the path integral naively, this would have resulted in an
infinite overall factor. The overall factor was removed by a gauge-fixing
condition. In the same sense we may view the present system as a model
of dislocations and disclinations but with a ‘“gauge-fixing condition”
imposed so as to remove the energetically degenerate defect confi-
gurations, namely, those with different 0,(x), a;(x) but equal n;(x).
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16.3. DEGENERATE DEFECT CONFIGURATIONS IN LINEAR
ELASTICITY

Let us analyze the structure of these degenerate defect configurations in
more detail. For simplicity, we shall work in the continuum limit. Then
we can apply the helicity decomposition which simplifies the counting of
the different components. First we rewrite the decomposition of the
defect tensor,

T](,,(X) = @(”(X) + %(a!\ g(/{r'ani(x) + (6”)) + %g(m'am ami(x)1 (1621)

in helicity form. Due to the conservation law 4, ®,,(x) = 0, the tensor
®,,(x) contains only the six components O *2 L @F*=
(O + @ ="/V/2 and O (as was the case with the divergenceless
matrices ay,(x) in Chapter 4). As for the eliminated 3 components ©",
O = (0D - -=Y/V2, they correspond to the pure gauge com-
ponents in Eq. (4.117).

The «,;(x) tensor has 9 components. The last term in (16.21) is anti-
symmetric in €, n and thus must be of unit spin (spins 2 and 0 have
symmetric tensors). Since 9, is contracted with the first index of a,,,, it
contains precisely those helicity components which are eliminated by a
condition d,,a,,; = 0, namely, a*, a=* = (> *D — o' *DYV2. Hence
we need to consider only these three components and we find in
momentum space [recall Eqs. (4.62) and (4.57)-(4.62)]:

] Co o ~ - o -

EE(:anm[eﬁna’L + enu‘+a " + Cpj & ] = EP Sfm'[piaL + e, T ‘?i1< 144 ]
1 : _ T

= ApleiVat el Vet = Va ] (16.22)

The two other « terms are brought to helicity form by using the general
formula (4.110), but taking care that the indices n and i appear in the
opposite order so that o!'**!) appears with the opposite sign. Symme-
trizing in the indices € and n removes the spin-1 polarization tensors and
we have
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%(E(kf’ak @, + (f} > n)) — p{es’;”.Z)a(z.Z) _ e%i,—2)a(2.—3) - ef..:”a(l.l))
! 2.n,—+ ! .- —-
+7§€ “a ——-—\er T o . (16.23)

Inserting this and (16.22) into (16.21), the helicity components of the
defect tensor decompose as follows:*

=D = @R-FD 4+ g2t (16.24)

I

= O — pall-n), (16.25)

4+

Remembering now that ®™" =0 (due to 9,0, =0) we see that the
antisymmetric parts on the right-hand side cancel, i.e.,

Ot +pa~ " =0, (16.26)
O 4 pat VI =0. (16.27)

These three relations are, of course. just the helicity version of the
conservation law for dislocation densities. d,,a,,; = — £ .. The com-
ponents L. ((2, 1) + (1, *1))/V2 of «,, are absent, in agreement with
their decoupling from the stress field observed in Eq. (4.127).

Equation (16.24)—(16.27) show clearly which changes can be made
on the defect configuration without changing the stress field of linear
elasticity:

a(.?.il)_) a(Z.i.’_) + A(l tj)‘ @(Z-i-’-)_) @(li-—) e ‘p JA(B-lz)‘

a0y g0 L A0y A" L oL + |p|A(l.U)‘

o t__)a—; +Ail, (._)+i_)®+t1|pl/\:l’

a o+ AN, S Y —IplAT NG, (16.284)

In addition there are the changes of the three components a,
(@ =Y + a2 of a; which do not appear in n; at all:

a = ol + AL, a’ T —a’T + AT (16.28b)

“The sign changes in the o parts are a reflection of the opposite parity of « and ©.
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These 9 transformations among degenerate defect configurations may be
considered as a kind of gauge invariance associated with the linear long
wavelength approximation of classical elasticity. Our model was based on
this approximation. Thus, if we would have tried to include all defect
configurations, we would have obtained a sixfold infinite temperature
independent overall factor. By summing over only the three independent
components of the defect tensor n;(x), this factor did not appear.

In a physical crystal we expect the above described degeneracy to be
removed by crystalline forces. If we want to find out how this happens we
have to go beyond the classical theory of elasticity. There are two ways by
which this theory may be extended.

1. If the length scale over which the displacement field varies is large
compared with the atomic distances, but no longer extremely large, then
higher derivative terms of the displacement field u;(x) have to be
considered.

2. If any of the gradients of d,u;, 4, 9, u;, ... becomes large, higher
powers of the gradients, have to be considered, i1.e., (du)?, (dou)’, ...

If we want to understand the elastic properties of realistic crystalline
defects, then both extensions are necessary. In the neighbourhood of a
defect, both the length scale over which the displacement varies as well as
the size of the gradients become large. Thus we need terms of these two
kinds in the elastic energy. The second kind is nonlinear and hard to
handle. At best it can be treated perturbatively. The consequences of the
first kind, on the other hand, are straightforward to evaluate, due to the
linearity in the displacement field. They will be discussed in Chapter 17.

16.4. EXTENDING THE DEFECT SUM TO THE LATTICE

For the purpose of extending the defect sum, we have to find a proper
lattice representation of all defect configurations. We recall the general
continuum procedure of describing the plastic deformation associated
with a general line-like defect as given in Section 2.10. There we began
with the trivial Volterra operation of taking a volume piece of the crystal
and shifting and rotating it by a lattice vector and a symmetry angle,
respectively,

M((X) = _a(v)(bt + E((;J'qur)' (1629)

By differentiation we found from this,



1234 III. GAUGE FIELDS IN SOLIDS

%(aiuf (x) + deu;(x)) = %[51(5)(5’( + E(quqxr) + (1€)]
=3(B% (x) + BL(x)), (16.30)

0, 0;(X) = 3€,¢0, BRe (X) + $h,(x), (16.31)
where
Bl (x) = 8;(S)(be + £¢y, Qyx,),  d(x)=6(5)Q  (16.32)

were the plastic distortions and rotations of the crystal. From these we
obtained the defect densities [recall (2.68), (2.69)]

@i (X) = e 0;B%¢ + €0 Pl — OV = €530, 8,(S)(be + £,y x,)
= 6J(L)(b( + E(‘qrfqur)v (1633)

(:)ip(x) = gijk aj(bllif' l]kd BA (S) ‘()f 6 (L)!lf“ (1634)

exhibiting the physical boundary line L via Stokes’ theorem on the
8-function [see (18.17), Part II]

£ 08¢ (S) = 8,(L). (16.35)

An ensemble of lines which can be either dislocations or disclinations (or
both) was given by

PAX) = 3 8:(Sa)bae + D 8:(Ss) E0gr Qp ok,
fes B

h(x) = E 5(S5) Qg (16.36)

where o runs through the Volterra surfaces with different possible
Burgers vectors and $ through those with different Frank vectors of the
crystal. It has the defect densities

e (X) = ESQMQM+ES@M&M%&

Ou(x) = ), 8 (Ly) Qe (16.37)
B
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Let us now see how this differential structure can be generalized to a
discrete simple cubic lattice. Then é-functions over a volume are given by
lattice functions N(x) which can take values 0 and 1 on the different sites

x. It is therefore suggestive to simply replace the continuous expression
(16.29) by

ue(x) = =N(X)(by + €44, 02, %,). (16.38)

The alert reader will immediately realize that this Ansatz, while
representing the most straightforward generalization of the trivial Vol-
terra operation in the continuum to a discrete form, is physically not the
proper analogue. The Volterra operation in the continuum is an
infinitesimal translation plus rotation of a crystalline piece. In a real
lattice, this should become a discrete translation plus a discrete rotation
by an angle of the crystal symmetry. In simple cubic crystal, the minimal
symmetry angle is {3 = *=#x/2. But then the discontinuity across the
surface can no longer be calculated using the infinitesimal formula of a
vector product &£}, x, .

The operation (16.38) is therefore not really a translation plus a
rotation. It does, however, represent an allowed change of atomic rest
positions from where to count the displacements vectors as long as b, and
1, are integer numbers. The translation by €¢qr(d, X, may be viewed as
the straight-line continuation of an infinitesimal rotation along the
tangent direction. In this way it accounts for the basic properties of
crystal disclinations without introducing the non-Abeclian complexities of
the finite rotation group. We shall call this approach the tangential appro-
ximation to disclinations.

Within this approximation it is possible to carry out all the previous
differential analysis on discrete crystals. Forming the lattice derivatives of
(16.38) and respecting the product rule

V,A(X) B(x) = A(x + i) B(x + i) — A(x) B(x)
= (A(x + 1) — AX) B(x + i) + AX)(B(x + i) — B(x))
= (V;A(X)) B(x + 1)) + A(x)V, B(x)
= (V;A(x + 1)) B(x + i) + A(x)V, B(x). (16.39)

we find

V,‘H((X) = _VIN(X)(b( + E((',,-Sl(’,(x,- + (Sir')) o N(x)gt”qi‘(lq (]64“)
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and
(Viug(x) + Ve (x))12 = —V,-N(x)(_b( + £, Qy(x, +6,)) + (€0). (16.41)

The derivatives n;(x) = —V,;N(x) describe the boundary surface of the
volume elements N(x). They are the lattice version of the é-functions
Ok (8) = —0,8(V) [see (18.20), Part 1I]

A proper lattice defect is now obtained by taking the surface to be
open. Then the components n,(x) become independent. We therefore
introduce the plastic distortion on the lattice as follows:

Bi;(x) = I’l,‘(X)(b(- + St’qrﬂq (xr + 6ir))- (1642)

A similar treatment can be given to the rotation field which we defined in
(16.2) as the lattice gradient version of the usual rotation field

w;(x) = %fijkvj“k(x)- (16-43)

Inserting here the Volterra operation (16.38), we find the lattice gradient
of w,-(x),

Vn a)_,-(x) = %gjkfvnﬁff(x) + ﬁ/ (X), (1644)
where
d(x) = n;(x) €, (16.45)

is the lattice version of the plastic rotation [recall Eqs. (2.62)—(2.68)].
We now use the lattice definitions (16.1), (16.2) and calculate the
defect densities,

i (X) = €4 Vi Vet (x + i)
= E,'kpvk n{/(x + i)(b, + E’-quq (X + e + i)r), (1646)
(:),'(-(X) = Eike V;\.prj(x + i) = Eik(“vk iu(x + i) !2( (1()47)

Defect lines are introduced by using Stokes’ theorem on the lattice
according to which the divergenceless vectors

6,‘()() = E,‘k(V;\-n((X + i) (1()48)
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form the closed boundary lines of the surfaces described by n;(x). This
was shown in Part Il in connection with Eq. (8.3). Thus ¢;(x) represents
the lattice analogue of the &-function 8;(L) = £, 9,8, (S) and the defect
densities become

& (%) = 6B, + £, 1, (x, + 8, + 8,)). (16.49)

jqr
O (x) = £,(x) 2. (16.50)

For an ensemble of lines which can be either dislocations or disclinations,
or both, the plastic fields are

BE(X) = Y N (X) by + %mﬁf(x) Eegr Qg (X, +8,).  (16.51)

oh (x) = EBI M (%) Qg (16.52)

where the sum over o and B covers all Burgers and Frank vectors,
respectively, and n,;(x), mg;(x) =0, 1 describe the Volterra surfaces
associated with these.

We now make use of the fact that the Burgers and Frank vectors occur
in all integer multiples of three fundamental vectors. These integers can
be absorbed into the numbers n,,;(x), m,(x) which are then no longer
restricted to 0, 1 but cover all integers 0, =1, =2, ...

The defect densities associated with these plastic fields are

af('(x) = Z {’/ia(x) ba ¢t fos(x) E(qr'(qu ()C,- + af’r + 5:’1‘)1
o B

O (x) = ) CE(x) Q. (16.53)
B
Since ¢, ¢F are divergenceless, these densities satisfy the proper conser-
vation laws on the lattice,
V1'(:‘_)1'«"()‘) = U*
Vidie (%) = Vil (x = 1) = — €4, 0, (x = p). (16.54)

as they should.
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We shall use these results and construct an extended model, in which
the full sum over all defect configurations appears explicitly with distinct
contributions. Before we can do this we must first extend the classical
theory of linear elasticity to higher gradients which will be the subject of
Chapter 17.

16.5. TWO-DIMENSIONAL CONSIDERATIONS

It is useful to look at the same question in two dimensions where the
situation is much simpler. There the total defect tensor as well as the
disclination density reduce to one independent integer-valued component
each, T3:(x) = 7(x), O1;3(x) = O(x). The dislocation density becomes an
integer-valued vector field a;(x) (recall Section 2.13). For a single
dislocation at x, @;(x) has the form b,8“(x) where b; is the Burgers
vector. Thus, a distribution of dislocations @,(x) may be pictured directly
as a “gas of Burgers vectors™ with integer components b,(x) = &,(x). The
defect density can be written on the lattice as [compare (2.94)]

(x) = O(x) + £;V,b,(x). (16.55)

The coupling to the stress “‘gauge” field is

fdzxX(x)ﬁ(x) = fdzx(X(x)@(x) + £,V X(x) b;(x)) (16.56)

and we recognize the lattice version of the field used in Section 5.3,
A’ = g;0;X [recall (5.44)]. which couples locally to dislocations.

Among the three sets of integer numbers O(x). b;(x) only the single
combination 7(x) determines the stress energy of linear elasticity. Thus
there are two ‘“‘gauge transformations”™ which leave linear elasticity
invariant. These are given by

by (x) = bi(3) + 825 Bi(x) — 8, 5 Bal). (16.57)
1 2
B(x)— O(x) — By(x) — By(X). (16.58)

with integer-valued fields B, (x) and B>(x). This follows directly from
E,;]'vl’bj—) E,‘jvl‘bj + Bl + B_‘g.
It is easy to understand these gauge transformations physically. If B,(x)
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vanishes everywhere but is equal to unity at the origin, say, then it
contributes to b;(x) a string of Burgers vectors pointing along the 2-axis
starting out at the origin and running along the 1-axis:

S.r;.xaxl.l) = ®x,6x3.()v (1659)

Il
T -

1
bi(x) =0, by(x) = V_S"'O
!
where 0, is the lattice version of the Heaviside function,

0 x=-1, -2, ...
O"_{l x=0,1,23 ... (16.60)

We have discussed this string of Burgers vectors before [see Egs.
(14.169)—(14.171)]. It can be compensated for by a disclination of nega-
tive charge at the origin [recall Fig. 14.16].

The same holds for a string of Burgers vectors pointing along the
l-axis and running up the positive 2-axis. This is the degeneracy at the
level of linear elasticity if we include independent dislocations and dis-
clinations. In order to lift this degeneracy we shall have to include more
general terms into the elastic energy.



CHAPTER SEVENTLEEN

EXTENDED THEORY OF ELASTICITY

17.1. TORQUE STRESSES

Let us recall here that according to the Newton-Euler axioms, a con-
tinuous body has to satisfy the following laws of motion:
1. momentum conservation,

d
a}pj — fvd-*xfj(x) + fﬁsds,a,,(x), (17.1)

where P; is the total momentum, f;(x) the external local force density,
and o;; the stress tensor [i.e., each piece of a body exerts a force density
dS;o,; upon its neighbor across the surface element dS,}.

2. angular momentum conservation,

d
‘L'i';.],' = E,-jkf dBXXjfk (X) + E,jkf dS(;JCj(T(k, (172)
14 A

where J; = %s,,-ijk is the total angular momentum.

These laws hold for any finite part of the body with volume V and
surface §. Using Gauss’ formula, the surface integrals can be transformed
into volume integrals so that (17.1) and (17.2) become

1240
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d 3
EP, = fvd x(fi(x) + 8,0,(x)), (17.3)

d

= e | @50+ 5 = e [ e + 20000

(17.4)

Since this is valid for each volume element one deduces the equations

0;0;(x) = —f;(x), (17.5)
Eiik Tjk (X) =, (176)

which were used extensively in Chapter 1.

Comparing Egs. (17.1) and (17.2) one may wonder why the law of
angular momentum conservation does not contain a direct term of the
form

fgdSkaf(X) = fvd3xakrk,-(x), (17.7)

by which a volume piece transfers torque to its neighbour via the common
surface element. The tensor 7y, (x) is called torque stress or couple stress.
Its presence is natural in orientable media as was first discussed by E. and
F. Cosserat in 1909.

If such a term is present, the law of angular momentum conservation
leads to

A Tri (X) = — &% O3 (X). (17.8)

It is remarkable that in the absence of external body forces [i.e.,

fi(x) = 0], the two conservation laws (17.5) and (17.8) have precisely the
same structure as the laws of defect conservation (2.45), (2.46),

6,—@,-]-()() = 0, (179)

g g (X) = — &0 0 (X). (17.10)

The reason is, of course, the essential role played by the space group in
deriving both laws. It is curious, however, that the association with



1242 III. GAUGE FIFLDS IN SOLIDS

translations and rotations is precisely the opposite. While d;0; ensures
translational equilibrium and 9,7y, = — €, o) rotational equilibrium, the
law 9,0, =0 conserves rotational defects (disclinations) and oy =
— £, O translational defects (dislocations). Formally, the reason is easy
to see: Angular momentum is the cross product of position with linear
momentum. In defect systems, on the other hand, the translational
defects arise from the cross product of position x with rotational defects
[recall Eq. (2.43)]. The cross products cause the inhomogeneous parts in
the conservation laws (17.8) and (17.10).

The treatment of a crystal as an orientable medium becomes necessary
if certain groups of atoms in a unit cell are tightly bound to each other
so that they act like small composite objects. These require, in addition
to their position, three Euler angles for their characterization.” and
gradients of these Euler angles appear in the elastic energy. Such an
extension of elasticity is of particular importance in the description of the
phenomena of piezoelectricity.

Nevertheless. for simple monoatomic crystals which do not exhibit such
phenomena, there exist physical circumstances under which torque
stresses may become observable. This happens if higher gradients of
stresses become so large that it is no longer admissible to omit them in
the expression for the elastic energy. As soon as such higher gradients are
present, the energy is no longer independent of the local rotation field
w;; =3(8;ux — 95 1;). While w;; itself cannot occur in the energy (as a
consequence of rotational symmetry), gradients of w; can. This is why
simple crystals with large higher gradients will display torque stresses. In
fact, this is obvious on physical grounds since at the level of higher
gradients the field equations must be able to account for restoring forces
which arise if a small region of the crystal is rotated as a whole with
respect to its neighborhood.

17.2.  GENERAL FORM OF THE ELASTIC ENERGY

Let us briefly recall the standard symmetry arguments for the general
form of the elastic energy. In the continuum limit, a distorted crystal is
invariant under translations and rotations. If the positions of the atoms,
initially situated at the coordinates x, are described by

"t is sometimes necessary to allow also for distortions of these groups of atoms which
require the inclusion of further fields, but these will not be discussed here,
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x'(x) = x + u(x), (17.11)

the positions of the same atoms after a common translation

¥ =x,+a (17.12)
are given by
x'H(x) = x'(x — a), (17.13)
After a common rotation
xF=Ryx;, (17.14)
they are given by
x/R(x) = R,x/(R™'x). (17.15)

This shows that the distorted coordinates x;(x) form a vector field as
defined before [for example in Eqgs. (4.9) and (4.10)].

The consequences of the transformation laws (17.13) and (17.15) are
most easily found by considering infinitesimal transformations. For infin-
itesimal translations we have

8Tx/(x) = x!T(x) — x{(x) = —a;0;x/(X) = —a; — a;9;14;(x). (17.16)
The displacement fields of the distorted and translated crystal are

u! (x) = x/" —x,. (17.17)

Correspondingly we define the infinitesimal change of u;(x) under
infinitesimal translations as

87 u(x) = u (x) — u;(x) (17.18)
and calculate

87 u;(x) = (x/1(x) = x;) = (x/(x) = x;) = x7 (%) = x;(x)

=8"x/(x) = —d,0,u;(X) — d. (17.18")
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Thus. in addition to the normal translation law for vector fields, 8 u;(x)
contains an extra piece —a;. This is the reason why the elastic energy of a
translationally invariant system cannot depend on the displacements. The
derivatives 9 u, (x), however, do transform properly under translations

8T dpuc(x) = —a;0,0, U (X) (17.18")

and the energy can depend on them.
This dependence is not completely arbitrary since it is restricted by
rotational symmetry. For infinitesimal rotations,

R," =

!

—CX;\-EA-U, (1719)
and x and x’ change as follows [see (4.14)]

R, _ R S .
o X;— Xy _.X,'—G!‘(\-Sk',jl".

SR/ (x) = x{F(x) — x{(%) = arg (4 X)) + e ¥ 0,x/(%). (17.20)
For the displacement field u;(x) = x/(x) — x; this implies

SR uf(x) = uf(x) — w,(x) = (/" (x) — %)) — (x¥i(x) — x;(x))
= ’Y;R(x) - X;(X) = BRX;(X)
= g (4310, (X) + £ X 0j1(X)) + g Egix; (17.21)
Thus. also with respect to rotations, displacements are no longer proper
vector fields but transform with an additional rotation piece.

Since the additional piece depends on x;. the gradient of the displace-
ments is not a rotational tensor field. Rather. it transforms as follows."

R - .
80 1, (X) = ag (e4;0 1 (X) + €0 It (X)) + @y Exi - (17.22)
The additional piece disturbing the tensor transformation law is anti-

symmetric in € and /. This is precisely what makes it convenient to
introduce the strain tensor. which obviously 1s a proper tensor:

®Notice incidentally. that such additive transformations (17.18") and (17.22) are typical for
gauge fields, as discussed in Chapter 4. Part L.
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8%y, (%) = ay (Erij e (X) + Epom tmi(X)). (17.23)

Hence the local rotation field w;;(x) carries all the non-tensorial pro-
perties of d,u,(x) = w;(X) + wgi(x),

&R wi(x) = ¥ (£ (X) + Eppm Wi (X)) + 00p Egie . (17.24)

This 1s what leads to the usual conclusion that the w,;(x) are absent in the
classical theory of elasticity. If elastic distortions involve only small long
wavelength displacements. the energy density must be quadratic in u;,(x),
w;(x). While terms like uj;(x) are rotationally invariant, w{,(x) is not and
the energy density cannot depend on w,;(x).

As soon as higher gradients are allowed. however, the rotation field
does in general appear in the energy. From (17.24) we see that d, w,(x) 15
a proper tensor field, since [compare (4.47)]

'SR':];.I “’H[!} = oy [Ehﬂ}p ij{x} + Ekiam a_,'rmmr'{x.] = Ekpg IEir;l mh’{:_”* El?zﬂs_}

As a matter of fact, from (17.22) it follows that starting from the second
derivative, all ¥, ... a, wu;(x) are proper tensor fields. Thus, the most
general form of the elastic energy density with higher gradients is
obtained by directly contracting higher derivauves of w,(x) with each
other and forming an invariant expression with the following vanables

e(x) = el (x), a; d; w(X). 8 a; d; w;(x), . ..). (17.26)

17.3. CANONICAL FORMALISM FOR HIGHER GRADIENT
THEORIES

Before developing the theory of elasticity for an energy expression such
as (17.26) it will be useful to recall the canonical formalism for systems
with more than one derivative. This formalism is best known for
mechanical systems in which the “field vanables™ are the particle
positions as functions of time rather than field variables as functions of
space. For simplicity, let us consider only one such “field variable™ g(r).
The dynamics of the mechanical system is governed by the action

Alg] - fd.r;‘{:]lq(:] = fer{qU}. g, @), ... g™y,  (17.27)
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where L is the Lagrangian. For future convenience, we have added an
external source to the system. The physical field configurations are found
by extremizing the action

aAlal

S0 /0 =0 (17.28)

Using the general formula [recall Eq. (1.54), Part I]

dq(t') _ ' C
50(0) = 8(1' — 1), (17.29)
we find
0Alq] { oL - L ,
3q({)—fdt (__(%](I’)B[ 1) + ()d B — 1) + - ()5)'5(!—[
.+ ?—Nl,;ﬁa;“/ﬁ(r’ — t)). (17.30)
aq (1) |

By performing partial integrations in all terms except the first this gives
the Euler-Lagrange equation

al d ol d’ oL N 9L _
oL G0 LR (Y <oy =0 (173D
aq(t) dtaog(t) drag(r) dr™ aq'™ (1)
The N denivatives
L d aL o, d¥7T oL
Pnzaq(”;—;,;aq(,,ﬂ,Jr (YT R T l.....N. (17.32)

may be considered as higher analogues of the usual canonical momentum

p= i—L (17.33)
q

These higher canonical momenta make it possible to reduce the single
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higher order differential equation (17.31) to a sequence of first order
equations. For this, let us define

QIEqs qZEQs C]3:q, C ey quq(N“l), (1734)

as new independent variables of the system and rewrite the Lagrangian in
the form

L(q. 4. G, - q™)=L(q\, ..., qn. 4N). (17.35)

in which there is only one variable with a first derivative, namely g5. The
previously defined canonical momenta can be written recursively as

o= anedn) = e n=1.2.... N—1, (17.36a)
aqn+l
dL :
pnv=——(q1. .. .. gn. GN)- (17.36b)
gn
Note that with respect to the new variables ¢q,, ..., gy, the Lagrangian

has only one canonical momentum, namely, px.
We now consider the Legendre transform

_H(p], B 2 N/ B TP C]N)

(N~1)

=L(g.q.--.. ¢ q(N)) —P1gy — P29~ ... — PN-1GN—1 — PNON

=L(q\. @2 - Gne GNPNS Gis o GN)) PG — PG
— Pn—1qn = PNAN(PNS s oL gn), (17.37)

where the derivatives ¢, g>. ..., gn-; have been eliminated in favor of
G2, 43, --.. gy by (17.34) and g in favor of py by inverting equation
(17.36b).

Obviously, H 1s constructed from L in complete analogy with the
standard construction of a Hamiltonian from an ordinary first order
derivative Lagrangian L = L (g, ¢), for which the Hamiltonian is

3L "
~H(p. ¢) = L(q. §) - j—qq = L(g. 4(p. ) - pa(p. ). (17.38)
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where g = g(p, q) is determined by inverting p = dL.(q, ¢)/aq.
The Hamiltonian formalism permits reducing the second order Euler-
Lagrange equation,

oL  deolL
— ———=j(1), .
PRl (0 (17.39

to two first order Hamiltonian equations: By extremizing the action

Amriﬁbnmqm

_ j A L(g(1). G(1) — j()q(1)

t

() q(e)
(17.40)

= f drp() () = Hp(). 40) ~ [0 (1)) = Alp. q] - |

in the new variables p(t), ¢(r) with fixed end points in g(¢) [i.e.,
Gu = q(ta)’ qp = q([h)1 ﬁxed]"

6(14[;7, q] - f ”dfj(,)q([))

th
=5f di(pg — H — jq)
fu‘

—f%{a(—§g+('—ﬂf'% copq| . (17.41)
. P\ q ap p aq J 1oq P q f”’ .
we find the equation
. oH . OH _ ,
q—apwwn, p= aq@”” . (17.41°)

In the present case we can go through the same procedure with (17.27)
and minimize, at fixed ¢;(t,). g,(1,). the action,
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5(A[p,,, q,,]—f hdrj(f)q.(f))

:‘3[ di[prqi+pagat . Hpngn—HPp1 PN g - qn) — TG ]
fll
‘ N N ‘
p oH oH b
= dt o ) .n— + —'”—“‘——6,, 16 n + 0, nYul -
—[;,, ,,;1[ P (q 8p”) ( P 3G ‘j) K :l ”Z::I P l’u
(17.42)

This yields the set of first order Hamilton equations

. aH " Fl
g =Pt (17.43a)
ap,
. aH(pH‘ II) .
pr= “—a_g__”
7 (17.43b)
oH{(p.. q,

D= —M~ r=2,...,N.

6q,

The equivalence to the single equation (17.31) can be seen by writing
these equations down explicitly, using (17.37), i.e.,

i dH
qnzapn:qn+1 n:l’ e ea N_l-;
= = + -
w apN dGn PN INT PN N
. oH oL dL agn agn aL
Pr=—7T——]= o Il="1
991 dq,  9Ign dq, 0q, aq,
off oL oL 4 04 ol
Pr=— = + qN—pr—]_pN qN: — P r=2, ,N
g, 09, dqn 04, dq, 9q,

(17.44)

The first line simply shows that the new variables g, are to be identified
with the time derivatives of g, as in (17.34). The second line gives

(17.36b). The last line amounts to (17.32) and can be used, together with
the previous line, to calculate
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0=p—(pr+p)V+(pst+p) 2+ .. -+(_)N—l(pN+pN—l)(N_l)+(_)NPN

oL . daL 4oL dN"D sl d™ 4L

=)t ---+(_)N N=1 (Nfl)+(_)N N N

dq dr ag  dt’ 9g dt aq dt™ aq
(17.45)

which is indeed the same as (17.31).

We shall be interested in linear elasticity with higher gradients. This
implies that the energy is a quadratic form in the derivatives of the
displacement fields. In the present analogous mechanical model, this
corresponds to a Lagrangian of the type

1 N

L(g.q. ....q"™") = Lam @ (0 g (1), (17.46)

=1

3]

with constant symmetric coefficients €,,, = €,,,,. Then the momenta are
x’V*l
Z é.muqn—#—l + 6‘H'NC‘IN_ [.jfl+l(1 - SHN)- (1747)

n=1

and the Hamiltonian can be written explicitly as

H{p,. q,)

6\;’\ m=1

- N-1
Z mnqu+lq”r+l - Z {n’\fquni-lt (PN _ E 6’\/mqm-+-l)
NN

N—1
|
=P1(12+P2(13+ - +pN ( PN — E €qum+[)

(\JI—-*

n=1 m=1

1 N
-3 PN Z (’\mCIm+I . (1748)
2 fNN

m=1

The action takes the canonical form

A[pn* qn] _FJ, hdrj(t)ql(t)

fh
zf d‘l:PMh tpagat . PNGN T P12 PG — o~ Py
"H
N-1 L1 N1 5
+— Z €um%z+l%n+l _m(pN_ Z meC]nH-l) _.j(‘f)ql([):l-
211 m=1 2€NN m=1

(17.49)
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This action governs the quantum fluctuations of the mechanical system.
Arbitrary Green functions can be calculated from the generating
functional

zljl1=11 @q,,(f)[(i%@exp{i(/i[pmq”] —fdtj(t)q.(f))}- (17.50)

Notice that the source acts only on g,(¢) = g(¢) and the other coordinates
¢, ..., gn are just auxiliary variables.

The expression (17.50) can be simplified by observing that the first
N — 1 momenta p,. ..., py_ can be integrated out trivially resulting in a
string of &-functionals

278(q, — q2). . . 2wé(gn-1 — qn)-

This allows one to integrate out all the g1, . ... gy variables so that the

integral reduces to
exp{ f dtl: E {’/Hl?lq(”)q('”)
I, n m=1

J qu

l

Finally. a quadratic completion of the p, parts,

2 N
1 L 2 m
(PN E {qu fNNq(N)) +§€NNC](N)'_+ E 4 mq(N)q( )

26’\/’\/ m=1 m=1

can be used to integrate py out and brings the generating functional to

| (. .

(17.51)

where the product in front covers all points on the grated time axis. The
reader will have noticed that the canonical form of the partition function
(17.50) is not a very aesthetic one, due to the special treatment of the last
momentum variables py. This asymmetry can be removed by introducing
a further independent variable gy, and generating the last term in the
action (17.49) by an auxiliary Gaussian integral
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[enn f
i ) 2N

: T
xXexpy—i|dtpngni 3 dit\ Eyngni 1 gt E Enm AN 1 m+1
2J,
5

m=1
(17.52)

Then the partition function reads

z(j] = H[\/“‘”"] [0 [2a.0 11 oo

t n=1 n=1

th
X exp{if df[Plf?l +p2ga+ ...+ PNGN — P12 — P2g3 —
,H

—~ PNgN+1 +2 E enmqn+lqm+lJ} (1753)

nm=1
Since the integrals over p,, ..., py ensure that g, ..., gy+| are
identically equal to ¢, =4, g2=4¢, ..., gv=g", we can replace the

exponent by

In
if dt[plc'; +pag+ ... +png™ —piga —pags — - — PNAN+
rl!
N
1
E 2 nmqn+](Im+l:|
It is now possible to integrate out the variables g», ..., gy4i and we

arrive at the partition function

—1/2 N
2[11=I;I[\/§”th(2fr) ] 74011 f g

X exp{lf [qu+P2q +... +qu(N) Z (€ l)nmpnpmil}
Il’l

n m=1
(17.54)

This form will be much more convenient to work with and will be
referred to as the quasi-canonical representation of the partition function.
Performing the Gaussian integrals over the momentum variables brings us
again to the pure g representation (17.51).

As an example, consider the Lagrangian
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L =1L(ag® + bg* + 2¢q¢d). (17.55)
Defining g, = g, g> = ¢ this becomes
L(q\. g2, ¢2) = 3(aq3 + b5 + 2¢q24,) (17.56)
and the momenta are
pir=aq+cd—pr=daq:+cq>—pa. pa=bG+cqg=>bg+cq.. (17.57)
This leads to the Hamiltonian

H(pi. p2, q1, 42)
=p1g> + p2g2(pa2. g1, q2) — L(q1s g2, 42(P2. q15 G2))

1 1 1 c
=pi1q, + ng(pz —cqs) — 5(6161% + B(Pz —cqa)’ + 25612(;?2 - CCIz)) :
(17.58)

The path integral

LpZLps

2= [ 29,24, [ S 2F

X eXp {‘f dt(pqy + p2g2 — H(py1, p2. 91+ q2) —fQ1)}
[lf
(17.59)

becomes
. Dp, D
1= [rare [ 2222
(" . ,oa 5, 1 > .
Xexpyi | dt pl(ql—~Qz)+pzqz+5qz—%(pz—cqz) ~Jjq1
tﬂ
] " .oa. 1 . .
= f@qlfz—[:e?(p{tﬁ’ dt[pzqh +Qq%—%(pz—cq1)2-1q1]}
b S I D . .
=[1|\==1|] Zqexpyi —(ag” + b§~+2cqd) — jq |
p 2mi 2

(17.60)

just as in the general expression (17.51). Let us also write down the
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quasi-canonical form (17.54) of the partition function which arises by
integrating ¢> out in the first line of (17. 60),

. b 2 ) D py, D p,
Zlj] = \— fg/ o Stll
[]] H[ 2771 \/ (ab — ('2)] q 277' 271'

" I 1 5
Xexp{lf df[p|q+pvq—§ b= v(bm+ap§+26p1pz)]}'
r(l
(17.61)

Upon performing the integral over p,. p,. this yields once more the last
line of (17.60).

In order to apply this formula to higher derivative elasticity, only a few
simple changes are necessary. We want to study fluctuations of the elastic
energy as a function of derivatives of the displacement field., dcu;(x),
d¢,d,u;(x), ... instead of a Lagrangian as a function of q(t), (o).
The trdnsmon to spatial variables is achieved by rotating the time ¢ to
the imaginary time 7= —jt and identifying the Euclidean Langrangian
L(q. (1/i)(dldr)q, ((1/i)(d/dT))*q, ...) with the energy density e(u, ou,
dou, ...). It follows that the Euclidean path integral in the canonical
formulation (17.50),

21 =11 [ g, ) [ 22240

1 .
* exP{?f dT[pr”d q;— H(p;. q) —/(r)q(r)]}* (17.62)
reduces in precisely the same way to the pure g(r) form [with (17.46)],

Z[j] =[I [\/gf;jﬂ f@qexp {% f d[L(qdi qa(ﬁ; q... ) - f(r)qm]}.

(17.63)

It there is time reversal invariance, the Euclidean Lagrangian has an
even number of time derivatives so that it is real. We therefore define

d d?
Llg, —q. ——=q....|=—Lg(g.q.q". ... g .
(q e d(ir)zq ) eg.9'. q q™) (17.64)
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where ' denotes the derivative d/dr. The canonical momenta are given by

Pn= dﬁ—L” = Pt = 8,n) = (—0)" *"_iﬁ%fm —ipu (1 — ,n),
3 (a) 0 d (E) q(7)
and the Legendre transform is
H=pg+pg+ ... +png™—Lg. ¢ ... 4"
=Pzt pagst o ipngn + Le(gs g g™,

In order to remove awkward powers of i it is preferable to define, in the
Euclidean case,

i d m—1 dL ,
E = bt —pE (1 =8,0), n=1,....N.
qn (dl’) Q(T)- Pn laq(u)(r) pn+l( nN) n
(17.65)
Then the Legendre transform becomes
Helpy. q7) =i(ptq’ +pzq"+ ... +phg™) + Le(q. q', ... ¢'V)
=i(piqs +pSqs + ... +pho1q8 + pRav(pk. 4t, .. qR)
+ Le(qt. g% . qRe an(PRs 475 - GR)) (17.66)
and the path integral is
: p,,(f) L :
Z[j] = f@%(f)[ {?f drli(piqy + p2qs +
+qu;V)—HF(pn’ qn)_j(r)q(r)]}’ (1767)
where we have dropped the superscript E of g.F, g&, since g5, ..., gn,
Pi» P2, ..., py are dummy variables anyway and the only observable to

which the external current is coupled, g, = g%, is the same with or
without subscript.

Obviously, all operations can be carried out in the Euclidean version
just as before. A Euclidean Lagrangian
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N

(M) Z g™ gD (17.68)

l\)!*—‘

Le(g. 9" ... q

can be treated as in (17.46)—(17.51) and we obtain, indeed. the partition
function (17.63) in the form

Z[j) = H[ e—“’ﬂ]

2T

| @qexp{—— | [51 Y g0 (@) - ;(r)q(r)]}

(17.69)

The Euclidean Lagrangian (17.68) is precisely of the generic type
encountered in linear elasticity with higher gradients.

As a simple example let us study a one-dimensional system with a
single displacement variable #(x) and an energy density which is the
Euclidean analogue of (17.56):

Le(u', u"y=e(u', u") = au'? + bu"? + 2cu'u"). (17.70)

Treating x like r in (17.65)—(17.69), we define

gi=u, g2=u (17.71)

and write the energy density as

e(q2. q3) =3(ag3 + bqs® + 2cqaq3). (17.72)

We can now read off the momentap, = i(aw’ + cu”) — p; =i(ag, + cq5) — pa2,

p2=i(bu" + cu’) =i(bgs + c¢q>) and construct the Legendre transform
(17.67) [compare (17.58)]

. , 1 )
h(py, p2, 1, 2) = l(P1Q2 + Pzg(_lpz - CCIz))
f 5 1 2 A€ .
tolaa+ 5(—1192 —cqy)" + 25612(—11)2 — ¢q>)

. 1
= ip1g> + 2612 + 5 (TP g, (17.73)
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and the total energy reads, in p,,, g, variables,

Elpi.p2. qi. q2] = jdx{i(plqi + p2g2) — h(p1. p2. 4. G2)]

. , o, a5 1 .
= de[tpl(ql — q2) + ipsg> — 542~ 5, (Zip2 — CC]z)z]-

(17.74)

The canonical partition function becomes

: ‘ . Zp) Zps
Z[l]=f96119% .

1 , 1 . i
X exp —fdx ipl(qi—q2)+ipzqé-gq5—* —ip> — €q>) = jq,
T 2 2b

(b NNV |
= H[ 5;] J‘Quexp{—?fdx [z(au’* + bu"" + 2cu'u") —]u]}v

(17.75)

which is the Euclidean version of (17.60), as expected. The alternative
form (17.61) now reads

Zljl = A\ —F——=| | ¥
L] l:[ [ 27 Vab — 62] J_ﬂu 27 27

1 1 1 , 5
X exp{—fdx [iplu’ + ipou” — = 5 (bpy + ap> — ZCp,pz)]}w
T 2ab—c
(17.76)

which will be of use in the next section.

We emphasize that the simplicity of the integration measure in (17.51),
(17.54), (17.60), the last line of (17.75) and (17.76) is a consequence of
the absence of the displacement fields u in the coefficients ¢,,,, which, in
turn, follows from translational invariance. If the ¢,,, were functions of g
the canonical formalism presented above would have led to ¢ dependent
measures,
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ora i or forufPy )~
f G g D NN(q det(¢R27 )-”~( N;E“)d t(e/zwr“z),
f@ \/Tq(orfjtt\/—>,

b(q 2mi . b(u) 2
Jra\Si sl [ v

17.4.  SECOND-GRADIENT ELASTICITY

Let us now apply these techniques to linear elasticity with second
gradients of the strain tensor. In an isotropic continuum, the invariance
arguments given in Section 17.2 lead to the following most general energy
involving second derivatives,

= fd”x[b]fi,—fi(u(a,-a(u( + bho7u diu, ). (17.77)

By a partial integration, this can be cast in a form involving the strain
i (x) and the rotation field w;(x) = 3¢, 0,1, (x),

E = fd”x(bla,-u”&,-u,, + by dw;d; ;). (17.78)

with

This follows from the equality of the first terms in (17.77) and (17.78).
with the second term being equal to

1

1
Zfdoxai‘gjk(akaigik’(’ak’u(’=Zfd[)x(aiaku( 00ty — 9;05 18,0 uy)

1 2 2
:ZdeX(an( a.[:vU(_aia( Ly 8,-8(1/4(). (1780)



i7. EXTENDED THEORY OF ELASTICITY 1259

The first term in (17.78) merely gives a higher gradient correction to the
strain field. The second term is, on the other hand, qualitatively new
since it contains the local rotation field and accounts for energies due to
local twists in the material. We shall mainly be interested in the new
features brought about by this term. For convenience, we shall write the
new elastic constants as

by =Qu+ N2,  by=2ut’ (17.81)

where €, €' are two length scales characterizing the strength of b, b,. We
then arrive at the following elastic energy density,

E= deX(e(X) — [i(x)u,(x))
- fd”x {#u;’ﬁ%u%{ %(2#“)e’z(aju(()2+2M62(a,-w,)3—ﬁ(x)u,-(x)} .
(17.82)

In terms of the displacement field, this takes the alternative form

2u+ A
2

. pEA
E= fd[)x [g(a,u,)_ + 82_(6( M{)Z + 6,261’6( Uy 8,78( Uy
-

€~ 2 2
+ %(871{,-6711, - EJ,-a( U 8,—6( M{) —f,-u,-:| . (1783)

From this it is easy to obtain the Euler-Lagrange equation

_}Lazu,' - (M + )\)8,6‘( U, + (2,& + /\)6’2628[8( U
+ w3 u; — %30, u;) = f,(x). (17.84)

Going over to momentum space and regrouping the terms according to
longitudinal and transversal projections, this becomes [compare (1.75)]

ng?(l + f'2q2>(6,-_,- - "—qi’i) wi(q) + e+ A (1 + e'zqz)‘fl—';’iu,-(q) = fi(q).
(17.85)

which is immediately inverted to give,
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u;(q)
=G;(q)fi(q)

1 q,»q') 1 q,-q}
= 6:‘"— L+ > 71 '
_uqz(lwzqz)( e A s
_ : 5+L(_ . 1 ) }f()
w1460 q*\ p(1+Cq) " Qurni+eig)) @0
(17.86)

In order to return to x-space we introduce the partial fractions

1 _(r v
pa’(l+qY) p\q® g+ 1€)°

I 111 _1oef1 1
pg*(1+ €qY)  w@’\@® ¢+ 1) pq' p\qg® ¢+ 1)

1 1 1 1
Cu+ g1+ €°¢)  Qu+ Mg’ (cf Q'+ 1/8'2)

(17.87)

In three dimensions, the Fourier transform of 1/q° and l/q* are 1/4%R
and —R/8, respectively. For 1/(q* + 1/€%) we calculate as in (1.81),

d3q eiq~(x-—x') 1 fx dqq2 fl .
Yogp —x"Y = 5 P d 6 igRcos 8
CuelX =X = o S e e ant), 2+ ) deoste

1 * q .
= dg—L—singR
47°R f_x T2+ 1>

1 J‘x p 1 1 eiqR _ e—iqR
=— — .
s> ) L I\g =i g+ it 2i

Closing the contour of integration in the upper half plane for the first

expansion and the lower one for the second, we find from the residues the
Yukawa potential

(17.88)
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1 J
v (x—x) = me""‘. (17.89)

Thus we can rewrite (1.87) in x-space as

I =\1 1 (1 —e ™Y, (17.90)
pQi(l+ €q°)  p4aR
. L_lﬂ_“f_z_l_(l e-R/()
uqt(l + €q°) u8mr  ud4mwR
1 = L R + i ~1—(1 —e M. (17.91)
Qu+ AN q*(l + €°q7) 2,u+)\87r 21+ A 47wR

Hence (17.86) becomes, in x-space,

SR _ ! R 1 )
U(x) d” [“R(l‘_e R/()S,,—;B,S,(E-%f“ﬁ(l—e R“))
1 R .1 :
+2M+Aa,-a,(5+e'—k-(1 ~ e ))]f(x’). (17.92)

In the special case ¢ =0, €' =0 we recover the previous result (1.90).

Notice that the higher powers of q in the field cquations regularize
the Green function at the origin, G;;(0). The &; part goes with (1/R)
(1 — e ™) ~ (1/€) — (R/2€*) which is regular at R = 0. In the derivative
part we can expand

b (Rl 5 (RLE(R_R R
TI\2 R T\2 TR e 2¢2 652

= 0d,0; €+[iz— 1 + O(R), (17.93)
- 6€ - .. 36) l_] .

which is also regular at R = 0. Hence we find

1 1 1 1
: 94
Gy (0) = 41 % (;Lf 3pL€ (2 + A)-B{?’) (17.94)
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17.5. CANONICAL FORMALISM FOR SECOND-GRADIENT
ELASTICITY

Let us now set up the canonical formalism for the ¢lastic energy (17.82).
According to (17.65) the “‘canonical momenta™ are given by

‘ de ]
o =T—=1iC2pu; + Adju),
’ ()H,‘.’,‘ ’ ’
de 5
T, = =i 2u +A) € d;uy,.
99,14y, (2 ) ity
¢ _ iaut’s 17.95

Tr.,: — =1 - Wy T

) (’djct),' Ju' w; ( )

Generalizing the expressions (17.75), (17.76) to several space dimensions
we arrive at the two partition functions of second-gradient elasticity,

Z[fi]= f@u,-(x) exp{—%jd”x

5 A, 2u + A
X ,u,u,f,-+§u;(+ 5

E3(0,00) + 2u7(0 ;) _.f:‘”i]}
(17.96a)

and its canonical form. the stress representation

Z[fi]= f@u,(x)f@m‘}(x)f@r{(x)f@rﬁ(x)

X ex “ifdl)x‘ L 0*‘3————1} o7 | + ! T/’
P17 7 a\ T T T T T e s e

1 . ; . - . P - . -
E T,% — oy (91 + 0;u;)/2 — 1770014 — 1T;0; 0 —f,u,}}-

(17.96b)

+

The superscript s indicates that the ““momentum variable™ o;; is a sym-
metric tensor such that in [Zo,; only the components i=j need be
integrated.

Some trivial overall factors bave been omitted in the measure. The
equality of the two forms (17.96a) and (17.96b) is verified, as usual, by
performing a quadratic completion in the momentum variables and
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integrating them out. The complete squares arising in this process show
that, in equilibrium, the fluctuating momenta o}, 7/, 7, are given by
(17.95). In the limit € = ¢’ =0, the 1/, 7; integrals are frozen out and we
recover the usual path integral (1.44) or (1.45) of linear elasticity.

It 1s useful to mtroduce the w; variable as an independent field and to
ensure the connection w; = 1,4 d,u; via an additional functional integra-

tion over an antisymmetric tensor field oj;. Then Z[f;] takes the form

200 = [ 7 [ 20,00 [ 7510 [ 75,00 [ Dant

X ex —lfd[) i o*"z———v )+ : T)°
PLUT7 ) M au\% T 1007 T agn s et

5 . .
+ _—8;&52 T — Loy (0;u; — Eijp W) — IT, ;0 up — 1T;;0;w; — ,u,]}-

(17.97)

We have joined the antisymmetric matrix of with o}, and formed the
tensor g;; = o, + o;; which has no symmetry at all.

It we perform the integrals over the variable u;(x) and w,(x) we find
the conservation laws

0;(0;; — 8;0,1x) = —f;, (17.98a)
0iT;) = —€re Tpq - (17.98b)

Identifying
0,5‘.“-"“ = oy + 0,0, T4 (17.99)

as the physical stress tensor, the first relation reads

0,0 = —f, (17.100)

1y
and ensures the conservation of stress in the absence of external volume

forces. Since the additional piece in (rf;hys is symmetric in ¢ and j, the
second equation can also be written as

a,'l',:’: = TEjke O_}:{hys- (17101)
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This is just the Cosserat equation {16.8) relating the torque stress 7, to
the antisymmetric part of the physical stress tensor.

As expected, the inclusion of higher gradients has led to the appear-
ance of a field equation for the rotational degrees of freedom which
describe the balance of torques and which is the stress analogue of the
equation

0jQj = —Ejkq O
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CHAPTER EIGHTEEN

INTERACTION ENERGY OF DEFECTS
IN SECOND-GRADIENT ELASTICITY

Our goal is to investigate how our model of defect melting must be
modified if we are to account for the higher gradient terms in linear
elasticity. For this it is first necessary to understand the elastic properties
of a continuous material which has undergone a given set of plastic
deformations.

18.1. ELASTIC ENERGY OF PLASTIC DEFORMATIONS

The elastic energy is given by

5 A 20+ A, N
E. = jd'%x{,u,u,; + Eu%( + 5 (01, + Z;L{’z(r'i,-w,-)z}- (18.1)
In the presence of plastic deformations. the elastic energy is measured by
the deviations of the total strain «; and the total gradient d;w; from the
plastic strain uf; and the plastic gradient d; 0!, respectively:

2 A 2
E= fd?X{,LL(UU —ul)” + E(UH —uf)

2+ A

+
2

('rz(ﬁi(llu - uf())z + 2#62((”1“”/ - (’),-wf)z}' (18.2)

1265
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General plastic deformations were analyzed in Section 2.9. There we

found that a defect line of Burgers vector b, and Frank vector ), is given
by [see Eq. (2.61)]

uly = 3(BY + BE) = 1(5:(5) B; + (if)), (18.3)
and [see Eq. (2.65)]
('),wf = X,p, = %Ejkcai[fsk ($)Be — 8(V) EquQq] = %Ejke 8,-/355« + d>5,’~, (18.4)
where
Be=b¢ + g4, Qyx, (18.5)
is the total Burgers vector and
Blie = 8:(S) By, (18.6)
dle = 8 (8) €2 (18.7)

are the plastic distortions and rotations, respectively. Thus we can write

A
E= fd3x {u(u,-j - (B5+ Bﬁ)/z)z + E(“ee — B’

21+ A

+
2

€23 (uee — BE)) + 207 (8,0, — 112 Eiked; Ble — ‘15}(;)2} '
(18.8)
Let us study the defect gauge invariance of this expression. The general

trivial Volterra operation of translating and rotating a piece of material
corresponds to a pure gauge transformation,

Ue (X) —> U¢ (X) - 6(‘/)(bf + Ei’quqxr)- (189)

Let us abbreviate this by
ue(x) = ug(x) + Ne(x) + £, M, (X)X, = u,(x) + No(x),  (18.10)

with



18. ENERGY OF DEFECTS IN SECOND-GRADIENT ELASTICITY 1267

Ne(x) = —6(V) by, (18.11)
M (x) = —8(V)Q,, (18.12)
N¢(x) = —-8(V)B,. (18.13)

From (18.10) we find directly the pure gauge transformations of the
rotation angle,

w;— w; + e 0 Ny . (18.14)

These transformations must accompany any shift of the Volterra cutting
surface § to ' with V being the volume enclosed by §' — §.

From (18.6) and (18.7) we see that such a shift results in the following
changes of the plastic distortions and rotations:

Bi)e—> sze + (8 (S') — 6.(S)) B, = Bff - (ak 5(V)) B,
= Bk = (8(V)B,) + £ 8(VYQ, = Boe + 0 N¢ — ecu M,
(18.15)
(b{k)'f’—") ¢£f + (5k(5') — Oy (S))Qe: f{ — O S(V)Qf: ¢£( +a M. (18-16)

Inserting the transformation laws (18.10), (18.14), (18.15) and (18.16)
into the energy (18.8) we see that it is invariant under defect gauge
transformations, as it should.

There 1s yet one subtlety which must be noted in this construction. In
the absence of plastic deformations, the rotation field w; satisfies &;w; = 0.
For the plastic version, however, this is no longer true since in the
presence of defects [recall (2.77)]

i = = oy, (18.17)

This leads us to introduce another energy expression,

2u€28fd3x(aiwj — 9,0 )(3jw; — 0;0])

= 2#628—[613_{(6,'(1)}' - 1/2 Ej:k(_'a['B'Z(‘ - fj)(ﬁjw, — ]/2 8,—;((-(')]-,8{(’( - ﬁ),
(18.18)
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which, in the absence of a plastic bend-twist, would be a pure surface
term, and an energy

2,u,€2£'f d*x(9;0; — d;w7 ), (18.18")
which can be directly expressed as an extra core energy of dislocations
Spfzs'fd-‘xaﬁ, (18.18")

and needs no further treatment; it will be ignored hence forth.
We shall thus study at the partition function of elastic fluctuations in
the presence of plastic deformations,

, 1 >, A >
Z= J(/u,-(x)exp{—-—T—fd‘}x{u(u,-f —up)” + E(uu —ul)”

2+ A
2

+

€28, (e — 1R )
+2ub (0,0, — 307 Y + (0,0, — 3,0 )(8;w; — a,w{’)]}* (18.19)
with
uf =3(Bh+ B Gl =Yep 8Bl + & (18.20)

Invariance under defect-gauge transformations can be used to bring B4,
into standard form. A convenient gauge is

)

ko= Bo= i Pro=uh =0 (18.21)

The symmetry of 8%, is reached by an appropriate choice of M,. After
this, we can perform a further gauge transformation with arbitrary N, and
M, = €,k 0k N, so that g%, remains symmetric while the strain changes
like

uly = ul + 3N+ o Ny (18.22)

In this manner «f, can be brought to the desired gauge g% =, = 0.

18.2. CANONICAL FORM OF THE STRESS PARTITION
FUNCTION

It is useful to rewrite (18.19) in canonical form, corresponding to (17.97).
in which «;(x) and w; (x) are treated as independent variables and in which
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the relation between them is enforced by an integration over an anti-
symmetric part of the stress tensor. We can easily verify that Z becomes

Z=j@uif@Uijf@w,‘f@T;j@Tij

P S aap > 1 2
T4 ) 22+ A€

X
o
P
o
——
|
~ |-
g‘
=
=
1N
£ =
.

1 ) )
" W(&Tﬁ + 817 | + lfd3x[0ii(ai”f — g wy = Br)

i

+7/ (30t — ;B0 ) + T;(dw; ~ ¢5)]} , (18.23)
where
S =1/(1-¢%), 8 =—¢d,. (18.24)

To see the equality we perform a quadratic completion and integrate out
o;. 7/, ;. The integral over oj; enforces the connection w; = %s,-jk Ojug. It
is interesting to see the manner by which this generates the B}, parts of
the 9,0 gradient terms of (18.19). Notice that in the canonical form
(18.23), where w,;(x) is an independent variable, the plastic rotation ¢
plays a more fundamental role than the plastic bend-twists d;w! which
were the most natural plastic quantities in the original form (18.2).
Defect-gauge invariance of (18.23) holds now with respect to the

transformation [compare (18.9)-(18.16)]

ue (x) — u(x) + N (x),

Bi‘ll (X) - Bfl (X) + akﬁ( (X) - sk(p Mp (X), (1825)

w; (x) > w;(x) + M;(x),
’,';(x)—> fj(x) + 8, M;(x). (18.26)

18.3. LATTICE MODEL OF DEFECT MELTING WITH SECOND-
GRADIENT ELASTICITY

It is now straightforward to construct a suitable lattice model from the
partition function (18.19). For the strain part, the procedure is clear. All
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we have to do is to replace the continuous variable x by discrete lattice
sites of a simple cubic lattice, the gradients d; by lattice gradients V;, and
the plastic distortions 34, by integer numbers r;,, multiplied by the lattice
spacing a. When using rescaled variables y; = (2#/a) u;(x) we may simply
take BE, = 2mny, .

If we follow the same procedure for the rotation part we run into an
immediate difficulty. In the continuum formulation, all quantities u;(x),
w,;(x) were infinitesimal. Only for this reason could we define the rotation
field w;(x) by a simple differential operation,

w; (X) = 341 0;x (X).
On going over to a lattice, this relation has the trivial generalization
w;(x) = $(V X u); = 35 Viup (x). (18.27)

However, one should realize that this is a proper rotation field only for
very smooth fields u(x) and certainly cannot be maintained as soon as
u; (x) has finite jumps across Volterra surfaces. We ran into a similar
problem previously when we calculated the plastic quantities on a lattice.
There, we resolved these difficulties by considering. instead of a finite
translation plus rotation, a modified Volterra operation (16.45) which
implied a “tangential approximation’ to the rotation group.

In real crystals, the multivaluedness of the rotation angle i1s determined
by the smallest finite discrete rotations around the symmetry axes. The
derivation of the plastic distortions, however, was carried out in the
continuum. where all quantities are infinitesimal. Thus it is obvious that
in order to find a proper crystal version of the partition function (18.19) it
1s necessary to respect the full group structure of finite rotations. The
result would be a non-Abelian gauge theory. This is somewhat dis-
couraging since the defects in non-Abelian gauge theories pose com-
plicated nonlinear problems which are far from being understood. Field
theorists who have tried to explain the forces in elementary particle
physics have studied such theories for several years now and progress has
been rather limited. Faced with this difficulty, we have opted to proceed
using the “tangential approximation.” Within this approximation we
consider (18.27) as the definition of an w;(x) field which plays the role of
the rotation field w;(x) in the lattice model and which allows for integer-
valued jumps in these quantities.

The model we are then led to has the following partition function
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zZ= ), ®n,;.myll [ILM]

{n;.my} x. i 2ar
1 §32 A s :
X exp) —B 1 Ev(vi’)/j + Vyy, — 4wnj) +£Z Z (Vivi = 2mnj;)
X. (. X I
+ 2M; ! 52“ E(V:‘V( Yo = 27Vini;)’
62

+

702 Z [(Viene Viye = 2mQ2my; + Vg ng ))?
+e(Vigj Viye = 2m(2my + Vigirng))
X (VieweVive = 2m(2my; + V4 ”A—())]]} ’ (18.28)

where n;; is the symmetric part of the jump numbers n;; (which is half-
integer for [ # j). The canonical form of this partition functions is

I — v\ ING2 IN
Z = (1 n v) (1 + E) ) ‘_(] - E) ) 2 cb[”l,‘j, m,]]

) 1
{n my)

A1) [ | [ ] gy | [ gy 4o

dr! (x) * dry(x) }
H [ fxdcr“ ]H [\/zw(u M) B }H,[ RV e

v 82 ”‘az '2
X _ v 2
CXP{ { ( 1+v°"”)+2(2,;+)\)e'3;”

a-
8(72 51r,,+8wr”)+12 o, (Viy; — e wp — 27ny;)

+zZ (V.V,y, — zwvn,,)+12 ?wm,,)” (18.29)

The symbol ®[n;. m;] denotes a gauge-fixing functional which is neces-
sary to remove in infinite overall factor due to gauge degeneracy. A
simple choice is the quasi-symmetric gauge [recall Section 10.1] wherein

Ry = 1y oo _ Jeven,
ny = ny + 1} if n; + ny; {Odd’ (18.30)
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and
n13=0, I’l22=0, n33=0. (1831)

®[n;;, m;] contains the appropriate Kronecker 8's to enforce this gauge.

If n;, m; do not satisfy the conditions (18.30) and (18.31) we can
always perform particular gauge transformations which achieve this goal.
If we denote the antisymmetric part of n; by njj, these gauge trans-
formations (18.10)-(18.16) are

ni—ni’ +4V.N, + V;N,), (18.32a)
ng— nf — e My, (18.32b)
m;— my + VM, (18.32¢)
Y=y + 2w Ny, (18.33a)
wi— w; +27M, . (18.33b)

We showed in Section 10.1 how to find integers N; and M so that ny; is
quasi-symmetric and the three non-zero n;; fields nil, niY, n3Y satisfy the

further boundary conditions

n}(l'(xl, Xa, 0) = O, nig((), Xa, X3) = 0, n%({(x,, Xa, 0) = ()

Vanid(x,, 0,0) =0, Voni2(0, x2,0) =0, Vin32(0,0,x5)=0. (18.34)

Integrating out the y; and w; variables in (18.29) produces the proper
conservation law of stresses and torque stresses, now with lattice
derivatives:

v,'(Tiij, v_,-l’--= -

i

jk('o-k(" (1835)

For simplicity, we have ignored the 7/ term since it produces only small
quantitative corrections to linear elastlclty .

The conservation laws are automatically satisfied by introducing the
gauge fields A, (x). h1¢;(x) and setting

“In the next sections this term will be included.
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0 = & Vi A (x =€),
t; = e Vih(x =€) + 3;A (x — €) — A(x —j).  (18.36)

The stresses are invariant under the following local gauge transformations
B (X)— h(x) + VeE(X) — g A (x + €). (18.38)

Just as in our previous treatment of three-dimensional defects within
classical elasticity, these have the same structure as the gauge transfor-
mations on the defect fields (18.15) and (18.16). The only difference is
that the stress-gauge transformations are continuous while the defect-

gauge transformations are integer.
In terms of A, . h; the coupling to the defect-gauge fields becomes,
after a partial integration in the last terms of the exponents (18.29),

—2mi Yy A () (e Vany (x + €) + 8, (x + €) — my (x + €))

— 20 )5 hp (%) £ Virn (x + €). (18.39)

Comparing the sources of A, (x) and A (x) with (2.69) and (2.68) and
recalling that #n; and m;; are the lattice versions of plastic distortions and
rotations, we may identify these sources with the lattice versions of
dislocation and disclination densities, &, (x) and ©,(x), respectively, and
write the interaction as

1 _
?Eim = —2mi E (Aga+ hiBOn). (18.40)

In Section 16.1 we showed that the defect densities satisfy the conser-
vation laws [see Egs. (16.3), (16.5)]

v, ai(X) = _Eik('@k( (x — k), v( (:)u(x) = 0. (18.41)
These guarantee the stress-gauge ivaritance of Ly, as can easily be

verified by inserting the gauge transformations (18.37) and (18.38) and
performing a couple of partial integrations.
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18.4. CALCULATION OF THE INTERACTION ENERGY OF
DEFECTS VIA STRESS-GAUGE FIELDS

Let us now see what the interaction energy of defects is in second-
gradient elasticity. The problem is quite involved and it is preferable to
study it in the continuum limit where we can use helicity amplitudes.
We decompose Ay; and h,; into AL g according to the rules of
Chapter 4. Then we can use formula (4.110) and find [compare Egs.
(16.23)]

a2 =(K) = LhkAD D (K), o (k) = £kATH(K), o7 (k) =0,
o V(k) = —kAL(K), ot (k) = —kA"V(K), ot (k) =0.  (18.42)

The three components A", A~~ and A* do not contribute to the
stresses. Note that the momenta in these and the following formulas
correspond to the continuum limit of the dimensionless lattice gradient V,
and therefore measure the physical momenta in units of 1/a.

The stress energy contains only the symmetric parts of o, i.e., the
spin-2 and spin-0 helicity components, so that it is equal to

k2 1—v 1 1
A2 4 [4C D)2 4 M2 L g++2 Lo a+-|2%.
§—4B{| P A P 100 4 S g L)
(18.43)

Consider now the torque stresses 7;;. From (18.36) we see that they have
the same helicity content in terms of /4, as o; has in terms of A4,;. In
addition, there is the term 6;A, — A;;. The 6;A, part can be written as

(V2Ze! + M) (V2AL + AL, (18.44)

Since Aj; 1s the transpose of A, we see that in the helicity decomposition
of 7. the sign of the spin-1 contribution of A"/ is reversed. Thus we

have
L A B G B
0 = k= A0 = kY AT VZAY =2 AT

(18.45)

giving a torque stress encrgy of
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2

8B 5
+ ] =kh"" + AL+ V2AR ]+ 2|A

Z {(81 + 82)[|kh(22) _A(2\2)|2 + Ikh(z,*z) +A(2,42)|2

+o[[kh" = AP+ khtT AT TP AT+ AT
+ 8~ (kht " =AY AT — (—khT T — ATT)*AT T + el
+ (8, — &) |kh" + A-OP ¢ (18.46)

The energy is invariant under the gauge transformations (18.37), (18.38),
which read in the helicity basis,

A SATT HKAT, AN AN 4+ kAN
ROPD o pe=0 o (2 A= R0 pUO) 4 TR AL, (18.47)

and
h = h "+ ke, b -kt + ke, (18.48)

respectively, with all other components remaining unchanged.

These can be used to eliminate the anti-symmetric components A" 1D,
A" (as well as A2 =D A% if they were present) so that only three
components of k are dynamically relevant, namely, /%2, /% =2 and h*.
After gauge fixing, the elastic energy (18.23) reads

1 | I—v 1 1
S Ee— Y liacnp a0y AR a2 L g2
a (2.2) (2.2)12 (2. =2) (2. —2)|12
+5aE L | (B SR = ACI 4 [0 4
K

+]A+HVZAL P+ 20ATPI+ S [|ATT R+ AT

HATTP A AT+ 8[ATTTATT  + ATTTATT 4 el

+ (8 — 8y)| kh" +A“'“’|2}- (18.49)
where 8, +6 = 1/(1+¢). 8, =8 =1/(1 —¢), & =1/(1—¢%), &=

~¢/(1 — 7). We now turn to the interaction energy (18.40).
In the continuum hmit, the conservation laws (18.41) ensure that ©,, has
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only the helicity components 2 @5 ", 0" the latter three
being identical to Fka ", —ka’ /V2, respectively. Hence the helicity
decomposition of the interaction energy (18.40) reads

1 - * — 2% — B
?Eim: —27712 [ARD* 2D 4 422522 4 410 (10)
k

+h(2~2)*(9(2~2)+h(2~—2)*®(2~—2) +hL*®L +A++*a++
FATT AT (AT kR et (AT k) e
+ (A" = kR ON2) o+ Al el (18.50)

In the stress gauge for which A%’ has the three components A 2
=2 gt only, this becomes

1 . _ _
?Eint = E {A(z.z)*a(z‘z) T AR D 202D AL D (L)
k

+ R QR 4 g2 =g =)y Ll

FATT AT AT T T TR AT et AT+ Al Al gl
(18.51)

Noting that in the stress energy, the components A% “ and A% always
occur in conjunction with A% *2) and A" it is useful to rewrite the
second line in (18.51) as

h(l,Z)*= @(2,2) + h(Z, —2)*@(2‘ -2) + hL* @1,

_ (h(z‘z) _ lA(z,z))*@(z,Z) " (h(z. -2) lA(z. —2))*@)(2, ~2)
k k

+ (hL_%A(l.ll))*(H)l.+%(A(2,2)*(,_)(2‘2)_A(2,-—2)*(9(2.—2)+A(1‘())*(H)L)'

(18.52)

Recalling the composition of the total defect tensor in the helicity basis
[i.e., (16.24) and (16.25)], we see that the second line can be combined
with the first line in (18.51) to give the defect couplings,
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—Dari Z { [AO 2)% (7 2y _ A(2. —2)*17(2. -2) + A(LU)*T)L]
+ h(z‘ 2) _ lA(Z‘E) *@(2‘ 2) + h(Z, -2) i 1/4(2- 5 *@)(2. )
k k
- (h" + %A“'“)) @1.}. (18.53)

We now change the variables from A "2 A0 [ =2 pltg 4@ 22
ALY =2 2 (AR =D pt 4 (1/k) A", Then the integrals over
these six fields can immediately be performed, giving the following
Boltzmann factor:

1 1—v
_ 2 _— (2. 2))2 (2. -2 L
exp{ Bé ;k4(ln P+ P+

2 vl
— 28— 477’ .
Baz w Ek“

k

+(1 - 8)|®L12]}-
(18.54)

The first term contains the defect energy of classical linear elasticity. The
second gives an additional Biot-Savart energy between disclination lines,
which at long distances is negligible as compared with the linear forces
implied by the first term. It modifies only the core of the disclinations.

As for the remaining fields, A", A", A" and A" these produce
additional short-range effects for the remaining components of the defect
densities. The fields A~ give

2 2 ++]2 +—12
exp{ B 477 Z[1+€k2/ [|a |* + la* |
k22
— € (—) (o ** + fa™ P )]Ha P e

a

£
W (o e+ at e+ (,C)]} (18.55)

The fields A", A% have a stress energy
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1 2 Ll 3V2V\[AF
?Eel SB€2(5]+52)2(AL A )(\/2 2)(,4‘")’ (18.56)

so that integration over them leads to

2 VAP
exp{—?%flwz(l + 8) g (a ) ( \/— 3 2) (aL')

e, 1, 1
= exp} 28 547 (1+e)§k] Slat P+

L ] 1’

214 T Vv2¢

2
} } - (18.57)
All these additional terms are of short range. They present obstacles to
the formation of dislocations.

From the identity (16.26), we observe that the second term in (18.55)
can also be written as

& 1 Y
exp{—2B;47722k:P(|®++|2+ |® |2)}, (18.58)

and may be viewed as a Biot-Savart law for disclination lines. Similarly,
using (16.27), the energy (18.57) may be written in terms of a’, (—=V2/k)
019 rather than o, a”'.

Then the total Boltzmann factor becomes”

1 _ 1+v
exp{_Bdf'”'z Zk: F (M(z,z)‘z + \"fl(z' 2)‘2 1 — |TIL|2)

2
— 26%47r2 Z % I:[(l + )]0 D2+ (1+)|0F 217+ (1-¢)|0F|?]

2202 a?
( et [ ) O+ 10 )+ (1 + e)|®“'°’\2]
[ 1+ ¢ 1 2
n s dattP ety 4 L 2o

+ 0 #zggz,z'(a”* '++a**a+c.c.)]}- (18.59)
k

PRecall that the defect densities in these formulas are the integer-valued lattice quantities.
Thus they are related to the continuous ones by a factor 1/2ar as well as an appropriate
power of the lattice spacing. Similarly, the momenta are measured as multiples of 1/a.
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From this expression, it is straightforward to go back to tensor notation.

Using the fact that 5 possesses only the three components 5'*- 2!, 53 =2,
n’* we find that
|T]’j}2 — |T’(22)'2 + IT](?-. *2)'2 + |T]L'2, ‘1’),-,'|2 — |\/§nL 21 (18.6())
and the first sum becomes
1 v
_1847722 P(Mijlz +1—|7]u'|2) . (18.61)
k — v

Similarly, ©; has only the six components contained in the second sum so
that this sum reads, for ¢ = (},

¢ vl
—2B854m2 ), |0, (18.62)
a k k

Furthermore, using the polarization tensors e ™~ of Eq. (4.97), we obtain
1
+|2 +—12 _ o * a2
la* " + |a* 7| = 2 le;k; ik afap + e

1 )
= F‘(‘S"’" 3 — 9;0,) 8. (18.63)

It is useful to introduce the abbreviation

0:0;
ay = (5r‘r" - ?) Apj (18.64)

for the transverse part of «; [i.e., that which contains only the ++, +—,
—+, ——, (1, 0), and L components]. Then

\ o 1 .
la ™ 7+ a7 = 50, 17 (18.65)

Similarly, using ¢ of Eq. (4.97) and ¢'"-" of Eq. (4.62) we find
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1 1
at + /;(”)(1'0) By (8,0° — 3:0;) 0 + €iox 95Oy |2
L5 7 2
= 5/?"6 e + ik 9k O | (18.66)

With these formulas, we can collect the £ = 0 parts of (18.59) into the
following tensor form,

1 v
exP{“ﬁ4wz¥P(|mj|z+ ‘TIeeF)

1—v

1
3%a” + Eiekak@fe|2]} '

11
319e "+
(18.67)

€2 2 1 2
R E,; [kz il Ty e

The ¢ terms require a little more work. Those in £[®")? can be
grouped as follows:

e(|OC2P +10% 7212 + |04 + |02 — 26|04 (18.68)
Now, 2|®%|* is just
21057 = |0 (18.69)
The first sum may be rewritten as
e(|0;F = 0" P = |07 7]%). (18.70)

But from the same calculation as in Eq. (18.63) we have directly [recall
that 8,- ®U = O]

_ 1
O + 1077 = 19,0,/ (18.71)
so that (18.68) gives

1
5(|®fj|2 T2 18,0, [° ~ |@ee12) . (18.72)

—+

The mixed terms in ™, a™ 7, etc. take the following tensor form,
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at et +a" FaT  +cc

| ) 1 )
= P(e,—kjk,w €t Oy e + C.C.) + P(k,-eje,-v k]' Qi ey + C.C.)

1 kk 1 kik;
ZP(&’” e )kk o) S0+ P(Sﬁ»——i—kz )kk Qg oy

1
= P(a,-a;* deay; +c.c.) = (8 ) Eipg Oy + c.C.). (18.73)

Using these formulas, the &, £ terms in (18.59) become

¢? i 1
expl 28412 ) e| | 10,7 — 18,0,% — [0
a k k k

e€%la* 1
T4 12OIE k2| I ij|2 + Z’I'(ilazaerf + €0k 0k i |?

U R
+ 1+ k2€2/612 p(a]‘a; 8ipq®pq + CC):|} (1874)

At first sight it appears as though this expression is the best starting
point for a disorder field theory of defect lines. Either defect systems, O
or al; could be turned separately into an XY model, one for each j.
Unfortunately, this simplification is an illusion for two reasons. First, it is
impossible to go from integers ay; to integers a/; since the lattice operator
(V,V/V-V)ag; produces non-integer numbers. Hence the sum over af;
does not allow for an XY model representation. Second, the resulting
field theory would not be local. The orthogonal part of a/; still appears in

the exponent which reads

Op0p
exp{—ZTrl Z (Agi (a(?; + —%'Ee_ag'i) + h('l-'@(i)}
J
= exp{—Zﬂ'i E (Afia?i+ (he:‘ — Ak Sfikgg) ®€i)} » (18.75)

so that with of; , ©,; as fundamental defect variables the field A, couples
nonlocally to ®;, and such a nonlocal coupling cannot readily be incor-
porated into a covariant derivative of a disorder field for the disclination
density Oy;.
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18.5. SECOND-GRADIENT INTERACTION ENERGY DERIVED
FROM DEFECT GAUGE FIELDS

In linear eclasticity we observed that it was simpler to calculate the
interaction energy of defects by using defect gauge fields rather than
stress gauge fields. Let us now see how this method works in higher
gradient elasticity.

Our starting point is the partition function (17.19) with the energy
expression

2u+ A
:fdjx{ (“ -”p) + 3 (”u—uu)z P~2 elz(d (UH_“H))Z

+ 2u€%((00, — d,07) + e(di0; — ;0! )0 w; — 9, ! )]} (18.76)

where uf = (1/2)(8,uf + 9;u?) = (112)(B + BR), ;0! =l = (1/2) ene 9,
Bie + &l [rccall (2.63), (2 64)]. In contrast to the discussion in the
previous section we have now kept the € term which corresponds to the
stress energy 1,°.

We now recall that the basic trick which simplified the calculation of
the elastic energies in (10.6) was to impose improper transverse gauges.
We had demonstrated in the XY model that this is admissible, as long as
no knowledge is required on the correlation functions of the order
parameter e which is the case here. Then we can always choose
noninteger gauge functions N, M; to arrive at a gauge in which g% is
properly symmetric but purely transverse, i.e.,

D — p — P
ij = Ui,

d;ub = 0. (18.77)

Using this gauge and working out the different squares in (18.69) gives

E= fd“x{%u,(x)[ wd*(l — €9° )( %)

5. 0;0;
— (2 + /\)32(1 - grza—)_a_zi] u;(x) + Aw;o;uf

- (2”~ + /\)f'zu,-(?fazuﬂ - 2/.L€2u,-£,»k( dy (')](Xf)/\ + E‘%f’) + [_Lu‘f;z

A 21+ A
+ ull +
2 2

C20ub ) + 27 (e + £l xl } (18.78)



18. ENERGY OF DEFECTS IN SECOND-GRADIENT ELASTICITY 1283

A quadratic completion gives the defect energy

2+ A
2

A
Eger = deX{#“ﬁz + E“'?E + g'z(aj”‘?tz)z + 2I~L{/2("ﬁ2 + £xjinf; }

1
- Efd3Xd3x’ G,‘,"(x - X’)
X [Adjufe — (2 + M) €20;07uly — 2187 £ 0,0, (35 + £34,)](x)

X [/\ 6,-: l.l‘;)'( - (2# + /\){"26,~v azu‘f’( - 2[.1,62 Ei'k(_'a(; a](?\fﬁvc + Ex’;ij)](x'),
(18.79)

where G;;(x — x') is the elastic Green function calculated in (17.106),
(17.112) in momentum space

1 1 ki k;
G (k) = 8. — kikilk®) + =
i (k) ,u,k2(1+€2k2)( i = kikilk) Qu+ DK+ €2k k*
(18.80)

This satisfies

1 |
TR+ A1+ 3K

kiGii (k) =k

1 i
NENEYER)

Kiki Gii(K)

ki e ke Gir(kK) = (8pxr — kikp k). (18.81)

wk*(1 + €2k

It follows that

Gir (K)(kuf (A + Qe + AV O2K7) = 2u€iegek ki (x5 + exf;))’
X (kpufe(A+ QCu + A)(”zkz) — Z,Ln,fzis,-,k,‘kgkj(xf’k + exk;))

Ll A HQuAENEED L1 Qe Kok
T 2ut A 1+ 2% ol +,u1+€2k2kjkj Ok = )2

X (2 + exB) (g + £580). (18.82)

Inserting this result into (18.79) we can collect the u# terms as follows,
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s A+ (Cu+ A%k’
%[“'” 2(’”(2’””( N+ N+ %) )I }

A+ Qu+ A) 0k
— Iz 2+ M p |2
- [“'”’f| 2t A 1+ 0% ]

1 —2v €77
_ME [Iu |2+—| 2+ - 1+€"k~|“”l ] (18.83)

Similarly, the »% terms become
2 )
E 2;.L€2|: B)* + exty” wl
k

1 k K k k .

, ) - 5 1 )
=2ué? ), {I%’ - ld;%ik [+ 180k

k

1 L I

. 1 c a4 p 2,

£ [ )* 2 2 Y
—_ R kz( iy 9 nf; + c.c) — Eﬂajak %fklz]
{;282 2 1 2
— o P — =g 2 | b
(e | 197l = g3 1ond, | ]} (18.84)

The plastic deformations in the energies (18.83), (18.84) must now be
rewritten in terms of the defect tensors n;. 0, a;. For uf this was done
in Section 10.6 [Egs. (10.121), (10,122)] so that (18.83) becomes directly

_ 1, v, 1-2v  ¢? 1
Edcf.u” - /"L§ |ik4(ni‘f+ 1 — v’?ee) + 1—v 1+ €22k 777({

(18.85)

The first term is the usual defect energy of linear elasticity, the second
term represents a modification of the short-range part of it.
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A little more work is needed to translate the plastic rotations into
defect tensors. For the first two terms in (18.84) this is simple enough
since the disclination density @, = £, 9,0 0] = €;¢ 05 %(; gives directly

Lo e L,
E P|®ij|" = E [’Xﬂ_ - F|3,'%’},'2] . (18.86)
k k

The remaining terms have to be expressed in terms of ®; and ay.. Since
d;a;; = — ;¢ Ok, the divergence of a; is not an independent quantity
and can be expressed in terms of ©,,. Thus we choose the full O, plus
the divergenceless part of a, for the parametrization of all defects.
Recalling the relations

Oy ™ Eipy ak ll’;)” + Bin x‘;:k - x.{;iv (1887)

we can calculate

9.9, 30, .
ai']r; = (aii’ - ?) Qpy = Sik('akuﬁl + (Sin - _éT) xﬁk - xﬁ:i + 62 xr,;i’ .
(18.88)
From this result we find
dide
ale =y + 62‘ xf, (18.89)

E)za(rf + Ek,'(ak (';'),'( - azalrg - 6‘)xﬁ + 6,, 6,'%5,‘ = 28(*8,‘%?[, (1890)

and due to the transverse gauge of u?

£

aa ’
T _ ¢
aja,-]- - —(:5,-( - laz ) 8Ixﬁ,

1
¥ Iaja,?zz § l:la]x],[z_‘ﬁla]alxﬁﬁjl (1891)

Inserting (18.86), (18.90), (18.91) into the &£ = 0 parts of (18.84) we see
that they come to agree with the previous result (18.67) (with a = 1).
We now use once more 0, = g, ;, to calculate
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; 0.0, = ? (Jow a2 |2 — o a2 ]7) (18.92)

and see that the & term agrees with that in (18.74).
Then we form

k

9,0, .
; ((’ C\‘.,] Fiptl()/)q + C'C') - _E [(81‘( - _6§1> aijl")(f :I (ar’xqq’ o agxig) +c.c.
= Z [(d]xf:*d wi+c.c) — e |&,~8,‘ ol !7] (18.93)

and see that the /(1 + €7k7) terms in (18.84) and (18.74) arc the same.
Finally, we evaluate

Z (H)r/| = Z [|dl~x | - (1894)
3,17 = EHd,\x 12 2kl kel — ko~ — k2P,
(18.95)

1 B B 1 D . ]
k_ ':|()q| 2 |a_1'®.-jl_ — 0"+ ﬁla‘aﬂ + &40, O |“]

2 N _
Z [ ’l" sely — ,(d wh " dimh 4+ ccl) + k2|816,x§}!’] . (18.96)
k

so that the remaining ¢ terms also agree with (18.74).

18.6. SECOND-GRADIENT ELASTICITY AND THE PARTITION
FUNCTION OF TWO-DIMENSIONAL DEFECTS

For completeness, let us pertorm a few of the manipulations of Section
18.4 1n two dimensions. In this case there is only one rotational field and
the jump numbers m;; reduce to an integer-valued vector field m;. The
partition functions (18.28) and (18.29) have the exponents
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2
B{l Z (Viy, + Viy, — 4w, ) + ! E(E (V.y; — 2mn;, )
4 2p

X.0.] X i

2u+ AL’ o
+ Mz Z (ViVeye = 2aVing )”
¢ >
2 E (VieweViye = 20(2m; + Ve ”M'))“} (18.97)

and the canonical form

T b o Lee il

202 + /\)W 8¢

+ iE ;i (Viy, — gjw — 2mn;) + 1 Z T (ViViye = 2mVing)
+i Y, 1V, — 2mm,). (18.98)

The measures of integration are

2 ®lny.m][] [ j;dlz'gl] (18.99)

{ ]
i, .m,;

in the first and

8 ot 1| [0 | [0

I

1 -V N2 * d(fig (X)— | - dO",s,(X) ” a
X T+ v) ];I [fx —_—277';3 | H i x—_4WB] l:[ [fxszIZ(X)]

dr;(x) dr(x)
H [ L V2mB(2 4+ M) ld ] X.i [ xVSs'TBEz/az] (18.100)

in the second case.

In the following, we shall again ignore the coupling £’ since 1t causes no
interesting qualitative changes. The physical observables of stresses and
torque stresses at the minimum of the energy are given by
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¢ ¢ A )
0y = Bl:(vi Y t V;"Yi - 47"”ij) + ;&y‘(vr Ye — 277”?()] ,

3

5 !
T, = 45;‘(V,-w —2mm;) = 48— I:Vfifkka% —7(2m; + Vfgkfnkf):' :

a
(18.101)

[

The stresses oj; are invariant under the simultaneous replacement

nj(x) — nj(x) + H(V,N,(x) + V,N;(x)), ¥,(x) = ¥i(x) + 27N, (x),

(18.102)
the torque stresses under
mi(x) = mi(x) + ViM(x),  w(x)— o(x) + 27M(x),
”ff(x) - ”f;(x) - gijM(x)v Yi{X) = ¥i(X). (18.103)

In order to avoid an infinite overall factor in the partition function, we
have to fix again the gauge. As in Section 18.3, we go to a gauge in which
the antisymmetric part of n;;(x) vanishes if n;; = integer or is equal to 1 of
n;; = half-integer. In two dimensions, this concerns only one component,
namely nj,:

n{y(x) =3(n;> — n))(x) =0 for nj5(x) = integer,
nfax) = 3(n; — ny)(x) =1 for nj5(x) = half-integer. (18.104)

After this, the symmetric part is taken to have the same gauge as in
Section 10.3, i.e.,

nH{x) =0,  mh(x)=0. (18.105)

This choice was always possible. For, if n;, m; do not satisfy these
conditions, we can always go to new variables ' which do, via the defect
gauge transformation

n3; = n3 + Vo N,(x), m =) + 1(ViNL(x) + Vo N(x)), (18.106)

with the fields N ,(x), N,(x) of (10.5). These were shown to be unique
solutions (up to a trivial translation plus rotation of the crystal as a

whole), if the only nonzero component nj;(x) satisfies the boundary
conditions
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nii(xg, 0) =0, (18.107)
Vzni‘l(xl, 0) = (. (18108)

Let us now perform the integrals over y;(x) and w(x) in this gauge.
This gives the conservation laws [corresponding to (18.35)]

Vf()',-j = 0, V,'T,' = T EkeTie . (18109)

These can be ensured by introducing “gauge fields” A;(x), h(x) and h(x)
and writing

o (X) = e4 Ve A;(x),  1,(x) =4 Vh(x) — Aj(x).  (18.110)

Actually, in two dimensions there is really no gauge freedom in the
decomposition. Still we have used the term *‘gauge fields” recalling that
in three dimensions this name was appropriate. When going from the
variables o;, 7, to A;, h we have to watch out for the measure of
integration. The &-functions for the stress conservation laws 8(V, aii ),
S(V.t; + &5, ox¢ ) can be used to integrate out oy,, 0, and 1, (say). There
is no Jacobian factor since detV, = 1. After this, the remaining integrals
over oy, 0y; and 1, can be changed freely into integrals over dA,dA,dh

since
U]l:val, U]2=V2A2, T]'—'vzh_Al, (18111)

and there are again only trivial Jacobian factors det(V,). In this way we
ascend from (18.100) and (18.102) to a partition function

11— p\M? 1 1 x
(4 1+ v) V2233V \/877362/(122[\/:,[‘1 [f_di,(x)] 1:[ [j_xdh (x)]

1 1 11—
{"11;1 }(I)[mi’ nu]exp{ 4ﬁ Z [ 271 + )A]]

Z (Voh — ex0 AL )2 — 2mi Z ex ViA;ny

8[362

—27i ), (4 Vih — A,)m,}~ (18.112)
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The stress-energy terms arise as follows:

Z Oﬁz(x) = Z I:%(Eikvaj + (i) ]

X

=

E |:(ViAj)2 + (if) + zsikvaj Ejk’Vk’A.":|

D [A,-(—V-V)A,- - %A,-(V,V,)A,] . (18.113)

Y, oi(x— €)= ) (eex ViAe(x — ©))

= Z] [A;(~V-V)A, — V, Au(x — O)Vp Ay (x — €]
= Y [Ai(-V-V) 4, — (V-A(x))?]. (18.114)

After a partial integration, the last two terms become [by (18.112)]
—2mi Z Aj(eiVin; — m;) — 2mi Z her Vim;. (18.115)

We now compare the sources in parentheses with the continuum formulas
(2.123) for the defect densities and see that we can identify

&;(X) = €4 Vi (x) — m;(x) (18.116)
as the integer-valued dislocation density on the lattice and
@(X) = Ekkami(X) (18117)

as the integer-valued disclination density.
Using the notation a(x) = b;(x) on two dimensional lattices [recall
(12.19)], the coupling (18.115) becomes simply

—27i ) (A (x) bi(x) + h(x) B(x)). (18.118)
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We now integrate out the fields A;(x) and A(x). The stress energy o is
diagonal in the “‘transverse’” and ‘‘longitudinal” parts of A;(x). Therefore
it is useful to split A,(x) explicitly into these two parts®

Ai(x)=¢e;Vier+ Vg, , (18.119)

and cast the stress energy to the following form:
1 | 1 -
— —— (V-Ver)? + 2 (V-Ve, )?
432(1+v( er)’ +5( m)

) Y Ttk — o)+ (Tagn ] (18.120)

By rewriting the coupling (18.120) as
~2mi ), [(e5 V07 + Vi) b + hO]

= =27 Z [er(e;j Vb + ©) — ¢, Vib; + (h — ¢7) 0], (18.121)
X

we see that we can integrate out independently the fields o7, ¢;, h — ¢7.
The change of variables yields a Jacobian factor

]:[fdAlfdAzfdh =det(—v-V)l:[fd<pod¢de(h — ¢7).
(18.122)

From the integrals [der and [d(h — ¢7) we then obtain a Boltzmann
factor

)271(k) 26— 4w22®(k) —@(k)}
(18.123)

exp{ B47r2(1+v)2 (k)" KK

where the first term contains the lattice version of the total defect energy
of classical elasticity,

‘Explicitly, ¢, = (1/V-V)V,A,, ¢7=(-1/V-V)&,;V,A,.
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n(x) = g, V;b;(x) + O(x). (18.124)

It is sensitive only to this combination of dislocations and disclinations
[recall (12.19)] and not to the particular nature of the different defects.
The second term removes part of the degeneracy discussed in (12.21),
(12.22) by giving the disclinations an additional Coulomb energy. The
integration over ¢; , finally, generates a Boltzmann factor involving the
longitudinal part of the dislocation density,

i
K-K(l + ({Ya)K - K)

Ribi(k)}'
(18.125)

exp{ 28— 47r22(1<b(k))

This fixes the remaining degeneracy. As a result, the partition function
becomes

1 N2 1 B »
Z = I:E (1 - v)] W det (=V-V) Z

1h,(x). O(x))

xexp{ pam’ (1) KAt 5, V)m(x) 2B dn? ZO(x> <00

—2;3 477 Z(Vb(x))[ V-V(l - (¢4a*)¥-V)]" ‘(Vb(x))}
(18.126)

The sum runs over all three defect configurations b(x), b.(x). O(x),
independently, and no infinite overall factor appears.

The new defect energies remove the degeneracy between strings of
dislocations and single disclinations, in a way specified completely by the
higher gradient elastic energy (18.97).

Consider a single dislocation

b,‘ - 5,'26,“)( . (18127)
From (18.126) we see that it has an extra core energy,
Ecorc = _2347721)"1(0) (18128)

where ©,,(0) is the Yukawa potential on the lattice. A pair of
disclinations, on the other hand, with
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@(x)zax.x+l “5x.x=V15x.x (18129)
[which gives the same contribution to 7 = ,V;b, + 0 as (18.127) and is
indistinguishable from it in lowest gradient elasticity] has the extra core
energy
Ecurc = _ZB(€2/02)4W2P;)(1)* (18130)
where ¢'(x) is the subtracted Coulomb potential on the lattice.
Conversely, a string of dislocations along the l-axis from X to
Y =X+ n-1, say, has
bf(x) = 61‘26.\'3./\’:(9,\',.)(, - H,\'I.Y])~ (18131)

where 6 is the Heaviside function on the lattice defined in Eq. (14.170).
Equivalently we can write

bi(x) = 8>V (8. x — du.v)- (18.132)

For lowest gradient elasticity, the string would be equivalent to a pair of
disclinations at the ends of the string,

O(x) =8 .x — S v (18.133)
The pair carries an extra energy depending on the distance,
E oo = 2864 a?)477 20 (X — Y). (18.134)
On the other hand, the string has the much more involved extra energy,
Eexrs = 28477 23 (s x = 8x v)(Vo/ V)=V - V)(=V - ¥ + a¥¢?)] !
X (Vz/V‘l)(xa X)(Bx x = 8y v) = 2B4m 2w(X — Y), (18.135)
where
w(x) =V,Vo(V,\V) =V -V(=V -V + a7 '(x, 0). (18.136)

If one wants to study the full influence of the different extra energies
upon the melting process, Monte Carlo simulations of the present model
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will be necessary. Fortunately, the limiting situation of a large rotational
stiffness, i.e., of a very large €, can be dealt with analytically and we shall
do this in the following section.

18.7 TWO SUCCESSIVE MELTING TRANSITIONS AT LARGE
ROTATIONAL STIFFNESS

The present model with second gradient elasticity accommodates
naturally the possibility of melting via two successive continuous
transitions. This can be demonstrated most easily in the limit in which the
length scale €, which characterizes the rotational stiffness of the system, is
sufficiently large. Our starting point is the partition function (18.112). We
perform the sums over n;; and m;, thereby forcing the gauge fields of
stresses and torque stresses to be integer-valued (to be denoted by A;, h).
Then Z becomes

_ (l 1 — V)NIZ 1 1
41+v) Vogp*NV8aBHa®™N im

exp{—(l/w) ) [i{— (VAY =317 l‘j(\‘?,»A‘,-)]
—(a*/8B€%) Z (Vih — EkefTe‘)z] ‘ (18.137)

Let us follow the behaviour of this model from small to large B.

For very small 8, both A; and h are squeezed to zero. If €% is very
large, however, the sqeezing of the h field in the second term is relaxed
and follows an effective partition function (apart from a trivial shift of the
h field),

7 =~ {Zh]} exp {(—a2/8B€2) Y, (v,ﬁ)z} : (18.138)

This is a discrete or Gaussian roughening model {see Egs. (11.10),
(11.254) of Part I1] with Bpg = a*/4B¢>. It is known to have a continuous
phase transition of the Kosterlitz-Thouless type at Bpg = /2, (see Eqgs.
(11.11), (11.68a) of Part 1) i.e., if 8= B, is about equal to
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4B, 0% a*= 2/ . (18.139)

These approximate relation hold, of course, exactly for the renormalized
quantities B8g, Bi. The same will be true for similar approximate
statements on transition points appearing later in this section, without
being always stated explicitly. The subscript & records the fact that, in this
transition, the fields # becomes rough.

For B of order unity, the prefactor a*/88¢> is so small that the
discreteness of h becomes irrelevant. It is then a good approximation to
integrate out A as if it were a continous variable. By decomposing

Z (vkﬁ - Eké’gt‘)z

=) lexcVeth — (V-V) 1, V,4) + (V- V) 'V V4], (18.140)

we see that the energy separates into the squares of a longitudinal and a
transverse part. Hence, after the h integration, the partition function
becomes effectively

l1—-v

1+v

(V,A4,)]

i

z= ¥, exp{ ~(148) X, [;%v[(v,-&)z -

+ (@26 A,(1/ - V -V)(—V,-V,)Z,H- (18.141)

Under the assumption of a very large €, the last term can be ignored and
we remain with a discrete Gaussian vector model. For v =1 (incom-
pressible material), this takes a simple form, reducing to the product of
two identical discrete Gaussian models with a phase transition of the
Kosterlitz-Thouless type at 8 = 8,4 with

4B, =2/, (18.142)

Below we shall find the same transition once more in the dual defect
formulation of the partition function, (18.126), where it is easy to see that
the same universality class prevails also for v <1. The two continuous
transitions and their characteristic properties are displayed graphically in
Fig. 18.1.

In the opposite limit of small €, the system has only a single first-order
transition at 8= 8, 4r with
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FIG. 18.1. Schematic characterization of the three phases for large ¢, with the two
Kosterlitz-Thouless transitions (KT). The left-hand side indicates the field configurations in
the roughening representations (18.137) (=0 smooth. # rough), the right-hand side
indicates the defect excitations as deduced from the defect representation of the partition
function (18.126) [from H. Kleinert (1988)].

h=0 A =0 @#0, b #0
By =all-— —Bg~a’it?
KT
T|h#0 A,=0 O=0.b+0 T
Bi=1—> —fB,~1

KT

h#0 A #0 @=0.5~0

roughening picture defect picture

Large-£ transitions

By ar(1 +v) = 0.815. (18.143)

This is the first-order melting transition discussed extensively in the

Chapters 12-14 [see Eq. (12.35)]. Here it arises since, for small €, the

third term in (18.137) forces the vector field A; to be equal to

Al'=—¢,Vh, so that the first two terms combine to the Laplacian

roughening model, with the associated known discontinuous transition

[see Sec. 12.6]. In it, the fields & and A; become simultaneously rough.
For B far above this transition, the effective partition function is

Z= ) exp {—(alfsm'?) Y (Vih — 60 A, )2}- (18.144)
(h.A,) x

This looks like a Villain model [recall Part 11, Chapter 7, Eq. (7.29)] in
which 4 plays the role of the phase angle y and ,,A, that of the jump
number n;. There is, however, an important difference: The A’s are integer
numbers. A duality transformation following the steps (7.16)—(7.18) and
Eq. (8.31) of Part 1I shows that Z is equivalent to a sum

Z= E exp {—2,8(4?2/(13)4#2 Z b,-z(x)}- (18.145)

{b:i(x)}

Since the k’s are integers, there is no constraint V;b;,(x) = 0. But the
unconstrained discrete Gaussian sum (18.145) is an analytic function of S
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FIG. 18.2. For small ¢, there is only a single first-order melting transition at g = 1, where
i roughens or the defects @ proliferate in a background of random b, fields.

h=0  A;=0 O+0, b;#0
Buar=1— —Bo=1
first-order transition
T h#0, A, = -,V h#0 O=0,b%#0 T
BA = aszz — <_ﬁh = g/
no transition
h#0,A,#0 O~=0, b =0
roughening picture defect picture

small-€ transitions

so that there is no phase transition. If /2 in (18.144) had been a continous
variable, the ensuing constraint V,b;(x) = 0 would have led to a Kosterlitz
Thouless transition at

@162 B0 = 2, (18.146)

in which the A, fields become rough. In Fig. 18.2 we have illustrated the
properties of the two phases for small €.

The sequence of transitions can also be studied in the defect
representation of the partition function, Eq. (18.126). We follow the
model from small to large temperature T= 8"

For large ¢, the disclinations ® are frozen out and only the dislocations
can be excited,

Z = exp {—2,84172 Z bi(x)(—V - V)]b,-(x)}- (18.147)
{b,(x)} X

This is the partition function of two independent identical Coulomb gases
with a Kosterlitz-Thouless transition at 8 = g, with

4By ~2/m. (18.148)

The subscript b indicates the unbinding of dislocation pairs in this
transition, which is to be identified with the roughening transition of the A
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field in (18.142). In the defect picture, it is easy to predict the position
and character of the transition also for v <1. Then the interaction
(18.126) between dislocations can be written as

BE . = B4m(1 + v) 3 bi(x)el(x — x'),b,(x") +
28472 ), bi(x) vk (x — x');b:(x"), (18.149)

where v({” is the massless transverse Green function, V,V,/V-V_ and ¢},
the massive longitudinal one, —(8§,V-V — V,V,)/(m* — V- V). The long-
distance behaviour of v((x) was calculated in Eqgs. (1.123) and (1.124),
vl (x) w2 —(1/4m)(8;log x| + x;x;/|x}7),
v (x) W — (174m) (8, log [x| — xux/[x[?). (18.150)

Both together give the long-range Coulomb interaction energy of a pair
of dislocations,

Ei = 27B[(1 + v) + 2] log |x| (18.151)

According to what we have learned in Chapter 14 [compare Eq. (14.13)],
there is a pair-unbinding transition near

By =, 427 [(1 +v) +2]. (18.152)

For a finite ¢, the longitudinal part of the interaction (18.149) only has a
finite range =¢ and does not contribute in the critical limit. Then the 2 in
the bracket of (18.152) is absent and the transition lies at

By =2/m(l +v). (18.153)

As stated above, these approximate relations hold exactly for the
renormalized B [recall (14.19)].
For small 8 = a’/¢* the effective partition function is

~ ) exp{—2[3(€2/a2)4w22@(x)(V-V)'(H)(x)}‘ (18.154)

{00}
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It represents a Coulomb gas with a Kosterlitz-Thouless transition at
4B ta” =2/, (18.155)

This 1s the defect version of the roughening transitions (18.139). See
again Fig. 18.1 for a characterization of the phases.

For B8 of order unity, the ® and Vb, terms in (18.126) can be dropped
and the effective partition function is

) exp{—54w2(1+v)2ﬁ(x)(—v-vrzﬁ(x)}- (18.156)

{(A(x)}
This has a first-order phase transition at

B, (1 +v) = 0.815, (18.157)

which is again the melting transition of the lowest gradient model.
It corresponds to (18.143).

Consider now the defect picture for small €. Then a phase transition
might have been expected at large 8 ~ 1/€, in which 7 is frozen at zero so
that O is equal to —e,V.b(. The second and third terms in (18.126) can
be added together and give an effective partition function,

Z~ Y, exp { —2B(¢¥a?) 472 Y, b,-z(x)} - (18.158)
{bi(x)} X

Due to the absence of the constraint V;b;(x) =0, this has no phase

transition. With the constraint, there would have been a phase transition
at

a’ 11672 B, €% = 2/, (18.159)

Just as in (18.146). The characteristics of the two phases, as seen from the
defect point of view, are illustrated in Fig. 18.2.

These considerations have led to the qualitative prediction of the phase
diagram in the 8, ¢* plane sketched in Fig. 18.3 [Kleinert, 1988] A phase
diagram of this kind was indeed found in recent Monte Carlo simulations
of the model [Janke and Kleinert, 1988)], performed in the roughening
version (18.137), with the trivial prefactors omitted, i.e., the partition
function investigated was
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FIG. 18.3. Phase diagram suggested by the three known transition points. It is not clear
where the first-order transition line becomes that of the Kosterlitz-Thouless (KT) type. The
dots indicate the would-be transition (18.146), (18.159) [compare with Fig. 18.5).

T=p" h=0,4,=0,
O#0,b,#0 0. b£0

first order

h#0,A,#0
O =0.b =0
{/Z
Z,= ), exp(-BE,), (18.160)

{h A}

E, being the h, A; energy in (18.137). Since the universality class does not
depend on v, its value was chosen to be 1, to have the simplest energy.
The simulations were done with periodic boundary conditions using the
the standard Metropolis algorithm, in which trial values for A(x) and
A;(x) were chosen randomly from one above or one below the current
value at each site. The transition points were found by measuring at
various fixed €’s, first the specific heats, for an estimate, and afterwards
the correlation functions of & and A;, for a precise determination. Figure
18.4 shows the specific heat curves, with the definition c¢= T*(¢?
8T2)ln Z,./Lz, where L? is the number of sites of the square lattice. It 1s
advantageous to use 7T instead of B8 in this definition since in the
roughening picture the temperature interpretation is usually inverted
(cold 2 smooth, hot 2 rough). Then the curves allow for the easiest
comparison with the curves of the known limiting cases of large ¢*, where
we should see two rounded peaks of the discrete Gaussian model, and of
small ¢°, where there is only a single first order transition of the Laplacian
roughening model. The correlation functions which were studied are
defined as follows,

¢"(x —x") = L{(h(x) = A(x"))*)
e —x)=L{(A(x)—A(x))), i=1.2 (18.161)
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where (...) denotes a thermal average with respect to Z,, and the
w1ggles on top are averages along columns in the y direction,

h(x)= —th(x y). In momentum space, these averages are equi-
v=1

valent to a projection on the k,-axis, leading to simple one-dimensional

Fourier representations for ¢"(x) and ¢*(x), In the absence of defects,

where h and A; are continous free fields, these can be evaluated exactly

(even on finite lattices).

Let us summarize the theoretically expected behaviour of these
correlation functions, first in the limit of a large €7, where it is most
obvious. In the low—temperature solid phase, there are very few defects
and the discrete variables /1, A; can be treated effectively as massless
continuous fields. The dilute gas of bound defects manifests itself only
in a renormalization of the temperature, i.e., 8—B%. This is an
exponentially small effect, due to the finite activation energies, i.e., to the
low fugacities. The correlation functions of # and A, can then be
extracted from the energy in (18.137), or taken directly from the defect
energy (18.126). After replacing B8 by the renormalized quantity 8% and
projecting on to the k,-axis in momentum space this gives (for a = 1)

rltv
2

(x) = —28 [0a(x) + (2€3/(1 + v))o(x)],
o (x) = =47 OW), & x) = —ZBRI—;—vvg")(x), (18.162)

where the D =1 Green function are [sec (1.6.184)]

. e — 1 2
p§m) E ==
() = n=1 2(1 —cosk,) +m* ko " (18.163)

efk,,,r _ 1
r4(x) = ,Z_:| [2(1 — cosk,)]*

With increasing temperature, we run into the first transition 8" where
dislocation pairs begin to unbind. There we expect the Ai-fields to
become massive, as a two dimensional disorder version of the “Meissner”
effect In superconductivity. In an ensemble of unbound dislocation pairs,
a single pair has only a finite interaction range, due to the screening of
the Coulomb forces by the ensemble. At the same time, the & correla-
tions, which in the low temperature phase grow like (1/8)|x|?log|x|
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[recall Eq. (11A.181)]. are screened at long range to « —(1/27)log |x|.
The amplitude can be extracted from the effective discretize Gaussian
model in Eq. (18.138). Hence, after a projection onto the k,-axis, the h
correlations are

c(x) = =42 (x). (18.164)

From the defect version of the model (18.154) we see that, in this phase,
the disclinations are bound together by a two-dimensional Coulomb
potential. Upon a further increase in temperature, we run into the second
phase transition where also the h correlations become massive and the
pairs of disclinations unbind. The renormalized values of $ at these
transitions were given in Eqgs. (18.139), (18.155).

In the low temperature phase, when we plot ¢5'(x) as a function of
v$"(x) for many values of x. we expect the points to lie on a straight line
for all B8 > B,. Its slope decreases with temperature, but with a limiting
minimal slope 8% - (1 + v) = (B8¢.)~" = 2/ at the critical point 8, [see
Eq. (18.153)]. For B < B,. the correlation length (= inverse mass)
becomes finite. In the plot this is signaled by the straight line curving
downward at large distances. If the lattice size is smaller than this finite
correlation length, then the straight lines still appear straight. but now
with a slope smaller than 4/7r. By a comparative finite-size scaling analysis
of the correlation function near the transition in an ordinary discrete
Gaussian model transition (to which it reduces for £ — =) it can be shown
that using this “onset of curvature criterton™ it is possible to determine
the transition point B, quite accurately, and with very little dependence
on the finite lattice size. as long as L > 16 X 16. In this way one can
reproduce the well known transition point of the discrete Gaussian model
[compare Eq. (11.1.68b)]

Bog. = 1.354 = 0.02.

The correlation functions were measured on 32 X 32 lattices using
500000 configurations for the thermal averages. after discarding 100000
configurations for equilibration. The transition points (for v=1) are
shown in the ¢ — T phase diagram of Fig. 18.5 as open circles. The solid
lines are an interpolation of the data. The dotted tangential line has a
slope 5.4. This agrees with what would have been expected from the
approximate discrete Gaussian model (18.138), which would have a
transition at 4B8.£° = (Bpg.)” ' or T=4Bpg.t’, i.e., a slope of
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FI1G. 18.4.  Specific heat versus temperature of the defect melting model on a 16 X 16
lattice with increasing length scale of rotational stiffness €. The temperature scale is the
same in all plots. Arrows indicate the transition points which, for ¢ > 1. lie clearly below
the peaks. It is not necessary to plot the peaks for larger (-, since they follow quitc well the
appropniately rescaled specific heat curves of the ordinary discrete Gaussian model. The
data are averages over 5000 configurations, after discarding 1000 configurations for
thermalization [from Janke and Kleinert (1988)].
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4-1.354 = 5.42. The full circles show the location of the peaks of the
specific heat, B,.,x. as measured on 16 X 16 lattices and plotted in Fig,
18.4. Actually, to determine the precise location of the maxima,
additional runs were performed near the tip of the peaks with much
higher statistics. Furthermore, the finite-size scaling behavior for €2 = 0.2,
0.5. 1.0, 3.0 was studied (using lattices up to 64 X 64) to make sure that
there is no significant finite size dependence in B,... The dashed line
with slope 6.9 agrees well with the peak position of the pure discrete
Gaussian model (18.138), which has a peak position B{,’gk = 1.722 = 0.01
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FIG. 18.5. Phase diagram of the lattice-defect melting model for v = 1. The abcissa is the
length scale of rotational stiffness, the ordinate the temperature. The transition points are
determined from measurements of correlation functions on 32 x 32 lattices. In the upper
phases we have indicated the roughness of the integer-field configurations and the defects as
in Figs. 18.1, 18.2. The lower phase contains very few defects and is completely rough in
h, A;. The right-hand margin are marks for the position of lower peak and KT transition
for £ = = [Eq. (18.152)]. For finite €, the transition temperatures are lower than these, by a
factor (1 + v)/[1 + v + 2], since the longitudinal modes have only a finite range £ and do
not contribute to the critical limit of the renormalization flow [compare (18.151)].
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corresponding to a slope 4-1.722 ~ 6.89 for € >2. Not only the peak
position, but also the peak height depends very little on L, as a reflection
of the finite correlation length ¢ under the peak (¢ =~ 3a). The transition
temperatures, where the correlation length diverges, lie about 20%~25%
below the peaks. Thus, for large ¢, the Monte-Carlo data render clear
evidence for two successive Kosterlitz-Thouless transitions.

At around ¢>=1, the two peaks merge. The transition points,
however, are still well separated. While the lower transition temperature
remains almost independent of ¢ near T,.=3, the upper one moves
closer and closer to the peak location until, at around =05, a
difference is hardly detectable. Simple extrapolations of the two
transition lines suggest that they meet at around €% =0.1-0.2. Since we
know from earlier work that for £2 = 0 there is a single first-order melting
transition at 7T, = 2.45 (with an entropy jump of As =~ (0.2 per site), we
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expect the transition to continue to remain first-order up to the separation
point around €° =~ 0.1-0.2. For larger €2, it is conceivable that the lower
transition changes, at a tricritical point, to the Kosterlitz-Thouless type,
while the upper one remains first-order up to some ¢* between =0.2 and
~(.5. This observation would explain the very small separation between
peak locations and transition point. This picture is partly confirmed by
simulations at €£%=0.2. Here, a clear hysteresis is observed in the
internal energy, together with a pronounced finite-size scaling of the peak
height of the specific heat with increasing L, indicating indeed a first
order transition (with As per site remaining =0.2, as for € =0). At
£>=0.5, on the other hand, no reliable hysteresis can be observed and
the peak height depends only weakly on L (up to L = 32). However, at
this € it is very difficuit to disentangle a possible weakly singular part of ¢
from the large background contributions due to the lower Kosterlitz-
Thouless-like transition (whose specific heat peak could be just be lying
on top of the second transition).

In conclusion we see that the present lattice defect model with
rotational stiffness resolves all open questions within the KTNHY
approach of the two-dimensional melting process. It is apparently the
simplest lattice model rich enough to describe the variety of different
melting processes observed in recent experiments with liquid crystalline
material.

18.8.  APPLICATION OF ¢* CRITERION TO LENNARD-JONES
AND WIGNER LATTICES

With the results of the last section it is now easy to understand why the
D =72 Lennard-Jones crystal at low coverage has always been seen to
undergo a clear first order transition, experimentally, (see Figs. 14.6—
14.12) while the Wigner electron lattice has a sharp but continuous
transition (see Fig. 14.15), with the stiffness constant K collapsing near
the universal Kosterlitz-Thouless value (see Fig. 14.13). The reason lies,
as we shall now demonstrate, in the different values of €2 in these
systems.

According to Eq. (17.86), the ¢* parameter occurs in the dispersion
curve of the transverse sound waves as follows,

w (k) = uk?(1 + €k> + . ..). (18.165)
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For a lattice held together by a central potential ®(x), the transverse
frequencies w’7(k) can be deduced from Eq. (7.140). They are given by
the eigenvalues of the matrix

Vi(k) = ;0 [1 — cos(k - x)]8;9,D(x), (18.166a)

divided by the atomic mass M. Alternatively we can use the Fourier
transform of the potential ®(k), and have the formula [compare (7.161)]

Vi(k) = % Y. [(e + k), (¢ + K),®(c + k) — c;c;D(e)],  (18.166b)

c#0

where ¢ 1s a reciprocal lattice vector. For an m, n Lennard-Jones lattice
with a potential

d(x) = de[(a/r)" — (a/r)"], (18.167)
the x-space representation (18.165a) converges so rapidly that in the sum

over x, the nearest neighbours almost give the entire contribution. We
therefore calculate

B,GI»CD(X) = Aﬁ,, + Bx,'Xj, (18 168)
with
A=®'lr, B=>"r>—®'r, (18.169)

and expand

Vy(k) = ) [(x 'zk)_ - ("2':)— + ] (A8, + Bxyx). (18.170)
x#0

The most stable lattice 1s of the triangular type, with lattice vectors

1 V3
= € — =6, — 6 ) 18.171
X a()( 175025 _) (18 )
3, :
and cell “volume” v = ——aj (see Part I, Appendix 6A). The sum over

2
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the nearest neighbours involves the six vectors x = a,(cos ¢,,, sin ¢,;) with
the azimuthal angles ¢, = n7/3. Over these we have to perform the
angular averages

{((x-k)), ((x-K)"), {(x-K)°), ... (18.172a)
If the rotation symmetry were perfect, this would give

§k4 ik‘“, (18.172b)

Kk 16

1
2
With only the sixfold symmetry, the first two averages are still correct,
but the third (and the higher ones) depend on the azimuthal angle ¢
of the momentum k = |k|(cos¢. sing). [Notice that in (k-x)® this
dependence disappears again in the contribution of the higher lattice
vectors x since there are more angles ¢, to be averaged over.] The ¢
dependence of ((k-x)°) is

_ 10+ cos(be¢)
32

((k-x)") (18.173)

Since the deviations from isotropy are at most 10% we shall ignore them
in the following. We can then immediately calculate (using natural units
with o = 1. and k = k/|k|).

Vi(k) = (VK + VEIONS, - kik) + (VPR + vk (18.174)

with

. , 3e
V) = 6(Ar4 + Bri16) = ‘55 [m(m = 2)r™" = (m < n)],

h]
Er-

Vi = =3Ar'32 = Briiod = —=[m(m = r~" = (m < n))],

R4 3 9 =
VP = 6(ArH + 3BrY16) = - [m(m + 213)r™" — (m <> n)],

“

Ser

16

ViY = 2347932 = 2 [m(m + 4/5)r " = (m o n)]. (18.175)
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FIG. 18.6. The length scale of rotational stiffness €- (marked “‘transverse™) as a function
of the lattice spacing a, for a (12. 6) Lennard-Jones crystal and for Wigner lattice. The place
ro indicates the minimum of the Lennard-Jones potential. The effect of more distant
neighbours places the equilibrium value of a, about 1% below r,. The figure shows also the
length scale €% of the longitudinal branch [recall (17.86)].
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Each expression is to be evaluated at r = a.
For the most common set of parameters (m,n) = (12,6) we find from
the transverse coefficients, the parameter €7:

an ﬂu/8

(18.176a)
301 — ab/s

e=vivy =
This 1s plotted in Fig. 18.6.
Although not of direct concern here, we also give the parameter €' for
longitudinal modes (see again Fig. 18.6)

1 _ 5_1a()

, Vi ey 192
('~ =— = 18.176b

1961()

In absence of an external pressure, the equilibrium value of r lies very
close to the minimum ot the potential, (18.167),
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Table 18.1.  Values of the lattice sums §,, for the triangular lattice
for various m values. For large m one can use the lowest two
neighbour correction to S, $4° = | + /3"~ + 1/2 tabulated in
the second column.

m S, Shre " S, Sapw

4 1.28510 1.17361 10 1.00524 1.00509
5 1.12697 1.09540 11 1.00292 10286
6 1.06264 1.052606 12 1.00164 1.00162
7 1.03254 1.02920 13 1.00092 1.00091
8 1.01741 1.01625 14 1.00052 1.00032
9 1.00949 1.00908 15 1.00030 1.00029

ro = (m/n)"" . (18.177a)

1.e., for the (12.6) potential at (see Fig. 18.6)
ro= 2" (18.177b)

If the sum over all neighbours is included in minimizing the energy, #, is
decreased to

ro = (mS,,/nS, )", (18.177¢)
where §,,, 1s the sum
dy 1
sz_z T 1t 18.178
6 x#0 |X| ( )

The values are tabulated in Table 18.1.
For the (12.6) potential the correction is 0.9902. At r, = 2"® we have

1/6

(7= ——— = —(.0468. 18.179
() 24 8 ( 8 )

Extrapolating our Monte Carlo data in Fig. 18.5 to negative values we
conclude that a Lennard-Jones lattice must have a weakly first order
melting transition. Monolayers of rare gases adsorbed on graphite under
no external in-plane pressure are expected to have this property.
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Equation (18.176a) has an interesting feature. At larger ay, near
Aax ~ 370~ 1.3077 ~ 1.165r,, i.e., at a density 36% lower than the
density at zero external pressure, the size of —¢? increases dramatically
(see Fig. 18.6). The theory then predicts a strongly rising transition
entropy. It is well known from Monte Carlo data and measurements on
rare gases adsorbed on graphite that a lower coverage of the substrate is
accompanied by an increasing discontinuity at the melting transition [see,
for instance, Figs. (14.3), (14.5)]. Moreover, at ay ~ .. ¢’ diverges.
This may be interpreted as a signal, within this simple theory, for the
onset of the gas phase.

Let us now turn to the Wigner lattice. Here @ = e¢*/r and the lattice
sum (18.166a) converges very slowly. In the sequel, we shall use natural
units with the charge e, the electron M, and the lattice spacing a, all
equal to unity. The eigenvalues of V;(k) will then be directly the squares
of the eigenfrequencies ® measured in frequency units wj = e*/Map.
The convergency is improved by the following procedure, invented
by P.P. Ewald in the 1920’s. Consider the characteristic lattice sum

1 : . : i
) o le’k"‘ with an arbitrary displacement vector u. Set R = |{x + u
“Ix+u

and rewrite this sum by means of an auxiliary integral as follows

/KX 1

e * w
—_ dff_l’Q —1R*+:k-x' 18.180
Z R \/;Tf() ;e ( 80)

X

For finite ¢, this sum converges now very fast. The strongly convergent
region of small ¢ is treated using a generalization of Poisson’s formula
(6.37), Part 11, valid for arbitrary periodic lattices in I dimensions with
cell volume v,

Eef"kz(zw)DZa(k—c), (18.181)

X v

where the right-hand side runs over all reciprocal lattice vectors [recall
the definition in Part I, Eq. (6.29)]. Multiplying this with the Fourier

transform f(k) = Y} f(x)e ™ * of an arbitrary function f(x) and performing

the sum (1/N) Z , the formula (18.181) just reexpresses the well-known

identity, k

Y Fx) = Y T (18.182)
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—IR + ik -

For the special case f(x) = ¢ *, this gives in two dimensions,

E ok E{E pic U o=k + el (18.183)
l?
X

C

While the left-hand sum over lattice vectors converges fast for large ¢, the
right-hand side over reciprocal lattice vectors does so for small t. We
therefore choose an arbitrary separation parameter for the ¢ integration,
say £, and decompose the lattice sum into two dual terms,

- 1f* , " v%ff y S
__plkx — dtfll_ —tR +rk-x+ d[[—lfl —(k+c)/4f+w-u'
‘L);Re \/;T £ ge vt 0 c ¢

(18.184)

After a rescaling of r by &, the sum on the right-hand side can be
expressed in terms of the so-called Misra functions

¢N”=f detie = (18.186)
1

They are related to the incomplete I" functions,

'(a, 2) :J der™ e, (18.187)

0, (2)=(2)" 'T(n+1, 2). (18.188)

They can be expanded as follows,

Zk+n+l

Ki(k +n + 1)

wn(Z)(Z)'”"[TTH +1)- 5 (=) ]' (18.189)
k=0

Then (18.184) becomes

1 . . 1. — k+¢)\
ZEF’R‘X-——“ \/8/#2 (,D_l/g(ERz)er'x‘Fz_ W/EE(P_I/Q(( 4 C) )e'k'“.
X X 4 c €
(18.190)
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For a triangular lattice, the reciprocal lattice is also triangular and has the
vectors

27 1 2
L P -t § 18.191
¢ ao ((l \/§Cl \/§C2> ( 8 )

There exists then a particular convenient choice for the parameter £ with
the property that it makes the two sums in (18.190) for k=0 and u =0
completely symmetric, namely,

e =l (18.192)

Then the arguments £R” and ¢*/4¢ of the Misra functions run through the
same values,

eg)— = 2m/V3)(t7 — €65 + £3),

2 2 2 ! l 2 2 ) R
g= 2 2T l—(ﬁ-—cﬁ ) = QaN3)(e} + e+ ).

de ay 4 3 V3
(18.193)
Hence we can write formally
1 1
Emz—rz- Y e (). (18.194)

If this relation is to make sense. we have to remove the singular x = 0 and
s = ()} pieces on either side in (18.190). Both x =0 and ¢ =0 are still
admissible as long as u # 0 and k # 0. since then the Misra functions ¢_ >
are finite. In order to treat the limit u— 0 we remove the x=0and ¢ =10
terms on both sides and write,

1 1 . 1 2
E —e* Y= ——+ Velme_p(ew) | + =V ale g p(k"/de)
x#ﬂR lul t

. 1 k+e¢)*\
+ Veln E ¢ _1p(eRYe*+ -V rle E @1 (( © )e'“'“.
r

x#0 cF0 de
(18.195)
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Then we use (18.189) and deduce the limit of the Misra function
(,9_1/2(2)—> V7! —2+2Z/3_22/5 +0(Z%) (18196)

This shows that for small u— 0, the quantity inside parentheses in
(18.195) is regular and we have, for ¢ = #/v, u =0 and small k

I 47 1
Z e k 0 \/—, (Z ¢-12(8) — ) L_’F (18.197)

x¢0|x| S#0

where the sum over s is understood to comprise the correct multiplicity of
each value (18.193).

As an example for the effectiveness of this resummation procedure,
consider the energy of a single electron in the Wigner lattice (in units
e =1)

E, =) —- (18.198)

In order to obtain finite energy we have to add a neutralizing negative
background charge which gives an additional energy

1 d*x 4ar 1
E, = —— lim kex — |4 18.199
b l’kLo |x| € v klinok2 ( )

The total energy E=FE,+ E, can then be directly evaluated using

formula (18.197) since the background energy just removes the singular
1/k* piece. Hence

E= “\"ﬁ 2 ( Z @ 12(5) — ) (18.200)

s+

At the nearest neighborhood position,
s, = 27/V3, (18.201)
the Misra function has the value

¢ 1n(s1) = 0.065790. (18.202)
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Including the six neighbors, this gives the lowest approximation to the
energy (to be multiplied by e*, for proper physical units)

]

E=-3.921052 —-
Ve

(18.203)

A full summation over all s in (18.200) changes this very little to [see
(14.149)]

1
FE =~ —3.921034 —=- 18.204
Vi (18 )

Thus, while the sum over Coulomb energies converges very slowly in
x-space, the representation (18.190) with & = =/v is strongly dominated
by the nearest neighbors in both, the direct and the reciprocal lattice.

After these preparations we are now ready to calculate the parameter
¢* for the Wigner lattice with the help of formula (18.195). We rewrite
the x-sum in (18.165) as

v, (k) = Vi(k) + Vi(k) = Velm ;0[1 — cos (k- x)];0,¢_12(ex)
(k + ¢)’
de

+£x/% Y[k + o)k + ), — ;¢ oo ( ) - (18.205)

We expand the two sums in powers of k up to &}, arriving at

Vi(k) = Velm ), [_’i_"(k -x)* - z%(k x)*. ] [47x%; @32 (£x7)

x#0

- 286,—,-(,01/2(8)(2)], (18206)
2 _ 2 2
V?f(k) = 1 Vle Z {(k+ C)i(k+c)j [‘Plfz (C—) - (%C_k—t!‘{“) Y—_12 (“C_)
v c 4e 4e 4e

1 A\ 2¢-k+ k*\* c?
+ ...+ z‘Pm (4_8) (T) ] —GGY_12 (Z;)} » (18.207)

where we have used the identity

_QD:I(Z) = an—O—](z)- (18208)



18. ENERGY OF DEFECTS IN SECOND-GRADIENT ELASTICITY 1315

Incidentally, all higher Misra functions in (18.207) can be reduced to the
lowest one, ¢,,-(z), via the iteration formula,

1
¢, 1(2)= ;[(H + D, (2) +e 7). (18.209)

When summing over all x, ¢, the only (small) anisotropy arises from
(k-x)4x,-x_,- and (k-¢)'c;c; for the nearest neighbor x, ¢ vectors. As
before in the Lennard-Jones case, we shall again use the isotropic
approximation. Expanding V;; (k) in powers of k,

V,(Ky=VIk + vkt + (18.210)

we find for € = /v, keeping only the nearest neighbour contributions,
from the x sum (k; = k./|k|).

> 1 1
V( )\ \/l— { (5 +2k k )S (Pv,/v(S) 6,,5'@]/')(.9):' (18211)

R I 6 1 ~ 7
V,(,4) T Vede 24 [(5 + 4kikj)53§03/2(5) - 331‘;‘52@1/2(5)] - (18.212)

The ¢ part of the sums (18.207) contributes first from ¢ =0 a purely

longitudinal term,
k4
=2k 4+ —+ . ) - (18.213)
6be

The first term is the origin of the incompressibility of the Wigner lattice,
[recall Eq. (14.151)]. The sum over the nearest neighbor vectors on the
reciprocal lattice gives

- i
(c=0) _
Vij (k) - l’ {

C 1 52
VJ(JZ) ‘\7: {k k;‘P 12(s) — (8 + 4k k; )2<P1/2 + (8, + 2k;k )Z‘P?»/z,

.16
V:§'4) \/548{ ktk]‘Pl/2(S) + (61] + 121‘ k ) P30

1 ~ ~
iy + 6k .k ) ‘PS/z(S) + ZI_'(SU‘ + 4k1k;)33¢7/2(5)}' (18.214)
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Projecting out the transverse parts gives

2

1 Ky s
Vgg) = W() -2 I:—'2‘<P1/2(5) + Z‘PB/Z(S)] ’

1 6 3s 3
Vi = Vole [(24 e12(8) — 24901/70))

+ (4<Pm(s) s —@sp(s) + 24(,07,7(5))] (18.215)

Inserting s = s, we find, after factorizing out the standard frequency

2 _ MTZ“ — \/;2 wj (listing x and ¢ contributions separately),

(Up

V¥ =2-0.0181 = 0.0362,
v = —0.000478 + 0.000252 = —0.000226, (18.216)
Thus, the transverse frequency spectrum is, in proper physical units,
wr = w;[0.362(kay)” — 0.000225(kay)* + . . .]. (18.217)

This implies the following value for the angular stiffness parameter (in
units of a)

= vV = —0.00622. (18.218)

Since the dispersion curve of the square lattice in the simulations in Fig.

1
18.5 has a spectrum 2 — 2cosk = k? — Ek4’ this value of ¢* corresponds

to a value of £? in the lattice model of €% + 1i2 ~ 0.1. In this neighborhood
the single first order melting transition is about to split into two
Kosterlitz-Thouless transitions. The specific heat curve should therefore
have about the same shape as that of the lattice defect model in the first
of Figs. 18.4, i.e., it should look similar to a A transition in superfluid
helium. This 1s indeed what was observed by Hockney and Brown in 1976
(see Fig. 14.14). Near the splitting point, the elastic stiffness K® at the
melting transition i1s expected to have the universal Kosterlitz-Thouless
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value (14.157). This is seen in the Monte Carlo simulations in Fig. 14.13.
For completeness, let us also state the longitudinal coefficients,

Vik) = Vameivk + V2K + viOrt (18.219)

6 s 3, 1 5 3
Vit = T 5t 5o — 2+ { @ 12(5) — S5@1n(s) + S5%eya(s) ) ¢
Vel \2 4 3 2 4

6 1 3 5 1
V("') _ 2 \ - — 3 5 —
VAP {(245 27 ag8 "”-*f-) *9
13 7, 5
- (‘PIQ(S) + IS‘P3/2(S) - ZSWPSQ(S) + 2_45‘3@7/2(5))} ’ (18.220)

where we have listed separately the contributions of the sum over x,
c =0, and the sum over ¢# 0. The first term gives the well-known
anomalous contribution to the longitudinal frequency,

, € *2 )
w, = %/1" Vadmelvk = eﬂl—’ﬂ-k = wykay, (18.221)

which is responsible for the incompressibility of the Wigner lattice [recall
Eq. (14.159)]. The term V}” contributes to the longitudinal frequency

w2 = @2(0.0809 — 0.2962 + 0.0336)(kao)® = —0.1818(kay)?,

wi? =~ w2(—0.0057 + 0.0068 — 0.0004) (kay)* =~ 0.0007(kag)*. (18.222)

Hence, the parameter €’2, defined in (17.86), has the value
€7 = ~0.0038. (18.223)
Notice that up to order &, the frequency spectrum is given by
w7 = w;0.362(kay)’.  w} = wi(kag) — 5w, (18.224)

in agreement with Eq. (14.151).
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CHAPTER NINETEEN

DISORDER FIELD THEORY OF
DISLOCATION AND DISCLINATION
LINES IN THREE DIMENSIONS

19.1. THE PARTITION FUNCTION OF GENERAL DEFECT
LINES IN THREE DIMENSIONS

The interaction energy given in (18.59) for defects in higher gradient
elasticity puts us in a position of developing a disorder field theory which
distinguishes the two types of defect lines. For this we extract some finite
self-energy from the dislocations and disclinations in the Boltzmann
factor,

e—(ﬁ/.})-lw! VelCa @y + z‘(.)(-_),%)' (19_ 1)

The remaining substracted energy can again be brought back to the gauge
field formulation. In this way we arrive at the energy expression

1 1] - 1 'y v ry az ! !
?(Ecl + [ Eine + Eger) = 47;2)‘: (Uij - m(mz) + g‘g‘jg (8175 + 8,743
— 2mi Z (Ag@e + hyOy)
+ %34172 Z (co@f + c@(:),-zj , (19.2)

1319
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where the primes indicate a modification of the elastic energy by higher
gradients to compensate for the added last term in (19.2). As long as we
are interested only in structural properties we do not have to write these
terms out explicitly. (The procedure of Section 12.4, Part II is
applicable.)

When brought to the above simple form, the construction of a disorder
field theory becomes rather straightforward. Following the same steps as
those of the XY model, we first observe that the sum over defects

Lacr = Z 3\‘301,, +£,4,0,, 3?{ ©,,,0
{&p,. (T)f,}

exp{_12_34772 2 (Catiy + co®2) ~ 2mi 33 (A + h”@“)}’
(19.3)

can be rewritten [up to the trivial overall factor A= (2mgc,) N>
(2mB,,) "] as the partition function of a lattice model of the Villain
type [compare Section 13.3, Part II]

chf Z Z[f d% X) ’ daI(X)]

{Fei i, } 27 —

11
XCxp{ 28 i [ Z(V('}’, Ay — 2w )

()x

+_Z (V( — Eik Yk _hu“z‘”’ﬁu)z]}' (19-4)

The proof proceeds as usual by introducing auxiliary fields a,;, @, to
linearize the squares,

dec = L1 -+ V2nldnBe, = V2m/412Bee
. Z HU dy,(x)[_ dﬁ(x]

X eXP{_gdf’Tz Z (ca aizj + C(%)@)izj) + 27 Z o (Veyi— A — 2miy;)

+ 2mi Z (“)n‘(vf-&' — Eeik Yie — My — 277"’7%:')} ' (19-5)
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Now we perform the sum over 7,;, /i1,; which makes «;, ®; integer say
@;;. O. and the integrals over vy, §; which enforce the conservation
laws, V, &, + €404 =0, V,0,,=0. Thus (19.5) is indeed equal to
(19.3).

19.2. COSINE FORM OF THE PARTITION FUNCTION

The next step consists in approximating the expression (19.4) a la Villain
by a model of the XY type involving cosines rather than periodic
Gaussians. Recall that the original Villain approximation went in the
opposite direction,

PBOTO < R( ) Z o (BVIHTO = 2y (19.6)
"

where

R(B) = L(B)VZmBy. By =1/(2log(L,(B)/IN(B))).  (19.7)

In Section 9.3 we encountered the same problem and found it useful to
define the inverse operation

Z o BUTO 2y Ry (B)ePr e, (19.8)

H

where B,-:(B) is the solution of the equation

B = —1(2log(Li(Bv-)/1o(By 1)), (19.9)
and
Ry 1 (B) = V/(log Iy(By 1) - V2mp). (19.10)

With this notation we can approximate (19.4) by"

“Actually. we had seen in Section [3.4 that a much better approximation is given
by replacing the sccond cosine by the mixed energy cos(V, 8, — ey, — b)) +
8cos(2(V, 8, — erx Yo — ;) where 8 is determined by Eq. (13.101). We shall omit the
sccond term, for brevity.
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| Y 1 3N1_[
Zar=VRy N\ 75| Ry | T—=-—
det v (477—3%) v (4WZBC(~)) x. i

X exp{ﬁu Z cos(Vey, — Ay) + Em Z cos(V 0, — vy — hh)} '
(19.11)

f” dyi(x) [~ d8,(x)]

oy 2T J_. 2m

where

_— | = 1 _
B. = (47Tzﬁ(‘(w)v E Bo = (47723%))%]. (19.12)

As a third step we re-express the exponent in terms of the pure phase
variables U;(x) = e™™, V,(x) = ¢'*"™ as follows

BuRe ) U(x)Uj(x + €)e ™™ + By RG(E V(x) Vi(x + i) e
X. 1. ¢ x.i
+ Z V,(x) V,-';'(x + g) U}f(x) o thax)

X
frk = 123,231,312

+ ) Vi(x) V) (x + €) Ui(x) e”‘“""") . (19.13)

X
Fik = 213321132

19.3. DISORDER FIELDS FOR DISLOCATIONS AND
DISCLINATIONS

The disorder field theory can now be obtained in the usual way by
introducing a pair of complex fields u;. «,. v;. A; via the identity

= ix d “+
+ Cl’,‘da,‘ _ . .. . "
f dllidll,' f _7—-16 (12Wexj wy + c0) + (172Ma u, + ¢.c)) — 1‘ (1914)

—_

and a similar one for v;, A;. With these the integrations over the phases
v,(x). 8;(x) can be done trivially, giving associated Bessel functions
Io(jey]). Io(JA;]). In this way we arrive at the partition function [ " =
N[Ry (1147 Bc, Y’V Ry (1/47%Bce) ]
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- 7 dajda) * o ddN]
Zger =N dudu} | 2L v} f dA;dA;
! HU e f w,Itzm')-hl,U_f"” ’ _,-x(zm')z}

X exp {Ba Re Z up(x) u; (x + €)e

x. i ¥

+ BoRe (E 0, (%) 0] (x + i) e

X, 1

R TOEHCER PP

X
tik = 123,231,312

+ E U,—(X) U,T(X + €) uk(x) e‘hn(x))

fik = 213,321,132

1 . 1
- ‘2_ E (Of," U; + C.C.) - E Z (A," v; + C.C.) + E lOg I[](|a,-|)

+ . log 1()(|Af|)}- (19.15)

It describes the fluctuations of dislocations and disclinations under the
effect of external stresses and torque stresses carried by the gauge fields
Ai(x), hg(x).

The final total partition function for defects and stresses with higher
gradient elasticity is then obtained by multiplying this expression by
the Boltzmann factor of the stress energies and integrating over all stress
gauge fields.

An important feature of the field energy is that, as a consequence of
the defect conservation law V,@; + £, @4 = 0, there is now a coupling
of the two types of disorder fields with each other, through the cubic
terms vv’u. These terms have the capacity of making defect proliferation
a first-order process even in the absence of screening effects. We recall
that in our initial qualitative discussions in Section 8.5 we had identified a
simple mechanism for driving the melting process to the first order. This
mechanism was based on the Meissner screening of stress in the presence
of dislocations which, in turn, liberated the disclinations and opened up a
new reservoir of entropy. Here we find a further driving mechanism to
achieve a this. It is the coupling of dislocations with the antisymmetric
part of the disclination density.

In order to see this let us set the stress fields equal to zero and study
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the mean fields alone. Giving all components an equal real mean value,
the free energy of the defect system 1s

—Bfaet ="Ea9uz + 39(3 + 6u.)v2 — 3au — 3\v
+ 3log Ip(a) + 3logIy(A). (19.16)

In the absence of disclinations (v = (), the dislocations by themselves
would have an energy

—Bfuisioc = Ba 9u? — 3au + 3log Iy(a). (19.17)

This has the same form as the mean field energy of an ordinary XY model
which has a second-order phase transition at [recall (5.28), (5.29) of Part
11}

B, = 1/3. (19.18)

Close to this, (19.17) has the Landau expansion [recall (5.31) of Part II]

— 1 1 1{ 1 1
_ar. 2 _ L2 alagl 2 2 g} 2ottt
delSIOC 3{3601” au+4a 64a} 3{ 4(3Ba )0! 6404}
(19.19)

The second order character of the phase transition is physically under-
standable since, with ®, =0, the dislocation density a, forms three
independent sets of closed dislocation lines, just as though there were
three types of independent vortex lines in superfluid “He, each of them
proliferating in a second-order phase transition. Consider now the dis-
clination part and let us suppose, for a moment, that Bg is of the same
magnitude as B,,. Then we see that if B, = B¢ is large enough to make the
dislocations proliferate, it will be too small by a factor 3 to do the same
thing for the disclinations. Only when u increases to order one, can v
become nonzero. At fixed 8,, Bo, i.c., at fixed temperature, fyo; of
(19.16), when considered as a potential for disclination fields v at varying
and fixed u has a second-order phase transition. We had observed before
that this type of coupling between two second-order transitions can
generate a first-order transition (see Figs 8.2-8.4).
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19.4. TOWARDS A QUANTUM DEFECT DYNAMICS OF
MOVING DEFECTS IN TWO DIMENSIONS

In two dimensions, there exists no comparable disorder field theory since
the defects are pointlike. The situation changes, however, if quantum
effects are included. Then, the points as a function of time describe orbits
which are world lines in spacetime and these do allow again for a proper
disorder field theory. In fact, in this way it is possible to solve an
outstanding problem of second-gradient elasticity and defects, namely,
the construction of a theoretically consistent dynamical quantum field
theory of defects, which might be called quantum defect dynamics, in
analogy with the quantum field theory of photons and electrons, called
quantum electrodynamics, and with the quantum vortex dynamics dis-

cussed in Chapter 14, Part II.
The desired quantum field theory in 2+ 1 dimensions is, of course,

closely related to the three-dimensional theory developed in the last
chapter. The matn difference lies in a reinterpretation of one of the three
spatial axes as a time axis, and in the anisotropies of the elastic and
defect energies associated with space and time directions. After imposing
the appropriate modifications upon Eq. (18.2), the elastic interactions
between a given set of moving plastic distortions and rotations in motion
are controlled by the action

l '} 1 ¢l 2
A= jd3x[(1/2)(a(_)ui — Bb)* + EL(BUW ) Z(aiuj + a;u;, — B — Bh)’

A
= 5@} — B = 2090 — x7), (19.20)

where x(i =1,2) are the space coordinates and x° is the time (the
modified x*). The quantum partition function of elastic fluctuations in the
presence of an arbitrary given defect configuration is

Zges = f@zu,-(x) exp [(i/h) o). (19.21)

For simplicity, we have used natural units in which the transverse sound
velocity ¢, = (u/p)"? and the shear modulus p are both equal to unity.
The constant € is the length scale of rotational stiffness in second-gradient
elasticity. The quantity ¢ is the density of inertia for the local rotations.
As before, we have omitted possible gradients of the strain tensor since
they produce no qualitatively new structure.
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In the continuum, the plastic quantities B%,,, »/ (1 =0, 1, 2) are given

by

.{;(x) = 5!(8)([7] o ngrXr)
w](x) = e400:8% + &7, &7 = 6:(5)12,
B{;,(X) = — 0.5, (8)(b; — ¢, x,)
x0(X) = 4 00Bhe + O, @b = =8 (812, (19.22)

where b; are the Burgers vectors, (2 the Frank scalars, and § the time-
dependent Volterra cutting ‘“‘surfaces” which, in two dimensions, are
really lines. They move through space with the velocity v,. The §&-
function 6,($) is defined to be singular on S and to point along the normal
vector. Since S is a line, we may also write §,(S) as —¢;6;(S), where 5,(5))
points in the tangential direction, §,(S) = J ds(dx;/ds)8(x — x(s,1)). We
shall keep the first notation, however, because of its close analogy with
the three-dimensional situation.

The stresses and torque stresses are introduced by taking (19.21) to the
canonical form

z= f D) f D 0 (x) f D w(x) f Dr,(x) f Dp, f D 7 exp [(i1) S cananical

1 1 5 1 s, 5 N
Lg/camonicnl = fd;x{[_ip; - El’ T - Z[(S)-hif - (V/(l + v))(sff(] + (1/8{)_)T;J

X p,-(anu,- - ‘(’;,) + Tr(a(]w - d)ﬁ)

~ oy{du; — g0 — {;) — {80 — (25':'))}
EJ:{(,( +LQ/ml (1923)

where the elastic energy contains only on the symmetric part &j of oy.
The integration over the antisymmetric part enforces the identity of w and
(1/2)e;0,u;, modulo the plastic part (1/2)e;8%. Integrating out u;(x) and
w(x) yields the dynamic defect conservation laws

6,-0',-]» = agpj, a,'Tj = 6(,71' — Ex¢ Oy (1924)



19. DISORDER FIELD THEORY OF DISLOCATION AND DISCLINATION LINES 1327

They can be fulfilled by introducing the time-dependent stress gauge

fields or phonon gauge fields, A;, H, c;, dj;:
o = gikakAj + doCijs pi = 9icij,
T, = kaé‘kH - A,’ + 8()(1,-, m = B,d,- + E,—J,—C,-j. (1925)

The gauge transformations which leave these decompositions invariant
are somewhat degenerate, due to the reduced dimensionality of space:

A, > A+ 9,€+ dyA;, H— H + 3y€, (19.26)
C;j—> Cij — Ei O Ay, di— d; — €0, &+ A, (19.27)
It is useful to introduce A; = g;c;, H; = g;d,, so that (19.27) becomes
Aj— A+ A, H,— H; + 0;£+ g;¢ Ay (19.27')

Inserting (19.25) into (19.23), the interaction with the defects can be
brought to the form

A i = J.dzx[Ai(Ekjak 5 — F) + Heyddf

—Ayei (908 — 9Bl + e00) — Higi (09 — 8:09)]

The sources

— ) 4 _ P
a; = £4;0, B85 — o], O = g4;0r ',

ij = &ui (80[3{} - afB(é} + 8(,'(151()1)» S; = & (304’7 - af'ﬁb{)}), (19.29)

are identified with dislocation density, disclination density, and their
respective currents. Inserting (19.22) we find explicitly

a(x) = S(L())(b; — Qe;,x,). O(x) = 8(L(t)Q,
J5(x) = =0 8Ly — Qeyx), Six) = =0, 8L, (19.30)
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where L is the boundary “line” of the Volterra cutting “surface” S which,
in two dimensions, consists of the two end points. The function 8(L) is
positive on one end point and negative on the other. The densities and
currents obviously satisfy the conservation laws,

E),J,-j = 6(,aj- - 81‘,'5,-., 8,-.5} = 8(,(9. (1931)

These are necessary to ensure stress gauge invariance under (19.26) and
(19.27").

The plastic quantities in (19.29) can be subjected to defect gauge
transformations which correspond to changing the shape of the Volterra
cutting “‘surface™ at fixed boundary. Indeed, under S— S’ we find that
5,(8") = 6;,(S) — 9;8(V) where V is the *“‘volume” (here area) over which
the surface § is swept. From (19.22) we see that under such a change

= B+ N~ e;M, ¢f— &+ oM,
B&i— BE; + dyN;, dhh— b + doM, (19.32)

where M = —8(V)2, N,= —8(V)(b, — ¢,x,). These transformations
obviously preserve the defect currents (19.29). Separating out some self-
energies of the defects as in (19.2), we arrive at a partition function

Z = f DADHDA;DH D" [A,, H, A;, H;]exp (é Lsz{;)

1

X exp ;
i

fd‘}x(A,‘a,- + H@ — A,:j.],‘,' - H,S,))
-

i 3 ] b 2 1 2 2
- - - -  —— T — n M 9.33
X exp — P fd x(zgl {a; JU) + 283(6 S; )):l (1 )

where /{ is the quantity in large square brackets of the action (19.23),
expressed in terms of the gauge fields, but modified at short distance, so
as to separate out the core energies in the last line of (19.33). The symbol
®PP" denotes a gauge-fixing functional for the phonon gauge fields.

The defect partition function (19.33) is the analogue of the Maxwell-
Lorentz theory of the electromagnetic field around the world lines of an
ensemble of electrons,
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1 :
Zy = J‘—@Au(bph”"[A#] exp (Ifi—fd‘*xFﬁu) exp (é[dt(cp — A,-x',-))
X exp (—l%fdr(l — x‘z)”z) : (19.34)

In order to turn (19.33) into the desired quantum field theory of defects
and phonons we put the system on a square lattice with unit spacing
a = 1. Then the plastic quantities become discrete. Rescaling u; by 27/a
the plastic distortions 8% = 2mn,; represent the jumps of the displacement
variables u; across the lines, thus parametrizing an ensemble of Volterra
“surfaces” §; while ¢f = 27m, are the jumping “‘surfaces™ of the rotation
angle. Taking a nonzero lattice spacing also for the time variable (which
is sent to zero at the end) the surfaces perform hopping motion as a
function of time.

The result is a theory of moving defects of the same form as in Eq.
(19.15), with the only difference being the anisotropy of the space
and time directions, the absence of wusy(x), r((x) and A,;. A3, hy,
hy(€, i=1,2), and the following replacements of the stress gauge fields

A3,'—)Aj, h_?,g—““)H, h’f?,_)H(‘

The fields A;(i, j = 1,2) are the same as before. After completing the
modified partition function (19.15) by the stress partition function (19.23)
we obtain a fully fledged quantum defect dynamics of moving dislocations
and disclinations in 2 4 1 dimensions. For more details, the reader is
referred to the original papers quoted in the Notes and References. So
far, this quantum field theory has not been studied in any detail.

NOTES AND REFERENCES

For the construction of a field theory of Quantum Defect Dynamics, see
H. Kleinert, J. Phys. A19 (1986) 1855, and Int. J. Engng. Sci. 23 (1985) 927.



