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The modern physical developments
have required a mathematics
that continually shifts its foundations.

P.A.M. DIRAC (1902-1984)

Preface

The theory presented in this book has four roots. The first lies in Dirac’s seminal
paper of 1931 [1] in which he pointed out that Maxwell’s equations can accommo-
date magnetic monopoles, in spite of the vanishing divergence of the magnetic field,
thanks to quantum mechanics It is always possible to create a magnetic field emerg-
ing from a point by importing the field from far distance to the point through an
infinitely thin magnetic flux tube. But it is only due to quantum mechanics, that
such a flux tube can be made physically undetectable. This is true provided the
famous Dirac charge quantization condition is fulfilled which states that all electric
charges are integer multiples of 27hc/g, where g is the total magnetic flux through
the tube. The undetectable flux tube is called the Dirac string. From the endpoint
of the string, magnetic field lines emerge radially outwards in the same way as elec-
tric field lines emerge from an electric point charge, so that the endpoint acts as a
magnetic monopole. The shape of the undetectable string is completely irrelevant.
It is a mathematical artifact. For this stunning observation, Pauli gave Dirac the
nickname Monopoleon. The Dirac quantization condition was subsequently sharp-
ened by Schwinger [2] who showed that the double-valuedness of the spin-1 wave
functions of electron restricted the integer multiples to even multiples. Experimen-
tally, no magnetic monopole was found in spite of intensive search, and the Dirac
theory was put ad acta for a long time. It resurfaced, however, in the last 35 years,
in the attempt to explain the phenomenon of quark confinement.

The second root in this book lies in the theory of the superfluid phase transition.
Here the crucial papers were written by Berezinski [3] and by Kosterlitz and Thouless
[4]. They showed that the phase transition in a film of superfluid helium can be
understood by the statistical mechanics of vortices of superflow. Their description
attaches to each point a phase angle of the condensate wave function which lies in
the interval (0,27). When encircling a vortex, this angle must jump somewhere by
2. A jumping line connects a vortex with an antivortex and forms an analog of a
“Dirac string”, whose precise shape is irrelevant. If these ideas are carried over to
bulk superfluid helium in three dimensions, as done in my textbook [5], one is led to
the statistical mechanics of vortex loops. These interact with the same long-range
forces as electric current loops.
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The third root of the theory in this book comes from a completely different direc-
tion — the theory of plastic deformations, which is the basis of our understanding
of work hardening of metals and material fatigue. This theory was developed after
the discovery of dislocations in crystals in 1934 [6]. With the help of field-theoretic
techniques, this theory was extended to a statistical mechanics of line-like defects
in my textbook [7], where I explained the important melting transitions by the
condensation of line-like defects.

The fourth root lies in the work of Bilby, Bullough, Smith [8], Kondo [9], and
Kroner [10], who showed that line-like defects can also be described in geometric
terms. Elastic distortions of crystals do not change the defect geometry, thus playing
a similar role as Einstein’s coordinate transformations. Crystals with defects form a
special version of a Riemann-Cartan space. The theory of such spaces was set up in
1922 by Cartan who extended the curved Riemannian space by another geometric
property: torsion [11]. Cartan’s work instigated Einstein to develop a theory of
gravitation in a Riemann-Cartan spacetime with teleparallelism [12].

Twenty years later, Schrodinger attempted to relate torsion to electromag-
netism [13]. He noticed that the presence of torsion in the universe would make
photons massive and limit the range of magnetic fields emerging from planets and
stars. From the observed ranges of his time he deduced upper bounds on the photon
mass which were, even then, extremely small [14].

Further twenty years passed before Utiyama, Sciama, and Kibble [15, 16, 17]
clarified the intimate relationship between torsion and the spin density of the grav-
itational field. A detailed review of the theory was given in my textbook [7]. The
recent status of the subject is summarized by Hammond [18].

I ran into the subject in the eighties after having developed a disorder field theory
of line-like objects in my textbook [5]. My first applications dealt with vortex lines
in superfluids and superconductors, where the disorder formulation helped me to
solve the long-standing problem of theoretically predicting where the second-order
phase transition of a superconductor becomes first-order [19].

After this I turned to the application of the disorder field theory to line-like
defects in crystals. The original description of such defects was based on functions
which are discontinuous on surfaces, whose boundaries are the defect lines. The
shape of these surfaces is arbitrary, as long as the boundaries are fixed. I realized
that the deformations of the surfaces can be formulated as gauge transformatios of
a new type of gauge fields which I named defect gauge fields.

By a so-called duality transformation it was possible to reformulate the theory
of defects and their interactions as a more conventional type of gauge theory. This
brought about another freedom in the description which I named stress gauge in-
variance. The dual formulation can be viewed as a linearized form of yet another
geometric Einstein-Cartan space in which the gauge transformations are a combina-
tion of Einstein’s local translations and a local generalization of Lorentz invariance.

The relation between the dual and the original description of defects in terms of
jump surfaces is completely analogous to the well-known relation between Maxwell’s
theory of magnetism formulated in terms of a gauge field, the vector potential, and
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an alternative formulation in which the magnetic field is the gradient of a multivalued
scalar field.

While the above developments were in progress, field theorists were searching
for a simple explanation of the phenomenon of quark confinement by color-electric
field lines. Here the physics of superconductors became an important source of
inspiration. Since London’s theory of superconductivity [20] it was known that
superconductors would confine magnetic charges if they exist. The reason is the
Meissner effect, which tries to expel magnetic flux lines from a superconductor. As
a consequence, flux lines emerging from a magnetic monopole are compressed into
flux tubes of a fixed thickness. The energy of such tubes is proportional to their
length implying that opposite magnetic charges are held together forever. From
the BCS theory of superconductivity [21] we know that this effect is caused by a
condensate of electric charges, the famous Cooper pairs of electrons.

This phenomenon suggested the presently accepted viewpoint on quark confine-
ment. The vacuum state of the world is imagined to contain a condensate of color-
magnetic monopoles. This condensate acts upon color-electric fields in the same
way as the Cooper pairs in a superconductor act upon the magnetic field, causing a
Meissner effect and confinement of color-electric charges. Models utilizing this con-
finement mechanism were developed by Nambu [22], Mandelstam [23], 't Hooft [24],
and Polyakov [25], and on a lattice by Wilson [26].

In studying this phenomenon I observed the close mathematical analogies be-
tween Dirac’s magnetic monopoles and the above defect structures. Dirac used a
vector potential with a jump surface to construct an infinitely thin magnetic flux
tube with a magnetic point source at its end. Thus the world line of a monopole in
spacetime could be viewed as a kind of “vortex line” in a Maxwell field. Knowing
how to construct a disorder theory of vortex lines it was easy to set up a disorder
field theory of monopole worldlines, which presntly serves as the simplest model of
quark confinement [27].

When extending the statistical mechanics of vortex lines to defect lines in the
second volume of the textbook [7], T used the dual description of defect lines, and
expressed it as a linear approximation to a geometric description in Riemann-Cartan
space. This suggested to me that it would be instructive to reverse the development
in the theory of defects from multivalued fields to geometry and reformulate the the-
ory of gravity, which is conventionally treated as a geometric theory, in an alternative
way with the help of jumping surfaces of translation and rotation fields. In the the-
ory of plasticity, such singular transformations are used to carry an ideal crystal into
crystals with translational and rotational defects. Their geometric analogs carry a
flat spacetime into a spacetime with curvature and torsion. The mathematical basis
expressing the new geometry are multivalued tetrad fields e, (x).

In the traditional literature on gravity with spinning particles, a special role
is played by single-valued vierbein fields h®,(z). They define local nonholonomic
coordinate differentials dz®. These are reached from the physical coordinate differ-
entials dz* by a transformation dz® = h®,(z)dz*. Only infinitesimal vectors dz®
are defined, and the transformation cannot be extended over finite domains. For



the description of spinning particles, such an extension is not needed since the in-
finitesimal nonholonomic coordinates dz® are completely sufficient to specify the
transformation properties of spin in Riemannian spacetime.

The theory in terms of multivalued tetrad fields to be presented here goes an
important step further, leading to a drastic simplification of the description of non-
Riemannian geometry. The key is the efficient use of a set of completely new non-
holonomic coordinates dz® which are more nonholonomic than the traditional dx®.
To emphasize this one might call them hyper-nonholonomic coordinates. They are
related to dz® by a multivalued Lorentz transformation dx®* = A%,(z)dz®, and to
the physical dz# by the above multivalued tetrad fields as dz® = e%,(z)dzt =
Ao (z)h®(x)dx*. The gradients d,e®,(x) determine directly the full affine con-
nection, and their antisymmetric combination d,e%,(z) — d,€e%,(x) determines the
torsion. This is in contrast to the curl of the usual vierbein fields h*,(x) which
determines the object of anholonomy, a quantity existing also in purely Riemannian
spacetime, i.e., in curved spacetime without torsion.

One of the purposes of this book is to make students and colleagues working in
electromagnetism and gravitational physics appreciate the many advantages brought
about by the use of the multivalued tetrad fields e®,(z). Apart from a simple
intuitive reformulation of Riemann-Cartan geometry, it suggests a new principle in
physics [28], which T have named multivalued mapping principle or nonholonomic
mapping principle, to be explained in detail in this book. Multivalued coordinate
transformations enable us to transform the physical laws governing the behavior of
fundamental particles from flat spacetime to spacetimes with curvature and torsion.
It is therefore natural to postulate that the images of these laws describe correctly the
physics in such general affine spacetimes. As a result I am able to make predictions
which cannot be made with Einstein’s construction method based merely on the
postulate of covariance under ordinary coordinate transformations, since those are
unable to connect different geometries.

It should be emphasized that it is not the purpose of this book to propose repeat-
ing all geometric calculations of gravitation with the help of multivalued coordinate
transformations. In fact, I shall restrict much of the discussion to almost flat auxil-
iary spacetimes. This will be enough to derive the general form of the physical laws
in the presence of curvature and torsion. At the end I shall always return to the
usual geometric description. The intermediate auxiliary spacetime with defects will
be referred to as world crystal.

The reader will be pleased to see in Subsection 4.5 that the standard minimal
coupling of electromagnetism is a simple consequence of the multivalued mapping
principle. The similar minimal coupling to gravity will be derived from this principle
in Chapter 17.

At the end I shall argue that torsion fields in gravity, if they exist, would lead
quite a hidden life, unless they are of a special form. They would not be observable
for many generations to come since they could exist only in an extremely small
neighborhood of material point particles, limited to distances of the order of the
Planck length 10732 cm, which no presently conceivable experiment can probe.
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The detailed development in this book in gravity with torsion is thus at present a
purely theoretical endeavor. Its main merit lies in exposing the multivalued approach
to Riemann-Cartan geometry, which has turned out to be quite useful in teaching
the geometrical basis of gravitational physics to beginning students, and to explain
what is omitted in Einstein’s theory by assuming the absence of torsion.

The definitions of parallel displacements and covariant derivatives appear natu-
rally as nonholonomic images of truly parallel displacements and ordinary derivatives
in flat spacetime. So do the rules of minimal coupling.

Valuable insights are gained by realizing the universality of the multivalued defect
description in various fields of physics. The predictions based on the multivalued
mapping principle remain to be tested experimentally.

The author is gateful to F.W. Hehl and R. Rougemont for a careful reading of the
book. Thanks go to my secretary S. Endrias for her help in preparing the manuscript
in INTEX. Most importantly, I am grateful to my wife Dr. Annemarie Kleinert for her
sacrifices, inexhaustible patience, constant encouragement, and a critical reading of
the manuscript.

H. Kleinert
Berlin, November 2007
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Basic research is what I am doing
when I don’t know what I am doing.

WERNHER VON BRAUN (1912-1977)

1

Basics

A book on multivalued fields must necessarily review some basic concepts of classical
mechanics and the theory of single-valued fields. This will be done in the first three
chapters. Readers familiar with these subjects may move directly Chapter 4.

In his fundamental work on theoretical mechanics entitled Principia, Newton
(1642-1727) assumed the existence of an absolute spacetime. Space is parametrized
by vectors x = (2!, 2% z?%), and the movement of point particles is described by
trajectories x(t) whose components ¢'(t) (i = 1,2,3) specify the coordinates z* =
¢'(t) along which the particles move as a function of time ¢. In Newton’s absolute
spacetime, a single free particle moves without acceleration. Mathematically, this is

expressed by the differential equation

(1) = %x(t) —0. (1.1)

The dots denote derivatives with respect to the argument.
A set of N point particles x,(t) (n = 1,..., N) with masses m,, is subject to
gravitational forces which change the free equations of motion to

X (t) — Xn(t)

m.X,(t) = Gx My Moy, , (1.2)
n%e:n [%m (t) — X ()]
where Gy is Newton’s gravitational constant
G ~ 6.67259(85) x 10 %cm® /g sec?. (1.3)

1.1 Galilean Invariance of Newtonian Mechanics

The parametrization of absolute spacetime in which the above equations of motion
hold is not unique. There is substantial freedom in choosing the coordinates.
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1.1.1 Translations

The coordinates x may always be changed by translated coordinates
x' =x — xg. (1.4)

It is obvious that the translated trajectories x/,(¢) = x,(t) —xo will again satisfy the
equations of motion (1.2). The equations remain also true for a translated time

=t —t, (1.5)

i.e., the trajectories

x'(t) = x(t + to) (1.6)
satisfy (1.2). This property of Newton’s equations (1.2) is referred to as translational
symmetry in spacetime.

An alternative way of formulating this invariance is by keeping the coordinate
frame fixed and displacing the physical system in spacetime, moving all particles to
new coordinates X' = X 4+ Xy at a new time ¢’ =t + t5. The equations of motion are
again invariant. The first procedure of reparametrizing the same physical system
is called passive symmetry transformation, the second active symmetry transforma-
tion. One may use either procedure to discuss symmetries. In this book we shall
use active or passive transformations, depending on the circumstance.

1.1.2 Rotations

The equations of motion are invariant under more transformations which mix dif-
ferent coordinates linearly with each other, for instance the rotations:

2"t = R'a, (1.7)
where R"j is the rotation matrix
Rij = cosf 6;; + (1 — cosf) é,é] + sin 6 eijkék , (1.8)

in which él denotes the directional unit vector of the rotation axis, and €;;; is the
completely antisymmetric Levi-Civita tensor with €193 = 1. The matrices satisfy the
orthogonality relation

R'R=1. (1.9)

In Eq. (1.7) a sum from 1 to 3 is implied over the repeated spatial index j. This is
called the Finstein summation convention, which will be followed throughout this
text. As for the translations, the rotations can be applied in the passive or active
sense.

The active rotations are obtained from the above passive ones by changing the
sign of §. For example, the active rotations around the z-axis with a rotation vector
» =1(0,0,1) are given by the orthogonal matrices

cosp —sing 0
Rs(p)=| sing cose 0 |. (1.10)
0 0 1
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1.1.3 Galilei Boosts

A further set of transformations mixes space and time coordinates:

" = 2t =o't (1.11)
' = t (1.12)

These are called pure Galilei transformations of Galiler boosts. The coordinates
2", t' are positions and time of a particle observed in a frame of reference that
moves uniformly through absolute spacetime with velocity v = (vt,v?,0%). In the
active description, the transformation z'* = 2 + v't specifies the coordinates of a
physical system moving past the observer with uniform velocity v.

1.1.4 Galilei Group

The combined set of all transformations

' = Rzl — 't —x), (1.13)

= t—to, (1.14)

forms a group. Group multiplication is defined by performing the transformations
successively. This multiplication law is obviously associative, and each element has
an inverse. The set of transformations (1.13) and (1.14) is referred to as the Galilei
group.

Newton called all coordinate frames in which the equations of motion have the
simple form (1.2) inertial frames.

1.2 Lorentz Invariance of Maxwell Equations

Problems with Newton’s theory arose when J. C. Maxwell (1831-1879) formulated
in 1864 his theory of electromagnetism. His equations for the electric field E(x)
and the magnetic flur density or magnetic induction B(z) in empty space

V-E=0 (Coulomb’s law), (1.15)
10E

V xB-— 1o =0  (Ampere’s law), (1.16)
c Ot

V.-B= (absence of magnetic monopoles), (1.17)
10B

V xE+ e 0  (Faraday’s law), (1.18)

can be combined to obtain the second-order differential equations
1
(gaf - VQ) E(x,{) — 0, (1.19)

(é@f—VQ)B(x,t) _— (1.20)
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The equations contain explicitly the light velocity
m
c=299792458 —, (1.21)
sec

and are not invariant under the Galilei group (1.14). Indeed, they contradict New-
ton’s postulate of the existence of an absolute spacetime. If light propagates with
the velocity ¢ in absolute spacetime, it could not do so in other inertial frames which
have a nonzero velocity with respect to the absolute frame. A precise measurement
of the light velocity could therefore single out the absolute spacetime. However,
experimental attempts to do this did not succeed. The experiment of Michelson
(1852-1931) and Morley (1838-1923) in 1887 showed that light travels parallel and
orthogonal to the earth’s orbital motion with the same velocity up to £5 km/sec
[1, 2]. This led Fitzgerald (1851-1901) [3], Lorentz (1855-1928) [4], Poincaré (1854—
1912) [5], and Einstein (1879-1955) [6] to suggest that Newton’s postulate of the
existence of an absolute spacetime was unphysical [7].

1.2.1 Lorentz Boosts

The conflict was resolved by modifying the Galilei transformations (1.11) and (1.12)
in such a way that Maxwell’s equations remain invariant. This is achieved by the
coordinate transformations

vl

2 = a4 (v = 1) —-2 — 't (1.22)

V2

Lo i
= ~t— 2 (1.23)

where « is the velocity-dependent parameter

1

The transformations (1.22) and (1.23) are referred to as pure Lorentz transformations
or Lorentz boosts. The parameter v has the effect that in different moving frames of
reference, time elapses differently. This is necessary to make the light velocity the
same in all frames.

Pure Lorentz transformations are conveniently written in a four-dimensional vec-
tor notation. Introducing the four-vectors x* labeled by indices a,b,c, ... running
through the values 0,1, 2, 3,

(1.24)

=", (1.25)

we rewrite (1.22) and (1.23) as
2 = A%, (1.26)
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where A%, are the 4 x 4-matrices

A% = ( 1| i ) . (1.27)

—yvi/e | 6+ (v — Dw; /02

Note that we adopt Einstein’s summation convention also for repeated labels
a,b,c,... = 0,...,3. The matrices A%, satisfy the pseudo-orthogonality relation
[compare (1.9)]:

ATac Ged Adb = Jab, (128>
where g, is the Minkowski: metric with the matrix elements

1
-1

Jab = 1 : (1.29)
-1
Equation (1.28) has the consequence that for any two four-vectors x* and y®, the
scalar product formed with the help of the Minkowski metric

zy = gy’ (1.30)

is invariant under Lorentz transformation.

In order to verify the relation (1.28) it is convenient to introduce a dimensionless
vector  called rapidity, which points in the direction of the velocity v and has a
length ¢ = |C| given by

cosh( =, sinh ¢ = yv/c. (1.31)

We also define the unit vectors in three-space

~

C=(/(=Vv=v/u, (1.32)
so that X v
¢ = (¢ = atanh— V. (1.33)
c
Then the matrices A%, of the pure Lorentz transformations (1.27) take the form
cosh ¢ ‘ —sinh¢ ¢ —sinh¢ ¢ —sinh (G
A% =B () = | —sinhid - o (1.34)
— sinh ¢ G 8;; + (cosh ¢ — 1) (¢
—sinh ¢ (3

The notation B%(() emphasizes that the transformations are boosts. The pseudo-
orthogonality property (1.28) follows directly from the identities (> = 1, cosh?( —
sinh?® ¢ = 1.



6 1 Basics

For active transformations of a physical system, the above transformations have
to be inverted. For instance, the active boosts with a rapidity ¢ = (0,0, 1) pointing
in the z-direction, have the pseudo-orthogonal matrix

cosh( |0 0 sinh(
a 0 10 0
sinh( |0 0 cosh(

1.2.2 Lorentz Group

The set of Lorentz boosts (1.34) can be extended by rotations to form the Lorentz
group. In 4 x 4 -matrix notation, the rotation matrices (1.8) have the block form

(1.36)

It is easy to verify that these satisfy the relation (1.28), which becomes here an
orthogonality relation (1.9).

The four-dimensional versions of the active rotations (1.10) around the z-axis
with a rotation vector ¢ = (0,0, 1) are given by the orthogonal matrices

1| 0 0 0
0|cosp —singp 0
0]sing cosp 0O
0 0 0 1

(1.37)

The rotation matrix (1.37) differs from the boost matrix (1.35) mainly in the
presence of trigonometric functions instead of hyperbolic functions. In addition,
there is a sign change under transposition accounting for the opposite sign in the
time- and space-like parts of the metric (1.29).

When combining all possible Lorentz boosts and rotations in succession, the
resulting set of transformations forms a group called the Lorentz group.

1.3 Infinitesimal Lorentz Transformations

The transformation laws of continuous groups such as rotation and Lorentz group
are conveniently expressed in an infinitesimal form. By combining successively many
infinitesimal transformations it is always possible to reconstruct from these the finite
transformation laws. This is a consequence of the fact that the exponential function
e” can always be obtained by a product of many small-z approximations e ~ 14ex:

e” = lim (1 + ex)"/*. (1.38)

e—0
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1.3.1 Generators of Group Transformations

Let us illustrate this procedure for the active rotations (1.37). These can be written
in the exponential form

00 0O
00 -1 0 y
R3(p) = exp 01 00 |¥(=¢ Lae, (1.39)
00 0O
The matrix
0O 00O
10 010
Li==i| 4 1 o o (1.40)
0O 00O

is called the generator of this rotation in the Lorentz group. There are similar
generators for rotations around x- and y-directions

00 00
1 00 00

Li= =il o0 o1l (1.41)
0 0 -1 0
000 O
1 00 0 —1
010 O

The three generators may compactly be expressed with the help of the completely
antisymmetric Levi-Civita tensor €;;;, as

L;=—i ( 019 ) , (1.43)

0| €k
where ¢;5;, is the completely antisymmetric Levi-Civita tensor with €193 = 1.

Introducing a vector notation for the three generators, L = (L, Ls, Ly), the
general pure rotation matrix (1.36) is given by the exponential

A(R(g)) = e "L (1.44)

This follows from the fact that all orthogonal 3 x 3-matrices in the spatial block of
(1.36) can be written as an exponential of ¢ times all antisymmetric 3 x 3-matrices,
and that these can all be reached by the linear combinations ¢ - L.

Let us now find the generators of the active boosts, first in the z-direction. From
Eq. (1.35) we see that the boost matrix can be written as an exponential

00 01
B3(() = exp

_ o O
O O O
O O O
O O O

7
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e~ Ms¢ (1.45)

with the generator

M; = i (1.46)

_— o O O
o O OO
o O OO
S O O

Similarly we find the generators for the x- and y-directions:

0100
{1000

M=l 0000l (1.47)
0000
0010
{0000

My = il 1 o 0 o (1.48)
0000

Introducing a vector notation for the three boost generators, M = (M, My, Ms),
the general Lorentz transformation matrix (1.34) is given by the exponential

A(B(C)) = =M, (1.49)

The proof is analogous to the proof of the exponential form (1.44).
The Lorentz group is therefore generated by the six matrices L;, M;, to be col-
lectively denoted by G,(a = 1,...,6). Every element of the group can be written

as
A = ¢ e LHCM) — —iaaGa (1.50)

There exists a Lorentz-covariant way of specifying the generators of the Lorentz
group. We introduce the 4 x 4-matrices

(Lab)cd — Z'(gacgbd _gadgbc)’ (151)
labeled by the antisymmetric pair of indices ab, i.e.,
LY = — L', (1.52)

There are six independent matrices which coincide with the generators of rotations
and boosts as follows:

1 , .
Li = §€Z‘jkL]k, Mz = LOZ. (153)

With the help of the generators (1.51), we can write every element (1.50) of the

Lorentz group as follows
A= e—i%wabL“b

(1.54)

Y
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where the antisymmetric angular matrix wy, = —wp, collects both, rotation angles
and rapidities:
Wij = €z‘jk90ka (1-55)
wos = ¢ (1.56)

Summarizing the notation we have set up an exponential representation of all
Lorentz transformations

) 1 k| ~ig 0 1 i i 1 a
A= e—z(kp~L+C-M) = 6—Z(§<p eijkL]k+C L) = 6_1(5wijLJ+w0iL0 ) = e_liwabL b. (157)

Note that for a Euclidean metric
gab - 1 y (158)

the above representation is familiar from basic matrix theory. Then Eq. (1.28)
implies that A comprises all real orthogonal matrices in four dimensions, which can
be written as an exponential of all real antisymmetric 4 x 4-matrices. For the pseudo-
orthogonal matrices satisfying (1.28) with the Minkowski metric (1.29), only the iL;
are antisymmetric while ¢)/; are symmetric.

1.3.2 Group Multiplication and Lie Algebra

The reason for expressing the group elements as exponentials of the six generators
is that, in this way, the multiplication rules of infinitely many group elements can
be completely reduced to the knowledge of the finite number of commutation rules

among the six generators L;, M;. This is a consequence of the Baker-Campbell-
Hausdorff formula [8]:

eAeB — €A+B+%[A,B]+1—12[AfB,[A,B]]fQZ[A,[B,[A,B]]]Jr.... (1.59)

According to this formula, the product of exponentials can be written as an expo-
nential of commutators. Adapting the general notation G, = (L;, M;) for the six
generators in Egs. (1.53) and (1.57), the product of two group elements is

A1A2 — efia}GrefiagGs
1
= exp {—iaiGr —ia2Gy + 5[—@'0471,(}’“ —ia2G)
1
+ E[—i(a; — )Gy, [~ial G, —ia?G)] + .. } . (1.60)

The exponent involves only commutators among G,’s. For the Lorentz group these
can be calculated from the explicit 4 x 4 -matrices (1.40)—(1.42) and (1.46)—(1.48).
The result is
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[Li, Lj] = iegul, (1.61)
[LZ', M]] = ieijkMk, (162)
[M;, Mj] = —i€jpLy. (1.63)

This algebra of generators is called the Lie algebra of the group. In the general
notation with generators G,., the algebra reads

[Grv Gs] = ifrsth- (164)

The number of linearly independent matrices G, (here 6) is called the rank of the
Lie algebra.

In any Lie algebra, the commutator of two generators is a linear combination of
generators. The coefficients f,;. are called structure constants. They are completely
antisymmetric in a, b, ¢, and satisfy the relation

frsufutv + fstufurv _'_ ftrufusv == O (165)

This guarantees that the generators obey the Jacobi identity
[[GT’7 GS]) Gt] + [[GS7 Gt]a GT’] + [[Gt7 GT‘]a GS] - 07 (166)

which ensures that multiplication of three exponentials A; = emionGr (j = 1,2,3)
obeys the law of associativity (A1As)As = A1(A2A3) when evaluating the products
via the expansion Eq. (1.60).

The relation (1.65) can easily be verified explicitly for the structure constants
(1.61)—(1.63) of the Lorentz group using the identity for the e-tensor

€ijl€1km + €jk1€Lim T+ €xit€rim = 0. (1.67)
The Jacobi identity implies that the r matrices with r X r elements

(F)st = —ifrst (1.68)

satisfy the commutation rules (1.64). They are the generators of the so-called adjoint
representation of the Lie algebra. The matrix in the spatial block of Eq. (1.43) for
L; is precisely of this type.

In terms of the matrices F, of the adjoint representation, the commutation rules
can also be written as

[Gm Gs] = _(Ft)rsGt- (169)

Inserting for G, the generators (1.68), we reobtain the relation (1.65).

Continuing the expansion in terms of commutators in the exponent of (1.60),
all commutators can be evaluated successively and one remains at the end with an
expression .

A12 — e—iar (al,oﬂ)Gr’ (170)
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in which the parameters of the product «!? are completely determined from those
of the factor, a!, a?. The result depends only on the structure constants fu., not
on the representation.

If we employ the tensor notation L% for L; and M; of Eq. (1.53), and per-
form multiplication covariantly, so that products L L have the matrix elements
(L) 47 (L), the commutators (1.61)—(1.63) can be written as

[Lab,LCd] — _,l»<gacLbd o gadLbc _'_gdeac o gbcLad>. (171>

Due to the antisymmetry in a <+ b and ¢ < d it is sufficient to specify only the
simpler commutators

[L, L%] = —ig"L", no sum over a. (1.72)

This list of commutators omits only commutation rules of (1.71) which vanish since
none of the indices ab is equal to one of the indices cd.
For infinitesimal transformations, the matrices (1.54) have the general form

A=1- i%wabL“b. (1.73)
Inserting the 4 x 4-generators (1.51), their matrix elements are
A% = 0% +wh, (A7) = 6% — w, (1.74)
where w? and w,’ are related to the antisymmetric angular matrix wq, by

a aa’ b bb’
W = ¢ Warp, Wa = g Wap - (1.75)

1.4 Vector-, Tensor-, and Scalar Fields

We shall frequently consider four-component physical quantities v* which, under
Lorentz transformation, change in the same way as the coordinates x®:

V' = A% (1.76)

This transformation property defines a Lorentz vector, or four-vector. In addition
to such vectors, there are quantities with more indices t®,¢%, ... which transform
like products of vectors:

$0 = ACND G = ATGNP A (1.77)

These are the transformation properties of Lorentz tensors of rank two, three, ... .
Given any two four-vectors u® and v®, we define their scalar product in the same
way as in (1.30) for two coordinate vectors x* and y*:

uv = u®ga’. (1.78)
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Scalar products are, of course, invariant under Lorentz transformations due to their
pseudo-orthogonality (1.28).

If v2, ¢ tabe . are functions of z, they are called wvector and tensor fields.
Derivatives with respect to x of such a field obey vector and tensor transformation
laws. Indeed, since

7' = A%, (1.79)

we see that the derivative 0/0z° satisfies

0 _ (A7) ® 9 (1.80)

ox'e a Ogb’

i.e., it transforms with the inverse of the transposed Lorentz matrix A%,. Using the
pseudo-orthogonality relation (1.28),

0 _ (gAg_l) v 9 (1.81)

ox'e a Oxb’

Since 0/0z® transforms like a covariant vector, we shall emphasize this behavior
by the notation

0
Oy = . 1.82
o ( )
It will further be useful to define the matrix elements
A= (gAg™"), " = guc Aag™ (1.83)
Then we can rewrite (1.81) as
J = A0y, (1.84)

In general, any four-component quantity v, which transforms like the derivatives
v, = N vy (1.85)

is called a covariant four-vector or Lorentz vector, as opposed to the vector v*
transforming like the coordinates x*, which is called contravariant vector.
A covariant vector v, can be produced from a contravariant one v® by multipli-
cation with the metric tensor:
Vo = Gap?®. (1.86)

This operation is called lowering the index. The operation can be inverted to what

is called raising the indez:
v = g™y, (1.87)

where g% are the matrix elements of the inverse metric

¢ = (g_l) (1.88)

ab’
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With Einstein’s summation convention, the inverse metric g% = (g‘l)ab satisfies the
equation

9” g = 6. (1.89)

The sum over a common upper and lower index is called contraction.

Note that the notation (1.83) is perfectly compatible with the rules for raising
and lowering indices.

In Minkowski spacetime, the matrices g and ¢g~! happen to be the same and so
are the matrix elements gq, and ¢g?, both being equal to (1.29). This is no longer
true in the general geometries of gravitational physics. For this reason it will be
useful to keep separate symbols for the metric g and its inverse ¢!, and for their
matrix elements g, and g®.

The contraction of a covariant vector with a contravariant vector is a scalar
product, as is obvious if we rewrite the scalar product (1.78) as

uv = UG’ = uv, = ugv®. (1.90)

Of course, we can form also the scalar product of two covariant vectors with the

help of the inverse metric g—':

uv = uag®vy. (1.91)
The invariance under Lorentz transformations (1.85) is easily verified using the

pseudo-orthogonality property (1.28):

! _ab, -1 7

ul gy =u'Tg™ W = uTg T A Tgg ' ghg v = uT g0 = ugg®vy.  (1.92)

Extending the definition of covariant vectors, one defines covariant tensors of
rank two t,,, three 4., etc. as quantities transforming like

th = NN tea, oo = N NI A tegy, ... (1.93)

Co- and contravariant vectors and tensors can always be multiplied with each other
to form new co- and contravariant quantities if the indices to be contracted are
raised and lowered appropriately. If no uncontracted indices are left, one obtains an
invariant, a Lorentz scalar.

It is useful to introduce a contravariant version of the covariant derivative vector

0" = g™0,, (1.94)
and covariant versions of the contravariant coordinate vector
To = a2’ (1.95)

The invariance of Maxwell’s equations (1.20) is a direct consequence of these
contraction rules since the differential operator on the left-hand side can be written
covariantly as

0 w9
dza? Qb
The right-hand side is obviously a Lorentz scalar.

1
gaf ~-Vi= = 0,9"0y = 0"0, = 0. (1.96)
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1.4.1 Discrete Lorentz Transformations

The Lorentz group can be extended to include space reflections in any of the four

spacetime directions
= —af, (1.97)

without destroying the defining property (1.28). The determinant of A, however, is
then negative. If only 2° is reversed, the reflection is also called time reversal and
denoted by

~1
T = . (1.98)
1

The simultaneous reflection of the three spatial coordinates is called parity trans-
formation and denoted by the 4 x 4 -matrix P:

1
~1
pP= . . (1.99)

—1

After this extension, the entire Lorentz group can no longer be obtained from
the neighborhood of the identity by a product of infinitesimal transformations, i.e.,
by an exponential of the Lie algebra in Eq. (1.57). It consists of four topologically
disjoint pieces which can be obtained by a product of infinitesimal transformations
multiplied with 1, P, T', and PT. The four pieces of the group are

e*l’%wabLabT

-1 ab _ ;1 ab
efz2wabL 7 e i5Wap L P

e~izwnl™ pT. (1.100)

Y Y

The Lorentz transformations A of the pieces associated with P and T  have a negative
determinant. This leads to the definition of pseudotensors which transform like
a tensor, but with an additional determinantal factor det A. A vector with this
property is also called azial vector. In three dimensions, the angular momentum
L = x x p is an axial vector since it does not change sign under space reflections,
as the vector x does, but remains invariant.

1.4.2 Poincaré group

Just as the Galilei transformations, the Lorentz transformations can be extended by
the group of spacetime translations

' =2 —a* (1.101)

to form the inhomogeneous Lorentz group or Poincaré group.
Inertial frames may be defined as all those frames in which Maxwell’s equations
are valid. They differ from each other by Poincaré transformations.

' = A%’ — a”. (1.102)
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1.5 Differential Operators for Lorentz Transformations

The physical laws in four-dimensional spacetime are formulated in terms of Lorentz-
invariant field theories. The fields depend on the spacetime coordinates £®. In order
to perform transformations of the Lorentz group we need differential operators for
the generators of this group.

For Lorentz transformations A with small rotation angles and rapidities, we can
approximate the exponential in (1.57) as

A=1—1i %wabLab. (1.103)
The Lorentz transformation of the coordinates
v 0 = Az (1.104)
is conveniently characterized by the infinitesimal change
=12 —x=—i %wabL“bx. (1.105)

Inserting the 4 x 4 -matrix generators (1.51), this becomes more explicitly [compare
(1.74)]

Saz® = what. (1.106)
We now observe that (1.105) can be expressed in terms of the differential operators
L% = i(2°0° — 2°0%) = — Lt (1.107)

as a commutator 1 )
oNT =1 éwab[L“b, xl. (1.108)

The differential operators (1.107) satisfy the same commutation relations (1.71),
(1.72) as the 4 x 4 -generators L% of the Lorentz group. They form a representation
of the Lie algebra (1.71), (1.72). By exponentiation we can thus form the operator
representation of finite Lorentz transformations

D(A) = e 3wal™” (1.109)

which satisfy the same group multiplication rules as the 4 x 4-matrices A.
The relation between the finite Lorentz transformations (1.104) and the operator
version (1.109) is

7 lwabLab

x = el 39al™y emigenl™ — DLA) 2 D(A). (1.110)

-1 ab
, —_— =
2 = Ax = ¢ P 2Wal

This is proved by expanding, on the left-hand side, e~* 39abl® 1 i powers of wy,, and
-1 Ta -1 Ta .
doing the same on the right-hand expression ef2%el "z et awal™ with the help of
Lie’s expansion formula
Z'2

e Bt =1—i[A B+ —[A[A B+ ... . (1.111)
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This operator representation (1.109) can be used to generate Lorentz transfor-
mations on the spacetime argument of any function of x:

f(@) = J(A ") = £ (D(A)r D™(A)) = D(A)f () D™ (). (1.112)

The latter step follows from a power series expansion of f(z). Take for example an
expansion term f, ,2%2® of f(x). In the transformed function f’(x), this becomes

A A~

fasD(M)z" D7 (A)D(A)2" D (A) = D(A) (fapaa®) D7 (A). (1.113)

1.6 Vector and Tensor Operators

In working out the commutation rules among the differential operators L% one
conveniently uses the commutation rules between L% and x¢, p°:

[[A/ab’xc] _ _Z~<gacxb . gbcxa) _ _(Lab)cdxd’ (1114)
[Lab’ﬁc] — _Z'(gaclab o gbclaa) — —(Lab)cdﬁd- (1115)

These commutation rules identify x¢ and p¢ as vector operators

In general, an operator t"r is said to be a tensor operator of rank n if each
of its tensor indices is transformed under commutation with L like the index of z¢
or p* in (1.114) and (1.115):

[iab’ gcl,...,cn] — _i[<ga01£b,...,cn . gbclfa,...,cn) .+ <gacn£cl,...,b . gbcnfcl,...,aﬂ
— _(Lab)cld Edcg,...,cn o (Lab)czd Ecld,...,cn - = (Lab)cnd 1?61627“.7(1.(1.1]_6)
The commutators (1.71) between the generators imply that these are themselves
tensor operators.

The simplest examples for such tensor operators are the direct products of vectors
such as ¢t = g ... g% or ¢ = p ... p% . In fact, the right-hand side can
be found for such direct products using the commutation rules between products of
operators

@, bé] = [a,b]é + bla, é], [ab,é] = alb, &) + [a, é]b. (1.117)
These are the analogs of the Leibnitz chain rule for derivatives

(fg) = (0f)g + f(9g). (1.118)

1.7 Behavior of Vectors and Tensors under Finite Lorentz
Transformations

Let us apply such a finite operator representation (1.109) to the vector z¢ to form
D(A)z¢D~Y(A). (1.119)

We shall do this separately for rotations and Lorentz transformations.
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1.7.1 Rotations

An arbitrary three-vector (x', 22 2%) is rotated around the 3-axis by the operator

D(Rs(p)) = e~ls with Ly = —i(x'0y — 220;) by the operation
D(Ry(p))2' DY (Ry()) = e~ #Lagieiols, (1.120)
Since L3 commutes with 2%, this component is invariant under the operation (1.120):
D(R3(0)2* D™ (R3(y)) = emivlagBeivls — o3, (1.121)
For x! and 22, the Lie expansion of (1.119) contains the commutators
—i[Ls,z'] = 2%,  —i[Ls, 2% = —2'. (1.122)

Thus, the first-order expansion term on the right-hand side of (1.120) transforms the

two-dimensional vector (z!,z?) into (2%, —x'). The second-order term is obtained

by commuting the operator —iLs with (22, —z'), yielding — (!, 22). To third-order,
this is again transformed into —(z?, —z'), and so on. Obviously, all even orders
reproduce the initial two-dimensional vector (x!, #?) with an alternating sign, while

all odd powers are proportional to (22, —z'). Thus we obtain the expansion

. s 1 1
ewaS(SL’l,LUQ)ewLS — (1 _ 5('02_i_E()04_'_.“) (SL’I,LUQ)
1 1
+ <s0— §<P3+5805+---> (z*, —2"). (1.123)

The even and odd powers can be summed up to a cosine and a sine, respectively,
resulting in

e Wha(zl a?)els = cosy (2!,2?) +sing (22, —at). (1.124)

Together with the invariant 23 in (1.121), the right-hand side forms a vector arising
from x° by an inverse rotation (1.37). Thus

D(Ry())a' D™ (Ra(p)) = e #hagiciels = (e#8)" jod = Ry ()i s, (1.125)

By performing successive rotations around the three axes we can generate in this
way any inverse rotation:

D(R(9))a' D (R(9)) = e #a'e®™ = (e#1) o) = R\ (¢)ya?.  (1.126)
This is the finite transformation law associated with the commutation relation
[izﬂ?k] = 2;(L;) ik, (1.127)

which characterizes the vector operator nature of z* [compare (1.114)]. Thus also
(1.126) holds for finite rotations of any vector operator ©°.

The time component z° is obviously unchanged by rotations since L commutes
with 20, Hence we can extend (1.126) trivially to a four-vector, replacing D(R())
by D(A(R())) [recall (1.44)].
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1.7.2 Lorentz Boosts

A similar calculation may be done for Lorentz boosts. Here we first consider a boost
in the 3-direction Bs(¢) = e M generated by Mz = L% = —i(2°85 + 238, [recall
(1.57), (1.53), and (1.107)]. Note the positive relative sign of the two terms in the
generator L% is caused by the fact that §; = —", in contrast to dy = 8°. Thus we
form . .

D(B5(¢))z' D7 (Bs(¢)) = e Magieichs, (1.128)
The Lie expansion of the right-hand side involves the commutators

—i[Ms,2°] = —2®, —i[Ms,2%] = —2°, —i[Ms,2'] =0, —i[Ms,2?]=0. (1.129)

Here the two-vector (z!,z?) is unchanged, while the two-vector (z°,z3) is trans-

formed into —(x3,2°). In the second expansion term, the latter becomes (2%, %),
and so on, yielding

- . 1, 1
TN, aP)erc M = (1 5t > (a°,2%)

1 1
= (g ) (@) (1.130)
The right-hand sides can be summed up to hyperbolic cosines and sines:
e IMs (20 g3)eiMs — cosh ¢ (a0, 27) — sinh ¢ (2°,2°). (1.131)

Together with the invariance of (x',z?), this corresponds precisely to the inverse of
the boost transformation (1.35):

ﬁ(Bg(Q))x“ﬁ_l(Bg(C)) _ e_iCMSZL‘aeiCM?’ — (eiCMa)abl,b _ Bg_l(C)abl‘b- (1'132)

1.7.3 Lorentz Group

By performing successive rotations and boosts in all directions we find all Lorentz
transformations

D(A).I‘CDil(A) _ efi%wabﬁ“bxcei%wabﬁ“b _ (ei%wabLab)cc/xc’ _ (Afl)cc/xc” (1.133)
where w,;, are the parameters (1.55) and (1.56). In the last term on the right-hand
side we have expressed the 4 x 4 -matrix A as an exponential of its generators,
to emphasize the one-to-one correspondence between the generators L and their
differential-operator representation L.

At first it may seem surprising that the group transformations appearing as a left-
hand factor of the two sides of these equations are inverse to each other. However,
we may easily convince ourselves that this is necessary to guarantee the correct
group multiplication law. Indeed, if we perform two successive transformations they
appear in opposite order on the right- and left-hand sides:

D(AQAl).TCDil(AQAl) = [)(AQ)D(Al).’L‘CDil(Al)D71<A2)

/

= (A7) wD(A2)2" D™ (Ag) = (A7) e (Ag 1) e = [(AoAy) Howa”. (1.134)
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If the right-hand side of (1.133) would contain A instead of A™!, the order of the
factors in AsA; on the right-hand side of (1.134) would be opposite to the order in
D(AsA;) on the left-hand side.

A straightforward extension of the operation (1.133) yields the transformation

law for a tensor ¢ = g€l ... gn;

~ ~ A

D(A)tcl""’c"D_l(A) _ e—ilwabﬁ“b 7?cl,...,cn 622wabL
= (A e (A Ehh
— (Z wabL ) /1 (622wabL )nC{ntAC/l7“'7Cln. (1135)

This follows directly by inserting an auxiliary unit factor 1 = D(A)D~Y(A) =
ei3war Ll gizwanL® into the product x° ---x° between neighboring factors x“, and
performing the operation (1.135) on each of them. The last term in (1.135) can also

be written as

[elgwab(L“bxlxl X1 4+ le“bxl'“Xl)rl o oo, {C1Cn (1.136)
Since the commutation relations (1.116) determine the result completely, the trans-
formation formula (1.135) is true for any tensor operator £+, not only for those
composed from a product of vectors z¢.
The result can easily be extended to an exponential function e
to any function f(x) which possesses a Fourier representation

—7 and further

DN F@)DNA) = f(A'2) = e 2%al™ f(g) el (1.137)

Since the last differential operator has nothing to act on, it can also be omitted and
we can also write

A

DN f(x)D7H(A) = f(AT'w) =5l f(z). (1.138)

1.8 Relativistic Point Mechanics

The Lorentz invariance of the Maxwell equations explains the observed invariance
of the light velocity in different inertial frames. It is, however, incompatible with
Newton’s mechanics. There exists a modification of Newton’s laws which makes
them Lorentz-invariant as well, while differing very little from Newton’s equations
in their description of slow macroscopic bodies, for which Newton’s equations were
originally designed. Let us introduce the Poincaré-invariant distance measure in
spacetime

ds = Vdz? = (gabdx“dxb)lﬂ. (1.139)

At a fixed coordinate point of an inertial frame, ds is equal to ¢ times the elapsed

time:
ds = \/gooda®da® = dz® = cdt. (1.140)
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Einstein called the quantity
T=s/c (1.141)

the proper time.

When going from one inertial frame to another, two simultaneous events at
different points in the first frame will take place at different times in the other
frame. Their invariant distance, however, remains the same, due to the pseudo-
orthogonality relation (1.28) which ensures that

ds' = (gabdx'“d:p’b) V2 (gabdx“dxb)l/Z = ds. (1.142)

A particle moving with a constant velocity along a trajectory x(¢) in one Minkowski
frame remains at rest in another frame moving with velocity v = x(t) relative to
the first. Its proper time is then related to the coordinate time in the first frame by
the Lorentz transformation

1 (dx\’ [ v2 ot
cdr = ds = VAdt? — dx? = cdt$ 1—= (d_}t(> = cdiy[1 — V—2 == (1.143)
c c

v

This is the famous Einstein relation implying that a moving particle lives longer
by a factor 7. There exists direct experimental evidence for this phenomenon. For
example, the meson 7t lives on the average 7, = 2.60 x 10 8sec, after which it
decays into a muon and a neutrino. If the pion is observed in a bubble chamber
with a velocity equal to 10% of the light velocity ¢ = 299792458 m/sec, it leaves
trace of an average length | ~ 7, X ¢ x 0.1/4/1 —0.12 = 0.78 cm. A very fast muon
moving with 90% of the light velocity, however, leaves a trace which is longer by
a factor (0.9/0.1) x v/1 —0.102/4/1 —0.92 = 20.6. Massless particles move with
light velocity and have dr = 0, i.e., the proper time stands still along their paths.
This implies that massless particles can never decay — they are necessarily stable
particles.

Another way to see the time dilation is by observing the spectral lines of a moving
atom, say a hydrogen atom. If the atom is at rest, the frequency of the line is given

by

v — Ry (i _ L) (1.144)

n? m?
where Ry = m.c?*a?/2 ~ 13.6 eV, is the Rydberg constant,

2

o =

~ 1/137.035 989 1.145
e 2 (1.145)

is the fine-structure constant, and n and m are the principal quantum numbers of
initial and final electron orbits. If the atom emits a light quantum while moving
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with velocity v through the laboratory orthogonal to the direction of observation,
this frequency is lowered by a factor 1/~:

obs 1 2
obs _ _ —\1- 2 (1.146)
v 0% c

If the atom runs away from the observer or towards him, the frequency is further
changed by the Doppler shift. Due to the growing or decreasing distance, the wave
trains arrive with a smaller or higher frequency given by

11 1
Vobs _ <1 + 3) L_ |LFv/e (1.147)
v c) v 1+tv/c

In the first case the observer sees an additional red shift, in the second a wviolet shift
of the spectral lines.

Without external forces, the trajectories of free particles are straight lines in
four-dimensional spacetime. If the particle positions are parametrized by the proper
time 7, they satisfy the equation of motion

d2 a d a
The first derivative of 2%(7) is the relativistic four-vector of momentum p®(7), briefly
called four-momentum:

p*(T) =m %x“(ﬂ = mu(7). (1.149)

On the right-hand side we have introduced the relativistic four-vector of velocity
u®(7), or four-velocity. Inserting (1.143) into (1.149) we identify the components of
u®(T) as

u = (;’;) , (1.150)
and see that u®(7) is normalized to the light-velocity:

u®(T)ue (1) = 2. (1.151)
The time and space components of (1.149) are

P’ =mye=mu’, p'=my’ =mu' (1.152)
This shows that the time dilation factor 7 is equal to p°/me, and the same factor
increases the spatial momentum with respect to the nonrelativistic momentum muv?.
This correction becomes important for particles moving near the velocity of light,
which are called relativistic. The light particle has m = 0 and v = ¢. It is ultra-
relativistic.
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Note that by Eq. (1.152), the hyperbolic functions of the rapidity in Eq. (1.31)
are related to the four velocity and to energy and momentum by

cosh( =u’/c=p"/mec, sinh( = |[u|/c = |p|/mec. (1.153)

Under a Lorentz transformation of space and time, the four-momenta p® trans-
form in exactly the same way as the coordinate four-vectors z®. This is, of course,
due to the Lorentz invariance of the proper time 7 in Eq. (1.149). Indeed, from
Eq. (1.152) we derive the important relation

p02 —p? =m?c, (1.154)
which shows that the square of the four-momentum taken with the Minkowski metric
is an invariant:

p? = pPgap’ = mit. (1.155)

Since both z* and p* are Lorentz vectors, the scalar product of them,
zp = gapx’p, (1.156)

is an invariant. In the canonical formalism, the momentum p’ is the conjugate
variable to the space coordinate 2. Equation (1.156) suggests that the quantity cp°
is conjugate to 2/c = t. As such it must be the energy of the particle:

E = (1.157)

From relation (1.154), we calculate the energy as a function of the momentum

of a relativistic particle:
E = c\/p? + m2c2. (1.158)

For small velocities, this can be expanded as
E:m02+%v2+... . (1.159)

The first term gives a nonvanishing rest energy which is unobservable in nonrela-
tivistic physics. The second term is Newton’s kinetic energy.

The first term has dramatic observable effects. Particles can be produced and
disappear in collision processes. In the latter case, their rest energy mc? can be
transformed into kinetic energy of other particles. The large factor ¢ makes unstable
particles a source of immense energy, with disastrous consequences for Hiroshima
and Nagasaki in 1945.

1.9 Quantum Mechanics

In quantum mechanics, free spinless particles of momentum p are described by plane
waves of the form

op(w) = N e/, (1.160)
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where A is some normalization factor. The momentum components are the eigen-
value of the differential operators

0

by = th—, 1.161
D e ( )
which satisfy with 2® the commutation rules

[Pa, 7°] = ihd,". (1.162)

In terms of these, the generators (1.107) can be rewritten as

A 1
L* = ﬁ(x“ﬁb — a"p"). (1.163)
Apart from the factor 1/, this is the tensor version of the four-dimensional angular
momentum.

It is worth observing that the differential operators (1.163) can also be expressed
as a sandwich of the 4 x 4 -matrix generators (1.51) between z¢ and p?:

Lot = —%(Lab)cdﬁpd - —%xTL“bp = ipT L%z, (1.164)
This way of forming operator representations of the 4 x 4 -Lie algebra (1.71) is a
special application of a general construction technique of higher representations of
a defining matrix representations. In fact, the procedure of second quantization is
based on this construction, which extends the single-particle Schrodinger operators
to the Fock space of many-particle states.

In general, one may always introduce vectors of creation and annihilation oper-
ators a! and a? with the commutation rules

[a°,a = [af,al] = 0; [ac,al] = 6%, (1.165)
and form sandwich operators
L = af (L) ac. (1.166)

These satisfy the same commutation rules as the sandwiched matrices due to the
Leibnitz chain rule (1.117). Since —ip,/h and 2% commute in the same way as a and
a', the commutation rules of the matrices go directly over to the sandwich operators
(1.164). The higher representations generated by them lie in the Hilbert space of
square-integrable functions.

Under a Lorentz transformation, the momentum of the particle described by the
wave function (1.160) goes over into p’ = Ap, so that the wave function transforms
as follows:

bp(2) 2 0L (@) = () = Ne 07 = MoV — g (AM2). (L167)
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This can also be written as ¢,(2') = ¢,(z). An arbitrary superposition of such
waves transforms like

d(x) = ¢(z) = (A "2), (1.168)

which is the defining relation for a scalar field.
The transformation (1.168) may be generated by the differential-operator repre-
sentation of the Lorentz group (1.138) as follows:

¢(x) == ¢'(z) = D(A)g(x). (1.169)

1.10 Relativistic Particles in Electromagnetic Field

Lorentz and Einstein formulated a theory of relativistic massive particles with elec-
tromagnetic interactions referred to as Maxwell-Lorentz theory. It is invariant under
the Poincaré group and describes the dynamical properties of charged particles such
as electrons moving with nonrelativistic and relativistic speeds.

The motion for a particle of charge e and mass m in an electromagnetic field is
governed by the Lorentz equations

dp(r) _ () _ .,
S = me = f(7), (1.170)

where f® is the four-vector associated with the Lorentz force

e dxz? e
e L i — b 1.171
12 = SP S = SRy (a(n) (), (1.171)

and F%(z) is a 4x4 -combination of electric and magnetic fields with the components
F', =gk F% = E. (1.172)
By raising the second index of F'%, one obtains the tensor
F = g®pe, (1.173)
associated with the antisymmetric matrix of the six electromagnetic fields
0 |-FE'" —E* —E3
E! 0 B3 —B?

E? | -B3 0 B!
E3| B? -B! 0

Fob = (1.174)

This tensor notation is useful since F'® transforms under the Lorentz group in the

same way as the direct product 2z’ which goes over into z'%2"® = A% .Ab; z°2z?. In
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F(z), also the arguments must be transformed as in the scalar field in Eq. (1.168),
so that we find the generic transformation behavior of a tensor field:

F(z) L F'o(z) = A% ALy FYA 1), (1.175)

Recalling the exponential representation (1.136) of the direct product of the Lorentz
transformations and the differential operator generation (1.138) of the transforma-
tion of the argument x, this can also be written as

Fo(z) L5 Frab(y) = [eta%er!™ Flab(A~1g), (1.176)

where R
Jh=L%14+1x L4 (1.177)

are the generators of the total four-dimensional angular momentum of the tensor
field. The factors in the direct products apply successively to the representation
spaces associated with the two Lorentz indices and the spacetime coordinates. The
generators J® obey the same commutation rules (1.71) and (1.72) as Lg, and L.

In order to verify the transformation law (1.175), we recall the basic result of
electromagnetism that, under a change to a coordinate frame x — 2’ = Ax moving
with a velocity v, the electric and magnetic fields change as follows

@) = Ey(zx), E (2) =~

@) = By(x), Bi(z) =~

B () + %v «<B@)|,  (1178)

B, (z) - %v <B@)|, (1179

where the subscripts || and L denote the components parallel and orthogonal to v.
Recalling the matrices (1.27) we see that (1.178) and (1.179) correspond precisely
to the transformation law (1.175) of a tensor field.

The field tensor in the electromagnetic force of the equation of motion (1.170)
transforms accordingly:

Fo(x(7)) = F'(x(7)) = A% AT AF" (A (7). (1.180)
This can be verified by rewriting F%(z(7)) as
Foy(a(r)) = / Az Foy(x) 6O (x — (7)), (1.181)

and applying the transformation (1.175).
Separating time and space components of the four-vector of the Lorentz force

(1.171) we find

d , 0 e

il — — —_ E. 1.182
dTp / Mec b, ( )
d e

—p = f =— (Ep°+ B). 1.1
dTp Me ( P p X ) (1.183)
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The Lorentz force can also be stated in terms of velocity as

b ‘v E
d P
= EFab—x =7 9 |- (1.184)
¢ dr ¢E' + = (v x B)'
c

It should be noted that if we do not use the proper time 7 to describe the particle
orbits but the coordinate time dt = vyd7, the equation of motion reads

dp* 1
=—f¢ 1.185
= (1.185)

so that the acceleration is governed by the three-vector of the Lorentz force
v
f" =e |E(x) + —B(z)| . (1.186)
c

The above equations rule the movement of charged point particles in a given
external field. The moving particles will, however, also give rise to additional elec-
tromagnetic fields. These are calculated by solving the Mazwell equations in the
presence of charge and current densities p and j, respectively:

V-E = p (Coulomb’s law), (1.187)
10E 1. .

V xB-— T (Ampere’s law), (1.188)
V.-B = 0 (absence of magnetic monopoles), (1.189)
10B

V xE+ _88—75 = 0  (Faraday’s law). (1.190)
c

In a dielectric and paramagnetic medium with dielectric constant ¢ and magnetic
permeability p one defines the displacement field D(x) and the magnetic field H(x)
by the relations

D(z) = eE(z), B(z)=puB(z), (1.191)

and the Maxwell equations become

V.-D = p (Coulomb’s law), (1.192)
10D 1. .
V xH - el (Ampere’s law), (1.193)
V-B = 0 (absence of magnetic monopoles),  (1.194)
10B
V xE+ _88—75 = 0 (Faraday’s law). (1.195)
c

On the right-hand sides of (1.187), (1.188) and (1.192), (1.193) we have omitted
factors 4w, for convenience. This makes the charge of the electron equal to —e =

—Vi4mahe.
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In the vacuum, the two inhomogeneous Maxwell equations (1.187) and (1.188)
can be combined to a single equation

1.,
O™ = —=i" (1.196)

where j is the four-vector of current density

j9(z) = < cp(x,¢) ) . (1.197)

J(x,1)
Indeed, the zeroth component of (1.196) is equal to (1.187):
OF" = -V -E=—p, (1.198)
whereas th